openclonk/thirdparty/backward-cpp/backward.hpp

1994 lines
51 KiB
C++

/*
* backward.hpp
* Copyright 2013 Google Inc. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef H_6B9572DA_A64B_49E6_B234_051480991C89
#define H_6B9572DA_A64B_49E6_B234_051480991C89
#ifndef __cplusplus
# error "It's not going to compile without a C++ compiler..."
#endif
#if defined(BACKWARD_CXX11)
#elif defined(BACKWARD_CXX98)
#else
# if __cplusplus >= 201103L
# define BACKWARD_CXX11
# define BACKWARD_ATLEAST_CXX11
# define BACKWARD_ATLEAST_CXX98
# else
# define BACKWARD_CXX98
# define BACKWARD_ATLEAST_CXX98
# endif
#endif
// You can define one of the following (or leave it to the auto-detection):
//
// #define BACKWARD_SYSTEM_LINUX
// - specialization for linux
//
// #define BACKWARD_SYSTEM_UNKNOWN
// - placebo implementation, does nothing.
//
#if defined(BACKWARD_SYSTEM_LINUX)
#elif defined(BACKWARD_SYSTEM_UNKNOWN)
#else
# if defined(__linux)
# define BACKWARD_SYSTEM_LINUX
# else
# define BACKWARD_SYSTEM_UNKNOWN
# endif
#endif
#include <fstream>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <cctype>
#include <string>
#include <new>
#include <iomanip>
#include <vector>
#if defined(BACKWARD_SYSTEM_LINUX)
// On linux, backtrace can back-trace or "walk" the stack using the following
// libraries:
//
// #define BACKWARD_HAS_UNWIND 1
// - unwind comes from libgcc, but I saw an equivalent inside clang itself.
// - with unwind, the stacktrace is as accurate as it can possibly be, since
// this is used by the C++ runtine in gcc/clang for stack unwinding on
// exception.
// - normally libgcc is already linked to your program by default.
//
// #define BACKWARD_HAS_BACKTRACE == 1
// - backtrace seems to be a little bit more portable than libunwind, but on
// linux, it uses unwind anyway, but abstract away a tiny information that is
// sadly really important in order to get perfectly accurate stack traces.
// - backtrace is part of the (e)glib library.
//
// The default is:
// #define BACKWARD_HAS_UNWIND == 1
//
// Note that only one of the define should be set to 1 at a time.
//
# if BACKWARD_HAS_UNWIND == 1
# elif BACKWARD_HAS_BACKTRACE == 1
# else
# undef BACKWARD_HAS_UNWIND
# define BACKWARD_HAS_UNWIND 1
# undef BACKWARD_HAS_BACKTRACE
# define BACKWARD_HAS_BACKTRACE 0
# endif
// On linux, backward can extract detailed information about a stack trace
// using one of the following libraries:
//
// #define BACKWARD_HAS_DW 1
// - libdw gives you the most juicy details out of your stack traces:
// - object filename
// - function name
// - source filename
// - line and column numbers
// - source code snippet (assuming the file is accessible)
// - variables name and values (if not optimized out)
// - You need to link with the lib "dw":
// - apt-get install libdw-dev
// - g++/clang++ -ldw ...
//
// #define BACKWARD_HAS_BFD 1
// - With libbfd, you get a fair amount of details:
// - object filename
// - function name
// - source filename
// - line numbers
// - source code snippet (assuming the file is accessible)
// - You need to link with the lib "bfd":
// - apt-get install binutils-dev
// - g++/clang++ -lbfd ...
//
// #define BACKWARD_HAS_BACKTRACE_SYMBOL 1
// - backtrace provides minimal details for a stack trace:
// - object filename
// - function name
// - backtrace is part of the (e)glib library.
//
// The default is:
// #define BACKWARD_HAS_BACKTRACE_SYMBOL == 1
//
// Note that only one of the define should be set to 1 at a time.
//
# if BACKWARD_HAS_DW == 1
# elif BACKWARD_HAS_BFD == 1
# elif BACKWARD_HAS_BACKTRACE_SYMBOL == 1
# else
# undef BACKWARD_HAS_DW
# define BACKWARD_HAS_DW 0
# undef BACKWARD_HAS_BFD
# define BACKWARD_HAS_BFD 0
# undef BACKWARD_HAS_BACKTRACE_SYMBOL
# define BACKWARD_HAS_BACKTRACE_SYMBOL 1
# endif
# if BACKWARD_HAS_UNWIND == 1
# include <unwind.h>
// while gcc's unwind.h defines something like that:
// extern _Unwind_Ptr _Unwind_GetIP (struct _Unwind_Context *);
// extern _Unwind_Ptr _Unwind_GetIPInfo (struct _Unwind_Context *, int *);
//
// clang's unwind.h defines something like this:
// uintptr_t _Unwind_GetIP(struct _Unwind_Context* __context);
//
// Even if the _Unwind_GetIPInfo can be linked to, it is not declared, worse we
// cannot just redeclare it because clang's unwind.h doesn't define _Unwind_Ptr
// anyway.
//
// Luckily we can play on the fact that the guard macros have a different name:
#ifdef __CLANG_UNWIND_H
// In fact, this function still comes from libgcc (on my different linux boxes,
// clang links against libgcc).
# include <inttypes.h>
extern "C" uintptr_t _Unwind_GetIPInfo(_Unwind_Context*, int*);
#endif
# endif
# include <cxxabi.h>
# include <fcntl.h>
# include <link.h>
# include <sys/stat.h>
# include <syscall.h>
# include <unistd.h>
# include <signal.h>
# if BACKWARD_HAS_BFD == 1
// NOTE: defining PACKAGE{,_VERSION} is required before including
// bfd.h on some platforms, see also:
// https://sourceware.org/bugzilla/show_bug.cgi?id=14243
# ifndef PACKAGE
# define PACKAGE
# endif
# ifndef PACKAGE_VERSION
# define PACKAGE_VERSION
# endif
# include <bfd.h>
# ifndef _GNU_SOURCE
# define _GNU_SOURCE
# include <dlfcn.h>
# undef _GNU_SOURCE
# else
# include <dlfcn.h>
# endif
# endif
# if BACKWARD_HAS_DW == 1
# include <elfutils/libdw.h>
# include <elfutils/libdwfl.h>
# include <dwarf.h>
# endif
# if (BACKWARD_HAS_BACKTRACE == 1) || (BACKWARD_HAS_BACKTRACE_SYMBOL == 1)
// then we shall rely on backtrace
# include <execinfo.h>
# endif
#endif // defined(BACKWARD_SYSTEM_LINUX)
#ifdef BACKWARD_ATLEAST_CXX11
# include <unordered_map>
# include <utility> // for std::swap
namespace backward {
namespace details {
template <typename K, typename V>
struct hashtable {
typedef std::unordered_map<K, V> type;
};
using std::move;
} // namespace details
} // namespace backward
#else // NOT BACKWARD_ATLEAST_CXX11
# include <map>
namespace backward {
namespace details {
template <typename K, typename V>
struct hashtable {
typedef std::map<K, V> type;
};
template <typename T>
const T& move(const T& v) { return v; }
template <typename T>
T& move(T& v) { return v; }
} // namespace details
} // namespace backward
#endif // BACKWARD_ATLEAST_CXX11
namespace backward {
namespace system_tag {
struct linux_tag; // seems that I cannot call that "linux" because the name
// is already defined... so I am adding _tag everywhere.
