wine-wine/dlls/ws2_32/socket.c

9148 lines
288 KiB
C

/*
* based on Windows Sockets 1.1 specs
*
* Copyright (C) 1993,1994,1996,1997 John Brezak, Erik Bos, Alex Korobka.
* Copyright (C) 2001 Stefan Leichter
* Copyright (C) 2004 Hans Leidekker
* Copyright (C) 2005 Marcus Meissner
* Copyright (C) 2006-2008 Kai Blin
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*
* NOTE: If you make any changes to fix a particular app, make sure
* they don't break something else like Netscape or telnet and ftp
* clients and servers (www.winsite.com got a lot of those).
*/
#include "config.h"
#include "wine/port.h"
#include <stdarg.h>
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <limits.h>
#ifdef HAVE_SYS_IPC_H
# include <sys/ipc.h>
#endif
#ifdef HAVE_SYS_IOCTL_H
# include <sys/ioctl.h>
#endif
#ifdef HAVE_SYS_FILIO_H
# include <sys/filio.h>
#endif
#ifdef HAVE_SYS_SOCKIO_H
# include <sys/sockio.h>
#endif
#if defined(__EMX__)
# include <sys/so_ioctl.h>
#endif
#ifdef HAVE_SYS_PARAM_H
# include <sys/param.h>
#endif
#ifdef HAVE_SYS_MSG_H
# include <sys/msg.h>
#endif
#ifdef HAVE_SYS_WAIT_H
# include <sys/wait.h>
#endif
#ifdef HAVE_SYS_UIO_H
# include <sys/uio.h>
#endif
#ifdef HAVE_SYS_SOCKET_H
#include <sys/socket.h>
#endif
#ifdef HAVE_NETINET_IN_H
# include <netinet/in.h>
#endif
#ifdef HAVE_NETINET_TCP_H
# include <netinet/tcp.h>
#endif
#ifdef HAVE_ARPA_INET_H
# include <arpa/inet.h>
#endif
#include <ctype.h>
#include <fcntl.h>
#include <errno.h>
#ifdef HAVE_NETDB_H
#include <netdb.h>
#endif
#ifdef HAVE_UNISTD_H
# include <unistd.h>
#endif
#include <stdlib.h>
#ifdef HAVE_ARPA_NAMESER_H
# include <arpa/nameser.h>
#endif
#ifdef HAVE_RESOLV_H
# include <resolv.h>
#endif
#ifdef HAVE_NET_IF_H
# include <net/if.h>
#endif
#ifdef HAVE_LINUX_FILTER_H
# include <linux/filter.h>
#endif
#ifdef HAVE_NETIPX_IPX_H
# include <netipx/ipx.h>
#elif defined(HAVE_LINUX_IPX_H)
# ifdef HAVE_ASM_TYPES_H
# include <asm/types.h>
# endif
# ifdef HAVE_LINUX_TYPES_H
# include <linux/types.h>
# endif
# include <linux/ipx.h>
#endif
#if defined(SOL_IPX) || defined(SO_DEFAULT_HEADERS)
# define HAS_IPX
#endif
#ifdef HAVE_LINUX_IRDA_H
# ifdef HAVE_LINUX_TYPES_H
# include <linux/types.h>
# endif
# include <linux/irda.h>
# define HAS_IRDA
#endif
#ifdef HAVE_POLL_H
#include <poll.h>
#endif
#ifdef HAVE_SYS_POLL_H
# include <sys/poll.h>
#endif
#ifdef HAVE_SYS_TIME_H
# include <sys/time.h>
#endif
#define NONAMELESSUNION
#define NONAMELESSSTRUCT
#include "ntstatus.h"
#define WIN32_NO_STATUS
#include "windef.h"
#include "winbase.h"
#include "wingdi.h"
#include "winuser.h"
#include "winerror.h"
#include "winnls.h"
#include "winsock2.h"
#include "mswsock.h"
#include "ws2tcpip.h"
#include "ws2spi.h"
#include "wsipx.h"
#include "wsnwlink.h"
#include "wshisotp.h"
#include "mstcpip.h"
#include "af_irda.h"
#include "winnt.h"
#define USE_WC_PREFIX /* For CMSG_DATA */
#include "iphlpapi.h"
#include "ip2string.h"
#include "wine/server.h"
#include "wine/debug.h"
#include "wine/exception.h"
#include "wine/unicode.h"
#include "wine/heap.h"
#if defined(linux) && !defined(IP_UNICAST_IF)
#define IP_UNICAST_IF 50
#endif
#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
# define sipx_network sipx_addr.x_net
# define sipx_node sipx_addr.x_host.c_host
#endif /* __FreeBSD__ */