struct unknown_tag;
#if defined(BACKWARD_SYSTEM_LINUX)
typedef linux_tag current_tag;
#elif defined(BACKWARD_SYSTEM_UNKNOWN)
typedef unknown_tag current_tag;
#else
# error "May I please get my system defines?"
#endif
} // namespace system_tag
namespace trace_resolver_tag {
#ifdef BACKWARD_SYSTEM_LINUX
struct libdw;
struct libbfd;
struct backtrace_symbol;
# if BACKWARD_HAS_DW == 1
typedef libdw current;
# elif BACKWARD_HAS_BFD == 1
typedef libbfd current;
# elif BACKWARD_HAS_BACKTRACE_SYMBOL == 1
typedef backtrace_symbol current;
# else
# error "You shall not pass, until you know what you want."
# endif
#endif // BACKWARD_SYSTEM_LINUX
} // namespace trace_resolver_tag
namespace details {
template <typename T>
struct rm_ptr { typedef T type; };
template <typename T>
struct rm_ptr<T*> { typedef T type; };
template <typename T>
struct rm_ptr<const T*> { typedef const T type; };
template <typename R, typename T, R (*F)(T)>
struct deleter {
template <typename U>
void operator()(U& ptr) const {
(*F)(ptr);
}
};
template <typename T>
struct default_delete {
void operator()(T& ptr) const {
delete ptr;
}
};
template <typename T, typename Deleter = deleter<void, void*, &::free> >
class handle {
struct dummy;
T _val;
bool _empty;
#ifdef BACKWARD_ATLEAST_CXX11
handle(const handle&) = delete;
handle& operator=(const handle&) = delete;
#endif
public:
~handle() {
if (!_empty) {
Deleter()(_val);
}
}
explicit handle(): _val(), _empty(true) {}
explicit handle(T val): _val(val), _empty(false) {}
#ifdef BACKWARD_ATLEAST_CXX11
handle(handle&& from): _empty(true) {
swap(from);
}
handle& operator=(handle&& from) {
swap(from); return *this;
}
#else
explicit handle(const handle& from): _empty(true) {
// some sort of poor man's move semantic.
swap(const_cast<handle&>(from));
}
handle& operator=(const handle& from) {
// some sort of poor man's move semantic.
swap(const_cast<handle&>(from)); return *this;
}
#endif
void reset(T new_val) {
handle tmp(new_val);
swap(tmp);
}
operator const dummy*() const {
if (_empty) {
return 0;
}
return reinterpret_cast<const dummy*>(_val);
}
T get() {
return _val;
}
T release() {
_empty = true;
return _val;
}
void swap(handle& b) {
using std::swap;
swap(b._val, _val); // can throw, we are safe here.
swap(b._empty, _empty); // should not throw: if you cannot swap two
// bools without throwing... It's a lost cause anyway!
}
T operator->() { return _val; }
const T operator->() const { return _val; }
typedef typename rm_ptr<T>::type& ref_t;
typedef const typename rm_ptr<T>::type& const_ref_t;
ref_t operator*() { return *_val; }
const_ref_t operator*() const { return *_val; }
ref_t operator[](size_t idx) { return _val[idx]; }
// Watch out, we've got a badass over here
T* operator&() {
_empty = false;
return &_val;
}
};
// Default demangler implementation (do nothing).
template <typename TAG>
struct demangler_impl {
static std::string demangle(const char* funcname) {
return funcname;
}
};
#ifdef BACKWARD_SYSTEM_LINUX
template <>
struct demangler_impl<system_tag::current_tag> {
demangler_impl(): _demangle_buffer_length(0) {}
std::string demangle(const char* funcname) {
using namespace details;
_demangle_buffer.reset(
abi::__cxa_demangle(funcname, _demangle_buffer.release(),
&_demangle_buffer_length, 0)
);
if (_demangle_buffer) {
return _demangle_buffer.get();
}
return funcname;
}
private:
details::handle<char*> _demangle_buffer;
size_t _demangle_buffer_length;
};
#endif // BACKWARD_SYSTEM_LINUX
struct demangler:
public demangler_impl<system_tag::current_tag> {};
} // namespace details
/*************** A TRACE ***************/
struct Trace {
void* addr;
unsigned idx;
Trace():
addr(0), idx(0) {}
explicit Trace(void* addr, size_t idx):
addr(addr), idx(idx) {}
};
struct ResolvedTrace: public Trace {
struct SourceLoc {
std::string function;
std::string filename;
unsigned line;
unsigned col;
SourceLoc(): line(0), col(0) {}
bool operator==(const SourceLoc& b) const {
return function == b.function
&& filename == b.filename
&& line == b.line
&& col == b.col;
}
bool operator!=(const SourceLoc& b) const {
return !(*this == b);
}
};
// In which binary object this trace is located.
std::string object_filename;
// The function in the object that contain the trace. This is not the same
// as source.function which can be an function inlined in object_function.
std::string object_function;
// The source location of this trace. It is possible for filename to be
// empty and for line/col to be invalid (value 0) if this information
// couldn't be deduced, for example if there is no debug information in the
// binary object.
SourceLoc source;
// An optionals list of "inliners". All the successive sources location
// from where the source location of the trace (the attribute right above)
// is inlined. It is especially useful when you compiled with optimization.
typedef std::vector<SourceLoc> source_locs_t;
source_locs_t inliners;
ResolvedTrace():
Trace() {}
ResolvedTrace(const Trace& mini_trace):
Trace(mini_trace) {}
};
/*************** STACK TRACE ***************/
// default implemention.
template <typename TAG>
class StackTraceImpl {
public:
size_t size() const { return 0; }
Trace operator[](size_t) { return Trace(); }
size_t load_here(size_t=0) { return 0; }
size_t load_from(void*, size_t=0) { return 0; }
unsigned thread_id() const { return 0; }
void skip_n_firsts(size_t) { }
};
#ifdef BACKWARD_SYSTEM_LINUX
class StackTraceLinuxImplBase {
public:
StackTraceLinuxImplBase(): _thread_id(0), _skip(0) {}
unsigned thread_id() const {
return _thread_id;
}
void skip_n_firsts(size_t n) { _skip = n; }
protected:
void load_thread_info() {
_thread_id = syscall(SYS_gettid);
if (_thread_id == (size_t) getpid()) {
// If the thread is the main one, let's hide that.
// I like to keep little secret sometimes.
_thread_id = 0;
}
}
size_t skip_n_firsts() const { return _skip; }
private:
size_t _thread_id;
size_t _skip;
};
class StackTraceLinuxImplHolder: public StackTraceLinuxImplBase {
public:
size_t size() const {
return _stacktrace.size() ? _stacktrace.size() - skip_n_firsts() : 0;
}
Trace operator[](size_t idx) {
if (idx >= size()) {
return Trace();
}
return Trace(_stacktrace[idx + skip_n_firsts()], idx);
}
void** begin() {
if (size()) {
return &_stacktrace[skip_n_firsts()];
}
return 0;
}
protected:
std::vector<void*> _stacktrace;
};
#if BACKWARD_HAS_UNWIND == 1
namespace details {
template <typename F>
class Unwinder {
public:
size_t operator()(F& f, size_t depth) {
_f = &f;
_index = -1;
_depth = depth;
_Unwind_Backtrace(&this->backtrace_trampoline, this);
return _index;
}
private:
F* _f;
ssize_t _index;
size_t _depth;
static _Unwind_Reason_Code backtrace_trampoline(
_Unwind_Context* ctx, void *self) {
return ((Unwinder*)self)->backtrace(ctx);
}
_Unwind_Reason_Code backtrace(_Unwind_Context* ctx) {
if (_index >= 0 && static_cast<size_t>(_index) >= _depth)
return _URC_END_OF_STACK;
int ip_before_instruction = 0;
uintptr_t ip = _Unwind_GetIPInfo(ctx, &ip_before_instruction);
if (!ip_before_instruction) {
ip -= 1;
}
if (_index >= 0) { // ignore first frame.
(*_f)(_index, (void*)ip);
}
_index += 1;
return _URC_NO_REASON;
}
};
template <typename F>
size_t unwind(F f, size_t depth) {
Unwinder<F> unwinder;
return unwinder(f, depth);
}
} // namespace details
template <>
class StackTraceImpl<system_tag::linux_tag>: public StackTraceLinuxImplHolder {
public:
__attribute__ ((noinline)) // TODO use some macro
size_t load_here(size_t depth=32) {
load_thread_info();
if (depth == 0) {
return 0;
}
_stacktrace.resize(depth);
size_t trace_cnt = details::unwind(callback(*this), depth);
_stacktrace.resize(trace_cnt);
skip_n_firsts(0);
return size();
}
size_t load_from(void* addr, size_t depth=32) {
load_here(depth + 8);
for (size_t i = 0; i < _stacktrace.size(); ++i) {
if (_stacktrace[i] == addr) {
skip_n_firsts(i);
break;
}
}
_stacktrace.resize(std::min(_stacktrace.size(),
skip_n_firsts() + depth));
return size();
}
private:
struct callback {
StackTraceImpl& self;
callback(StackTraceImpl& self): self(self) {}
void operator()(size_t idx, void* addr) {
self._stacktrace[idx] = addr;
}
};
};
#else // BACKWARD_HAS_UNWIND == 0
template <>
class StackTraceImpl<system_tag::linux_tag>: public StackTraceLinuxImplHolder {
public:
__attribute__ ((noinline)) // TODO use some macro
size_t load_here(size_t depth=32) {
load_thread_info();
if (depth == 0) {
return 0;
}
_stacktrace.resize(depth + 1);
size_t trace_cnt = backtrace(&_stacktrace[0], _stacktrace.size());
_stacktrace.resize(trace_cnt);
skip_n_firsts(1);
return size();
}
size_t load_from(void* addr, size_t depth=32) {
load_here(depth + 8);
for (size_t i = 0; i < _stacktrace.size(); ++i) {
if (_stacktrace[i] == addr) {
skip_n_firsts(i);
_stacktrace[i] = (void*)( (uintptr_t)_stacktrace[i] + 1);
break;
}
}
_stacktrace.resize(std::min(_stacktrace.size(),
skip_n_firsts() + depth));
return size();
}
};
#endif // BACKWARD_HAS_UNWIND
#endif // BACKWARD_SYSTEM_LINUX
class StackTrace:
public StackTraceImpl<system_tag::current_tag> {};
/*************** TRACE RESOLVER ***************/
template <typename TAG>
class TraceResolverImpl;
#ifdef BACKWARD_SYSTEM_UNKNOWN
template <>
class TraceResolverImpl<system_tag::unknown_tag> {
public:
template <class ST>
void load_stacktrace(ST&) {}
ResolvedTrace resolve(ResolvedTrace t) {
return t;
}
};
#endif
#ifdef BACKWARD_SYSTEM_LINUX
class TraceResolverLinuxImplBase {
protected:
std::string demangle(const char* funcname) {
return _demangler.demangle(funcname);
}
private:
details::demangler _demangler;
};
template <typename STACKTRACE_TAG>
class TraceResolverLinuxImpl;
#if BACKWARD_HAS_BACKTRACE_SYMBOL == 1
template <>
class TraceResolverLinuxImpl<trace_resolver_tag::backtrace_symbol>:
public TraceResolverLinuxImplBase {
public:
template <class ST>
void load_stacktrace(ST& st) {
using namespace details;
if (st.size() == 0) {
return;
}
_symbols.reset(
backtrace_symbols(st.begin(), st.size())
);
}
ResolvedTrace resolve(ResolvedTrace trace) {
char* filename = _symbols[trace.idx];
char* funcname = filename;
while (*funcname && *funcname != '(') {
funcname += 1;
}
trace.object_filename.assign(filename, funcname++);
char* funcname_end = funcname;
while (*funcname_end && *funcname_end != ')' && *funcname_end != '+') {
funcname_end += 1;
}
*funcname_end = '\0';
trace.object_function = this->demangle(funcname);
trace.source.function = trace.object_function; // we cannot do better.
return trace;
}
private:
details::handle<char**> _symbols;
};
#endif // BACKWARD_HAS_BACKTRACE_SYMBOL == 1
#if BACKWARD_HAS_BFD == 1
template <>
class TraceResolverLinuxImpl<trace_resolver_tag::libbfd>:
public TraceResolverLinuxImplBase {
public:
TraceResolverLinuxImpl(): _bfd_loaded(false) {}
template <class ST>
void load_stacktrace(ST&) {}
ResolvedTrace resolve(ResolvedTrace trace) {
Dl_info symbol_info;
// trace.addr is a virtual address in memory pointing to some code.
// Let's try to find from which loaded object it comes from.
// The loaded object can be yourself btw.
if (!dladdr(trace.addr, &symbol_info)) {
return trace; // dat broken trace...
}
// Now we get in symbol_info:
// .dli_fname:
// pathname of the shared object that contains the address.
// .dli_fbase:
// where the object is loaded in memory.
// .dli_sname:
// the name of the nearest symbol to trace.addr, we expect a
// function name.