#ifndef INADDR_NONE
#define INADDR_NONE ~0UL
#endif
#if !defined(TCP_KEEPIDLE) && defined(TCP_KEEPALIVE)
/* TCP_KEEPALIVE is the Mac OS name for TCP_KEEPIDLE */
#define TCP_KEEPIDLE TCP_KEEPALIVE
#endif
#define FILE_USE_FILE_POINTER_POSITION ((LONGLONG)-2)
WINE_DEFAULT_DEBUG_CHANNEL(winsock);
WINE_DECLARE_DEBUG_CHANNEL(winediag);
/* names of the protocols */
static const WCHAR NameIpxW[] = {'I', 'P', 'X', '\0'};
static const WCHAR NameSpxW[] = {'S', 'P', 'X', '\0'};
static const WCHAR NameSpxIIW[] = {'S', 'P', 'X', ' ', 'I', 'I', '\0'};
static const WCHAR NameTcpW[] = {'T', 'C', 'P', '/', 'I', 'P', '\0'};
static const WCHAR NameUdpW[] = {'U', 'D', 'P', '/', 'I', 'P', '\0'};
/* Taken from Win2k */
static const GUID ProviderIdIP = { 0xe70f1aa0, 0xab8b, 0x11cf,
{ 0x8c, 0xa3, 0x00, 0x80, 0x5f, 0x48, 0xa1, 0x92 } };
static const GUID ProviderIdIPX = { 0x11058240, 0xbe47, 0x11cf,
{ 0x95, 0xc8, 0x00, 0x80, 0x5f, 0x48, 0xa1, 0x92 } };
static const GUID ProviderIdSPX = { 0x11058241, 0xbe47, 0x11cf,
{ 0x95, 0xc8, 0x00, 0x80, 0x5f, 0x48, 0xa1, 0x92 } };
static const INT valid_protocols[] =
{
WS_IPPROTO_TCP,
WS_IPPROTO_UDP,
WS_NSPROTO_IPX,
WS_NSPROTO_SPX,
WS_NSPROTO_SPXII,
0
};
#define IS_IPX_PROTO(X) ((X) >= WS_NSPROTO_IPX && (X) <= WS_NSPROTO_IPX + 255)
#if defined(IP_UNICAST_IF) && defined(SO_ATTACH_FILTER)
# define LINUX_BOUND_IF
struct interface_filter {
struct sock_filter iface_memaddr;
struct sock_filter iface_rule;
struct sock_filter ip_memaddr;
struct sock_filter ip_rule;
struct sock_filter return_keep;
struct sock_filter return_dump;
};
# define FILTER_JUMP_DUMP(here) (u_char)(offsetof(struct interface_filter, return_dump) \
-offsetof(struct interface_filter, here)-sizeof(struct sock_filter)) \
/sizeof(struct sock_filter)
# define FILTER_JUMP_KEEP(here) (u_char)(offsetof(struct interface_filter, return_keep) \
-offsetof(struct interface_filter, here)-sizeof(struct sock_filter)) \
/sizeof(struct sock_filter)
# define FILTER_JUMP_NEXT() (u_char)(0)
# define SKF_NET_DESTIP 16 /* offset in the network header to the destination IP */
static struct interface_filter generic_interface_filter = {
/* This filter rule allows incoming packets on the specified interface, which works for all
* remotely generated packets and for locally generated broadcast packets. */
BPF_STMT(BPF_LD+BPF_W+BPF_ABS, SKF_AD_OFF+SKF_AD_IFINDEX),
BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0xdeadbeef, FILTER_JUMP_KEEP(iface_rule), FILTER_JUMP_NEXT()),
/* This rule allows locally generated packets targeted at the specific IP address of the chosen
* adapter (local packets not destined for the broadcast address do not have IFINDEX set) */
BPF_STMT(BPF_LD+BPF_W+BPF_ABS, SKF_NET_OFF+SKF_NET_DESTIP),
BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0xdeadbeef, FILTER_JUMP_KEEP(ip_rule), FILTER_JUMP_DUMP(ip_rule)),
BPF_STMT(BPF_RET+BPF_K, (u_int)-1), /* keep packet */
BPF_STMT(BPF_RET+BPF_K, 0) /* dump packet */
};
#endif /* LINUX_BOUND_IF */
extern ssize_t CDECL __wine_locked_recvmsg( int fd, struct msghdr *hdr, int flags );
/*
* The actual definition of WSASendTo, wrapped in a different function name
* so that internal calls from ws2_32 itself will not trigger programs like
* Garena, which hooks WSASendTo/WSARecvFrom calls.