// .dli_saddr:
// the exact address corresponding to .dli_sname.
if (symbol_info.dli_sname) {
trace.object_function = demangle(symbol_info.dli_sname);
}
if (!symbol_info.dli_fname) {
return trace;
}
trace.object_filename = symbol_info.dli_fname;
bfd_fileobject& fobj = load_object_with_bfd(symbol_info.dli_fname);
if (!fobj.handle) {
return trace; // sad, we couldn't load the object :(
}
find_sym_result* details_selected; // to be filled.
// trace.addr is the next instruction to be executed after returning
// from the nested stack frame. In C++ this usually relate to the next
// statement right after the function call that leaded to a new stack
// frame. This is not usually what you want to see when printing out a
// stacktrace...
find_sym_result details_call_site = find_symbol_details(fobj,
trace.addr, symbol_info.dli_fbase);
details_selected = &details_call_site;
#if BACKWARD_HAS_UNWIND == 0
// ...this is why we also try to resolve the symbol that is right
// before the return address. If we are lucky enough, we will get the
// line of the function that was called. But if the code is optimized,
// we might get something absolutely not related since the compiler
// can reschedule the return address with inline functions and
// tail-call optimisation (among other things that I don't even know
// or cannot even dream about with my tiny limited brain).
find_sym_result details_adjusted_call_site = find_symbol_details(fobj,
(void*) (uintptr_t(trace.addr) - 1),
symbol_info.dli_fbase);
// In debug mode, we should always get the right thing(TM).
if (details_call_site.found && details_adjusted_call_site.found) {
// Ok, we assume that details_adjusted_call_site is a better estimation.
details_selected = &details_adjusted_call_site;
trace.addr = (void*) (uintptr_t(trace.addr) - 1);
}
if (details_selected == &details_call_site && details_call_site.found) {
// we have to re-resolve the symbol in order to reset some
// internal state in BFD... so we can call backtrace_inliners
// thereafter...
details_call_site = find_symbol_details(fobj, trace.addr,
symbol_info.dli_fbase);
}
#endif // BACKWARD_HAS_UNWIND
if (details_selected->found) {
if (details_selected->filename) {
trace.source.filename = details_selected->filename;
}
trace.source.line = details_selected->line;
if (details_selected->funcname) {
// this time we get the name of the function where the code is
// located, instead of the function were the address is
// located. In short, if the code was inlined, we get the
// function correspoding to the code. Else we already got in
// trace.function.
trace.source.function = demangle(details_selected->funcname);
if (!symbol_info.dli_sname) {
// for the case dladdr failed to find the symbol name of
// the function, we might as well try to put something
// here.
trace.object_function = trace.source.function;
}
}
// Maybe the source of the trace got inlined inside the function
// (trace.source.function). Let's see if we can get all the inlined
// calls along the way up to the initial call site.
trace.inliners = backtrace_inliners(fobj, *details_selected);
#if 0
if (trace.inliners.size() == 0) {
// Maybe the trace was not inlined... or maybe it was and we
// are lacking the debug information. Let's try to make the
// world better and see if we can get the line number of the
// function (trace.source.function) now.
//
// We will get the location of where the function start (to be
// exact: the first instruction that really start the
// function), not where the name of the function is defined.
// This can be quite far away from the name of the function
// btw.
//
// If the source of the function is the same as the source of
// the trace, we cannot say if the trace was really inlined or
// not. However, if the filename of the source is different
// between the function and the trace... we can declare it as
// an inliner. This is not 100% accurate, but better than
// nothing.
if (symbol_info.dli_saddr) {
find_sym_result details = find_symbol_details(fobj,
symbol_info.dli_saddr,
symbol_info.dli_fbase);
if (details.found) {
ResolvedTrace::SourceLoc diy_inliner;
diy_inliner.line = details.line;
if (details.filename) {
diy_inliner.filename = details.filename;
}
if (details.funcname) {
diy_inliner.function = demangle(details.funcname);
} else {
diy_inliner.function = trace.source.function;
}
if (diy_inliner != trace.source) {
trace.inliners.push_back(diy_inliner);
}
}
}
}
#endif
}
return trace;
}
private:
bool _bfd_loaded;
typedef details::handle<bfd*,
details::deleter<bfd_boolean, bfd*, &bfd_close>
> bfd_handle_t;
typedef details::handle<asymbol**> bfd_symtab_t;
struct bfd_fileobject {
bfd_handle_t handle;
bfd_vma base_addr;
bfd_symtab_t symtab;
bfd_symtab_t dynamic_symtab;
};
typedef details::hashtable<std::string, bfd_fileobject>::type
fobj_bfd_map_t;
fobj_bfd_map_t _fobj_bfd_map;
bfd_fileobject& load_object_with_bfd(const std::string& filename_object) {
using namespace details;
if (!_bfd_loaded) {
using namespace details;
bfd_init();
_bfd_loaded = true;
}
fobj_bfd_map_t::iterator it =
_fobj_bfd_map.find(filename_object);
if (it != _fobj_bfd_map.end()) {
return it->second;
}
// this new object is empty for now.
bfd_fileobject& r = _fobj_bfd_map[filename_object];
// we do the work temporary in this one;
bfd_handle_t bfd_handle;
int fd = open(filename_object.c_str(), O_RDONLY);
bfd_handle.reset(
bfd_fdopenr(filename_object.c_str(), "default", fd)
);
if (!bfd_handle) {
close(fd);
return r;
}
if (!bfd_check_format(bfd_handle.get(), bfd_object)) {
return r; // not an object? You lose.
}
if ((bfd_get_file_flags(bfd_handle.get()) & HAS_SYMS) == 0) {
return r; // that's what happen when you forget to compile in debug.
}
ssize_t symtab_storage_size =
bfd_get_symtab_upper_bound(bfd_handle.get());
ssize_t dyn_symtab_storage_size =
bfd_get_dynamic_symtab_upper_bound(bfd_handle.get());
if (symtab_storage_size <= 0 && dyn_symtab_storage_size <= 0) {
return r; // weird, is the file is corrupted?
}
bfd_symtab_t symtab, dynamic_symtab;
ssize_t symcount = 0, dyn_symcount = 0;
if (symtab_storage_size > 0) {
symtab.reset(
(bfd_symbol**) malloc(symtab_storage_size)
);
symcount = bfd_canonicalize_symtab(
bfd_handle.get(), symtab.get()
);
}
if (dyn_symtab_storage_size > 0) {
dynamic_symtab.reset(
(bfd_symbol**) malloc(dyn_symtab_storage_size)
);
dyn_symcount = bfd_canonicalize_dynamic_symtab(
bfd_handle.get(), dynamic_symtab.get()
);
}
if (symcount <= 0 && dyn_symcount <= 0) {
return r; // damned, that's a stripped file that you got there!
}
r.handle = move(bfd_handle);
r.symtab = move(symtab);
r.dynamic_symtab = move(dynamic_symtab);
return r;
}
struct find_sym_result {
bool found;
const char* filename;
const char* funcname;
unsigned int line;
};
struct find_sym_context {
TraceResolverLinuxImpl* self;
bfd_fileobject* fobj;
void* addr;
void* base_addr;
find_sym_result result;
};
find_sym_result find_symbol_details(bfd_fileobject& fobj, void* addr,
void* base_addr) {
find_sym_context context;
context.self = this;
context.fobj = &fobj;
context.addr = addr;
context.base_addr = base_addr;
context.result.found = false;
bfd_map_over_sections(fobj.handle.get(), &find_in_section_trampoline,
(void*)&context);
return context.result;
}
static void find_in_section_trampoline(bfd*, asection* section,
void* data) {
find_sym_context* context = static_cast<find_sym_context*>(data);
context->self->find_in_section(
reinterpret_cast<bfd_vma>(context->addr),
reinterpret_cast<bfd_vma>(context->base_addr),
*context->fobj,
section, context->result
);
}
void find_in_section(bfd_vma addr, bfd_vma base_addr,
bfd_fileobject& fobj, asection* section, find_sym_result& result)
{
if (result.found) return;
if ((bfd_get_section_flags(fobj.handle.get(), section)
& SEC_ALLOC) == 0)
return; // a debug section is never loaded automatically.
bfd_vma sec_addr = bfd_get_section_vma(fobj.handle.get(), section);
bfd_size_type size = bfd_get_section_size(section);
// are we in the boundaries of the section?
if (addr < sec_addr || addr >= sec_addr + size) {
addr -= base_addr; // oups, a relocated object, lets try again...
if (addr < sec_addr || addr >= sec_addr + size) {
return;
}
}
if (!result.found && fobj.symtab) {
result.found = bfd_find_nearest_line(fobj.handle.get(), section,
fobj.symtab.get(), addr - sec_addr, &result.filename,
&result.funcname, &result.line);
}
if (!result.found && fobj.dynamic_symtab) {
result.found = bfd_find_nearest_line(fobj.handle.get(), section,
fobj.dynamic_symtab.get(), addr - sec_addr,
&result.filename, &result.funcname, &result.line);
}
}
ResolvedTrace::source_locs_t backtrace_inliners(bfd_fileobject& fobj,
find_sym_result previous_result) {
// This function can be called ONLY after a SUCCESSFUL call to
// find_symbol_details. The state is global to the bfd_handle.
ResolvedTrace::source_locs_t results;
while (previous_result.found) {
find_sym_result result;
result.found = bfd_find_inliner_info(fobj.handle.get(),
&result.filename, &result.funcname, &result.line);
if (result.found) /* and not (
cstrings_eq(previous_result.filename, result.filename)
and cstrings_eq(previous_result.funcname, result.funcname)
and result.line == previous_result.line
)) */ {
ResolvedTrace::SourceLoc src_loc;
src_loc.line = result.line;
if (result.filename) {
src_loc.filename = result.filename;
}
if (result.funcname) {
src_loc.function = demangle(result.funcname);
}
results.push_back(src_loc);
}
previous_result = result;
}
return results;
}
bool cstrings_eq(const char* a, const char* b) {
if (!a || !b) {
return false;
}
return strcmp(a, b) == 0;
}
};
#endif // BACKWARD_HAS_BFD == 1
#if BACKWARD_HAS_DW == 1
template <>
class TraceResolverLinuxImpl<trace_resolver_tag::libdw>:
public TraceResolverLinuxImplBase {
public:
TraceResolverLinuxImpl(): _dwfl_handle_initialized(false) {}
template <class ST>
void load_stacktrace(ST&) {}
ResolvedTrace resolve(ResolvedTrace trace) {
using namespace details;
Dwarf_Addr trace_addr = (Dwarf_Addr) trace.addr;
if (!_dwfl_handle_initialized) {
// initialize dwfl...
_dwfl_cb.reset(new Dwfl_Callbacks);
_dwfl_cb->find_elf = &dwfl_linux_proc_find_elf;
_dwfl_cb->find_debuginfo = &dwfl_standard_find_debuginfo;
_dwfl_cb->debuginfo_path = 0;
_dwfl_handle.reset(dwfl_begin(_dwfl_cb.get()));
_dwfl_handle_initialized = true;
if (!_dwfl_handle) {
return trace;
}
// ...from the current process.
dwfl_report_begin(_dwfl_handle.get());
int r = dwfl_linux_proc_report (_dwfl_handle.get(), getpid());
dwfl_report_end(_dwfl_handle.get(), NULL, NULL);
if (r < 0) {
return trace;
}
}
if (!_dwfl_handle) {
return trace;
}
// find the module (binary object) that contains the trace's address.
// This is not using any debug information, but the addresses ranges of
// all the currently loaded binary object.
Dwfl_Module* mod = dwfl_addrmodule(_dwfl_handle.get(), trace_addr);
if (mod) {
// now that we found it, lets get the name of it, this will be the
// full path to the running binary or one of the loaded library.
const char* module_name = dwfl_module_info (mod,
0, 0, 0, 0, 0, 0, 0);
if (module_name) {
trace.object_filename = module_name;
}
// We also look after the name of the symbol, equal or before this
// address. This is found by walking the symtab. We should get the
// symbol corresponding to the function (mangled) containing the
// address. If the code corresponding to the address was inlined,
// this is the name of the out-most inliner function.
const char* sym_name = dwfl_module_addrname(mod, trace_addr);
if (sym_name) {
trace.object_function = demangle(sym_name);
}
}
// now let's get serious, and find out the source location (file and
// line number) of the address.
// This function will look in .debug_aranges for the address and map it
// to the location of the compilation unit DIE in .debug_info and
// return it.
Dwarf_Addr mod_bias = 0;
Dwarf_Die* cudie = dwfl_module_addrdie(mod, trace_addr, &mod_bias);
#if 1
if (!cudie) {
// Sadly clang does not generate the section .debug_aranges, thus
// dwfl_module_addrdie will fail early. Clang doesn't either set
// the lowpc/highpc/range info for every compilation unit.
//
// So in order to save the world:
// for every compilation unit, we will iterate over every single
// DIEs. Normally functions should have a lowpc/highpc/range, which
// we will use to infer the compilation unit.
// note that this is probably badly inefficient.
while ((cudie = dwfl_module_nextcu(mod, cudie, &mod_bias))) {
Dwarf_Die die_mem;
Dwarf_Die* fundie = find_fundie_by_pc(cudie,
trace_addr - mod_bias, &die_mem);
if (fundie) {
break;
}
}
}
#endif
//#define BACKWARD_I_DO_NOT_RECOMMEND_TO_ENABLE_THIS_HORRIBLE_PIECE_OF_CODE
#ifdef BACKWARD_I_DO_NOT_RECOMMEND_TO_ENABLE_THIS_HORRIBLE_PIECE_OF_CODE
if (!cudie) {
// If it's still not enough, lets dive deeper in the shit, and try
// to save the world again: for every compilation unit, we will
// load the corresponding .debug_line section, and see if we can
// find our address in it.
Dwarf_Addr cfi_bias;
Dwarf_CFI* cfi_cache = dwfl_module_eh_cfi(mod, &cfi_bias);
Dwarf_Addr bias;
while ((cudie = dwfl_module_nextcu(mod, cudie, &bias))) {
if (dwarf_getsrc_die(cudie, trace_addr - bias)) {
// ...but if we get a match, it might be a false positive
// because our (address - bias) might as well be valid in a
// different compilation unit. So we throw our last card on
// the table and lookup for the address into the .eh_frame
// section.
handle<Dwarf_Frame*> frame;
dwarf_cfi_addrframe(cfi_cache, trace_addr - cfi_bias, &frame);
if (frame) {
break;
}
}
}
}
#endif
if (!cudie) {
return trace; // this time we lost the game :/
}
// Now that we have a compilation unit DIE, this function will be able
// to load the corresponding section in .debug_line (if not already
// loaded) and hopefully find the source location mapped to our
// address.
Dwarf_Line* srcloc = dwarf_getsrc_die(cudie, trace_addr - mod_bias);
if (srcloc) {
const char* srcfile = dwarf_linesrc(srcloc, 0, 0);
if (srcfile) {
trace.source.filename = srcfile;
}
int line = 0, col = 0;
dwarf_lineno(srcloc, &line);
dwarf_linecol(srcloc, &col);
trace.source.line = line;
trace.source.col = col;
}
deep_first_search_by_pc(cudie, trace_addr - mod_bias,
inliners_search_cb(trace));
if (trace.source.function.size() == 0) {
// fallback.
trace.source.function = trace.object_function;
}
return trace;
}
private:
typedef details::handle<Dwfl*, details::deleter<void, Dwfl*, &dwfl_end> >
dwfl_handle_t;
details::handle<Dwfl_Callbacks*, details::default_delete<Dwfl_Callbacks*> >
_dwfl_cb;
dwfl_handle_t _dwfl_handle;
bool _dwfl_handle_initialized;
// defined here because in C++98, template function cannot take locally
// defined types... grrr.
struct inliners_search_cb {
void operator()(Dwarf_Die* die) {
switch (dwarf_tag(die)) {
const char* name;
case DW_TAG_subprogram:
if ((name = dwarf_diename(die))) {
trace.source.function = name;
}
break;
case DW_TAG_inlined_subroutine:
ResolvedTrace::SourceLoc sloc;
Dwarf_Attribute attr_mem;
if ((name = dwarf_diename(die))) {
sloc.function = name;
}
if ((name = die_call_file(die))) {
sloc.filename = name;
}
Dwarf_Word line = 0, col = 0;
dwarf_formudata(dwarf_attr(die, DW_AT_call_line,
&attr_mem), &line);
dwarf_formudata(dwarf_attr(die, DW_AT_call_column,
&attr_mem), &col);
sloc.line = line;
sloc.col = col;
trace.inliners.push_back(sloc);
break;
};
}
ResolvedTrace& trace;
inliners_search_cb(ResolvedTrace& t): trace(t) {}
};
static bool die_has_pc(Dwarf_Die* die, Dwarf_Addr pc) {
Dwarf_Addr low, high;
// continuous range
if (dwarf_hasattr(die, DW_AT_low_pc) &&
dwarf_hasattr(die, DW_AT_high_pc)) {
if (dwarf_lowpc(die, &low) != 0) {
return false;
}
if (dwarf_highpc(die, &high) != 0) {
Dwarf_Attribute attr_mem;
Dwarf_Attribute* attr = dwarf_attr(die, DW_AT_high_pc, &attr_mem);
Dwarf_Word value;
if (dwarf_formudata(attr, &value) != 0) {
return false;
}
high = low + value;
}
return pc >= low && pc < high;
}
// non-continuous range.
Dwarf_Addr base;
ptrdiff_t offset = 0;
while ((offset = dwarf_ranges(die, offset, &base, &low, &high)) > 0) {
if (pc >= low && pc < high) {
return true;
}
}
return false;
}
static Dwarf_Die* find_fundie_by_pc(Dwarf_Die* parent_die, Dwarf_Addr pc,
Dwarf_Die* result) {
if (dwarf_child(parent_die, result) != 0) {
return 0;
}
Dwarf_Die* die = result;
do {
switch (dwarf_tag(die)) {
case DW_TAG_subprogram:
case DW_TAG_inlined_subroutine:
if (die_has_pc(die, pc)) {
return result;
}
default:
bool declaration = false;
Dwarf_Attribute attr_mem;
dwarf_formflag(dwarf_attr(die, DW_AT_declaration,
&attr_mem), &declaration);
if (!declaration) {
// let's be curious and look deeper in the tree,
// function are not necessarily at the first level, but
// might be nested inside a namespace, structure etc.
Dwarf_Die die_mem;
Dwarf_Die* indie = find_fundie_by_pc(die, pc, &die_mem);
if (indie) {
*result = die_mem;
return result;
}
}
};
} while (dwarf_siblingof(die, result) == 0);
return 0;
}
template <typename CB>
static bool deep_first_search_by_pc(Dwarf_Die* parent_die,
Dwarf_Addr pc, CB cb) {
Dwarf_Die die_mem;
if (dwarf_child(parent_die, &die_mem) != 0) {
return false;
}
bool branch_has_pc = false;
Dwarf_Die* die = &die_mem;
do {
bool declaration = false;
Dwarf_Attribute attr_mem;
dwarf_formflag(dwarf_attr(die, DW_AT_declaration, &attr_mem), &declaration);
if (!declaration) {
// let's be curious and look deeper in the tree, function are
// not necessarily at the first level, but might be nested
// inside a namespace, structure, a function, an inlined
// function etc.
branch_has_pc = deep_first_search_by_pc(die, pc, cb);
}
if (!branch_has_pc) {
branch_has_pc = die_has_pc(die, pc);
}
if (branch_has_pc) {
cb(die);
}
} while (dwarf_siblingof(die, &die_mem) == 0);
return branch_has_pc;
}
static const char* die_call_file(Dwarf_Die *die) {
Dwarf_Attribute attr_mem;
Dwarf_Sword file_idx = 0;
dwarf_formsdata(dwarf_attr(die, DW_AT_call_file, &attr_mem),
&file_idx);
if (file_idx == 0) {
return 0;
}
Dwarf_Die die_mem;
Dwarf_Die* cudie = dwarf_diecu(die, &die_mem, 0, 0);
if (!cudie) {
return 0;
}
Dwarf_Files* files = 0;
size_t nfiles;
dwarf_getsrcfiles(cudie, &files, &nfiles);
if (!files) {
return 0;
}
return dwarf_filesrc(files, file_idx, 0, 0);
}
};
#endif // BACKWARD_HAS_DW == 1
template<>
class TraceResolverImpl<system_tag::linux_tag>:
public TraceResolverLinuxImpl<trace_resolver_tag::current> {};
#endif // BACKWARD_SYSTEM_LINUX
class TraceResolver:
public TraceResolverImpl<system_tag::current_tag> {};
/*************** CODE SNIPPET ***************/
class SourceFile {
public:
typedef std::vector<std::pair<unsigned, std::string> > lines_t;
SourceFile() {}
SourceFile(const std::string& path): _file(new std::ifstream(path.c_str())) {}
bool is_open() const { return _file->is_open(); }
lines_t& get_lines(unsigned line_start, unsigned line_count, lines_t& lines) {
using namespace std;
// This function make uses of the dumbest algo ever:
// 1) seek(0)
// 2) read lines one by one and discard until line_start
// 3) read line one by one until line_start + line_count
//
// If you are getting snippets many time from the same file, it is
// somewhat a waste of CPU, feel free to benchmark and propose a
// better solution ;)
_file->clear();
_file->seekg(0);
string line;
unsigned line_idx;
for (line_idx = 1; line_idx < line_start; ++line_idx) {
std::getline(*_file, line);
if (!*_file) {
return lines;
}
}
// think of it like a lambda in C++98 ;)
// but look, I will reuse it two times!
// What a good boy am I.
struct isspace {
bool operator()(char c) {
return std::isspace(c);
}
};
bool started = false;
for (; line_idx < line_start + line_count; ++line_idx) {
getline(*_file, line);
if (!*_file) {
return lines;
}
if (!started) {
if (std::find_if(line.begin(), line.end(),
not_isspace()) == line.end())
continue;
started = true;
}
lines.push_back(make_pair(line_idx, line));
}
lines.erase(
std::find_if(lines.rbegin(), lines.rend(),
not_isempty()).base(), lines.end()
);
return lines;
}
lines_t get_lines(unsigned line_start, unsigned line_count) {
lines_t lines;
return get_lines(line_start, line_count, lines);
}
// there is no find_if_not in C++98, lets do something crappy to
// workaround.
struct not_isspace {
bool operator()(char c) {
return !std::isspace(c);
}
};
// and define this one here because C++98 is not happy with local defined
// struct passed to template functions, fuuuu.
struct not_isempty {
bool operator()(const lines_t::value_type& p) {
return !(std::find_if(p.second.begin(), p.second.end(),
not_isspace()) == p.second.end());
}
};
void swap(SourceFile& b) {
_file.swap(b._file);
}
#ifdef BACKWARD_ATLEAST_CXX11
SourceFile(SourceFile&& from): _file(0) {
swap(from);
}
SourceFile& operator=(SourceFile&& from) {
swap(from); return *this;
}
#else
explicit SourceFile(const SourceFile& from) {
// some sort of poor man's move semantic.
swap(const_cast<SourceFile&>(from));
}
SourceFile& operator=(const SourceFile& from) {
// some sort of poor man's move semantic.
swap(const_cast<SourceFile&>(from)); return *this;
}
#endif
private:
details::handle<std::ifstream*,
details::default_delete<std::ifstream*>
> _file;
#ifdef BACKWARD_ATLEAST_CXX11
SourceFile(const SourceFile&) = delete;
SourceFile& operator=(const SourceFile&) = delete;
#endif
};
class SnippetFactory {
public:
typedef SourceFile::lines_t lines_t;
lines_t get_snippet(const std::string& filename,
unsigned line_start, unsigned context_size) {
SourceFile& src_file = get_src_file(filename);
unsigned start = line_start - context_size / 2;
return src_file.get_lines(start, context_size);
}
lines_t get_combined_snippet(
const std::string& filename_a, unsigned line_a,
const std::string& filename_b, unsigned line_b,
unsigned context_size) {
SourceFile& src_file_a = get_src_file(filename_a);
SourceFile& src_file_b = get_src_file(filename_b);
lines_t lines = src_file_a.get_lines(line_a - context_size / 4,
context_size / 2);
src_file_b.get_lines(line_b - context_size / 4, context_size / 2,
lines);
return lines;
}
lines_t get_coalesced_snippet(const std::string& filename,
unsigned line_a, unsigned line_b, unsigned context_size) {
SourceFile& src_file = get_src_file(filename);
using std::min; using std::max;
unsigned a = min(line_a, line_b);
unsigned b = max(line_a, line_b);
if ((b - a) < (context_size / 3)) {
return src_file.get_lines((a + b - context_size + 1) / 2,
context_size);
}
lines_t lines = src_file.get_lines(a - context_size / 4,
context_size / 2);
src_file.get_lines(b - context_size / 4, context_size / 2, lines);
return lines;
}
private:
typedef details::hashtable<std::string, SourceFile>::type src_files_t;
src_files_t _src_files;
SourceFile& get_src_file(const std::string& filename) {
src_files_t::iterator it = _src_files.find(filename);
if (it != _src_files.end()) {
return it->second;
}
SourceFile& new_src_file = _src_files[filename];
new_src_file = SourceFile(filename);
return new_src_file;
}
};
/*************** PRINTER ***************/
#ifdef BACKWARD_SYSTEM_LINUX
namespace Color {
enum type {
yellow = 33,
purple = 35,
reset = 39
};
} // namespace Color
class Colorize {
public:
Colorize(std::FILE* os):
_os(os), _reset(false), _istty(false) {}
void init() {
_istty = isatty(fileno(_os));
}
void set_color(Color::type ccode) {
if (!_istty) return;
// I assume that the terminal can handle basic colors. Seriously I
// don't want to deal with all the termcap shit.
fprintf(_os, "\033[%im", static_cast<int>(ccode));
_reset = (ccode != Color::reset);
}
~Colorize() {
if (_reset) {
set_color(Color::reset);
}
}
private:
std::FILE* _os;
bool _reset;
bool _istty;
};
#else // ndef BACKWARD_SYSTEM_LINUX
namespace Color {
enum type {
yellow = 0,
purple = 0,
reset = 0
};
} // namespace Color
class Colorize {
public:
Colorize(std::FILE*) {}
void init() {}
void set_color(Color::type) {}
};
#endif // BACKWARD_SYSTEM_LINUX
class Printer {
public:
bool snippet;
bool color;
bool address;
bool object;
int inliner_context_size;
int trace_context_size;
Printer():
snippet(true),
color(true),
address(false),
object(false),
inliner_context_size(5),
trace_context_size(7)
{}
template <typename ST>
FILE* print(ST& st, FILE* os = stderr) {
Colorize colorize(os);
if (color) {
colorize.init();
}
print_header(os, st.thread_id());
_resolver.load_stacktrace(st);
for (size_t trace_idx = st.size(); trace_idx > 0; --trace_idx) {
print_trace(os, _resolver.resolve(st[trace_idx-1]), colorize);
}
return os;
}
template <typename IT>
FILE* print(IT begin, IT end, FILE* os = stderr, size_t thread_id = 0) {
Colorize colorize(os);
if (color) {
colorize.init();
}
print_header(os, thread_id);
for (; begin != end; ++begin) {
print_trace(os, *begin, colorize);
}
return os;
}
private:
TraceResolver _resolver;
SnippetFactory _snippets;
void print_header(FILE* os, unsigned thread_id) {
fprintf(os, "Stack trace (most recent call last)");
if (thread_id) {
fprintf(os, " in thread %u:\n", thread_id);
} else {
fprintf(os, ":\n");
}
}
void print_trace(FILE* os, const ResolvedTrace& trace,
Colorize& colorize) {
fprintf(os, "#%-2u", trace.idx);
bool already_indented = true;
if (!trace.source.filename.size() || object) {
fprintf(os, " Object \"%s\", at %p, in %s\n",
trace.object_filename.c_str(), trace.addr,
trace.object_function.c_str());
already_indented = false;
}
for (size_t inliner_idx = trace.inliners.size();
inliner_idx > 0; --inliner_idx) {
if (!already_indented) {
fprintf(os, " ");
}
const ResolvedTrace::SourceLoc& inliner_loc
= trace.inliners[inliner_idx-1];
print_source_loc(os, " | ", inliner_loc);
if (snippet) {
print_snippet(os, " | ", inliner_loc,
colorize, Color::purple, inliner_context_size);
}
already_indented = false;
}
if (trace.source.filename.size()) {
if (!already_indented) {
fprintf(os, " ");
}
print_source_loc(os, " ", trace.source, trace.addr);
if (snippet) {
print_snippet(os, " ", trace.source,
colorize, Color::yellow, trace_context_size);
}
}
}
void print_snippet(FILE* os, const char* indent,
const ResolvedTrace::SourceLoc& source_loc,
Colorize& colorize, Color::type color_code,
int context_size)
{
using namespace std;
typedef SnippetFactory::lines_t lines_t;
lines_t lines = _snippets.get_snippet(source_loc.filename,
source_loc.line, context_size);
for (lines_t::const_iterator it = lines.begin();
it != lines.end(); ++it) {
if (it-> first == source_loc.line) {
colorize.set_color(color_code);
fprintf(os, "%s>", indent);
} else {
fprintf(os, "%s ", indent);
}
fprintf(os, "%4u: %s\n", it->first, it->second.c_str());
if (it-> first == source_loc.line) {
colorize.set_color(Color::reset);
}
}
}
void print_source_loc(FILE* os, const char* indent,
const ResolvedTrace::SourceLoc& source_loc,
void* addr=0) {
fprintf(os, "%sSource \"%s\", line %i, in %s",
indent, source_loc.filename.c_str(), (int)source_loc.line,
source_loc.function.c_str());
if (address && addr != 0) {
fprintf(os, " [%p]\n", addr);
} else {
fprintf(os, "\n");
}
}
};
/*************** SIGNALS HANDLING ***************/
#ifdef BACKWARD_SYSTEM_LINUX
class SignalHandling {
public:
static std::vector<int> make_default_signals() {
const int posix_signals[] = {
// Signals for which the default action is "Core".
SIGABRT, // Abort signal from abort(3)
SIGBUS, // Bus error (bad memory access)
SIGFPE, // Floating point exception
SIGILL, // Illegal Instruction
SIGIOT, // IOT trap. A synonym for SIGABRT
SIGQUIT, // Quit from keyboard
SIGSEGV, // Invalid memory reference
SIGSYS, // Bad argument to routine (SVr4)
SIGTRAP, // Trace/breakpoint trap
SIGXCPU, // CPU time limit exceeded (4.2BSD)
SIGXFSZ, // File size limit exceeded (4.2BSD)
};
return std::vector<int>(posix_signals, posix_signals + sizeof posix_signals / sizeof posix_signals[0] );
}
SignalHandling(const std::vector<int>& posix_signals = make_default_signals()):
_loaded(false) {
bool success = true;
const size_t stack_size = 1024 * 1024 * 8;
_stack_content.reset((char*)malloc(stack_size));
if (_stack_content) {
stack_t ss;
ss.ss_sp = _stack_content.get();
ss.ss_size = stack_size;
ss.ss_flags = 0;
if (sigaltstack(&ss, 0) < 0) {
success = false;
}
} else {
success = false;
}
for (size_t i = 0; i < posix_signals.size(); ++i) {
struct sigaction action;
memset(&action, 0, sizeof action);
action.sa_flags = (SA_SIGINFO | SA_ONSTACK | SA_NODEFER |
SA_RESETHAND);
sigfillset(&action.sa_mask);
sigdelset(&action.sa_mask, posix_signals[i]);
action.sa_sigaction = &sig_handler;
int r = sigaction(posix_signals[i], &action, 0);
if (r < 0) success = false;
}
_loaded = success;
}
bool loaded() const { return _loaded; }
private:
details::handle<char*> _stack_content;
bool _loaded;
#ifdef __GNUC__
__attribute__((noreturn))
#endif
static void sig_handler(int, siginfo_t* info, void* _ctx) {
ucontext_t *uctx = (ucontext_t*) _ctx;
StackTrace st;
void* error_addr = 0;
#ifdef REG_RIP // x86_64
error_addr = reinterpret_cast<void*>(uctx->uc_mcontext.gregs[REG_RIP]);
#elif defined(REG_EIP) // x86_32
error_addr = reinterpret_cast<void*>(uctx->uc_mcontext.gregs[REG_EIP]);
#elif defined(__arm__)
error_addr = reinterpret_cast<void*>(uctx->uc_mcontext.arm_pc);
#elif defined(__ppc__) || defined(__powerpc) || defined(__powerpc__) || defined(__POWERPC__)
error_addr = reinterpret_cast<void*>(uctx->uc_mcontext.regs->nip);
#else
# warning ":/ sorry, ain't know no nothing none not of your architecture!"
#endif
if (error_addr) {
st.load_from(error_addr, 32);
} else {
st.load_here(32);
}
Printer printer;
printer.address = true;
printer.print(st, stderr);
// OpenClonk modification: also print to the log file
if (GetLogFD() > -1)
{
auto f = fdopen(GetLogFD(), "ab");
printer.print(st, f);
fclose(f);
}
#if _XOPEN_SOURCE >= 700 || _POSIX_C_SOURCE >= 200809L
psiginfo(info, 0);
#endif
// try to forward the signal.
raise(info->si_signo);
// terminate the process immediately.
puts("watf? exit");
_exit(EXIT_FAILURE);
}
};
#endif // BACKWARD_SYSTEM_LINUX
#ifdef BACKWARD_SYSTEM_UNKNOWN
class SignalHandling {
public:
SignalHandling(const std::vector<int>& = std::vector<int>()) {}
bool init() { return false; }
bool loaded() { return false; }
};
#endif // BACKWARD_SYSTEM_UNKNOWN
} // namespace backward
#endif /* H_GUARD */