*/
static int WS2_sendto( SOCKET s, LPWSABUF lpBuffers, DWORD dwBufferCount,
LPDWORD lpNumberOfBytesSent, DWORD dwFlags,
const struct WS_sockaddr *to, int tolen,
LPWSAOVERLAPPED lpOverlapped,
LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine );
/*
* Internal fundamental receive function, essentially WSARecvFrom with an
* additional parameter to support message control headers.
*/
static int WS2_recv_base( SOCKET s, LPWSABUF lpBuffers, DWORD dwBufferCount,
LPDWORD lpNumberOfBytesRecvd, LPDWORD lpFlags,
struct WS_sockaddr *lpFrom,
LPINT lpFromlen, LPWSAOVERLAPPED lpOverlapped,
LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine,
LPWSABUF lpControlBuffer );
/* critical section to protect some non-reentrant net function */
static CRITICAL_SECTION csWSgetXXXbyYYY;
static CRITICAL_SECTION_DEBUG critsect_debug =
{
0, 0, &csWSgetXXXbyYYY,
{ &critsect_debug.ProcessLocksList, &critsect_debug.ProcessLocksList },
0, 0, { (DWORD_PTR)(__FILE__ ": csWSgetXXXbyYYY") }
};
static CRITICAL_SECTION csWSgetXXXbyYYY = { &critsect_debug, -1, 0, 0, 0, 0 };
static in_addr_t *if_addr_cache;
static unsigned int if_addr_cache_size;
static CRITICAL_SECTION cs_if_addr_cache;
static CRITICAL_SECTION_DEBUG cs_if_addr_cache_debug =
{
0, 0, &cs_if_addr_cache,
{ &cs_if_addr_cache_debug.ProcessLocksList, &cs_if_addr_cache_debug.ProcessLocksList },
0, 0, { (DWORD_PTR)(__FILE__ ": cs_if_addr_cache") }
};
static CRITICAL_SECTION cs_if_addr_cache = { &cs_if_addr_cache_debug, -1, 0, 0, 0, 0 };
union generic_unix_sockaddr
{
struct sockaddr addr;
char data[128]; /* should be big enough for all families */
};
static inline const char *debugstr_sockaddr( const struct WS_sockaddr *a )
{
if (!a) return "(nil)";
switch (a->sa_family)
{
case WS_AF_INET:
{
char buf[16];
const char *p;
struct WS_sockaddr_in *sin = (struct WS_sockaddr_in *)a;
p = WS_inet_ntop( WS_AF_INET, &sin->sin_addr, buf, sizeof(buf) );
if (!p)
p = "(unknown IPv4 address)";
return wine_dbg_sprintf("{ family AF_INET, address %s, port %d }",
p, ntohs(sin->sin_port));
}
case WS_AF_INET6:
{
char buf[46];
const char *p;
struct WS_sockaddr_in6 *sin = (struct WS_sockaddr_in6 *)a;
p = WS_inet_ntop( WS_AF_INET6, &sin->sin6_addr, buf, sizeof(buf) );
if (!p)
p = "(unknown IPv6 address)";
return wine_dbg_sprintf("{ family AF_INET6, address %s, port %d }",
p, ntohs(sin->sin6_port));
}
case WS_AF_IPX:
{
int i;
char netnum[16], nodenum[16];
struct WS_sockaddr_ipx *sin = (struct WS_sockaddr_ipx *)a;
for (i = 0;i < 4; i++) sprintf(netnum + i * 2, "%02X", (unsigned char) sin->sa_netnum[i]);
for (i = 0;i < 6; i++) sprintf(nodenum + i * 2, "%02X", (unsigned char) sin->sa_nodenum[i]);
return wine_dbg_sprintf("{ family AF_IPX, address %s.%s, ipx socket %d }",
netnum, nodenum, sin->sa_socket);
}
case WS_AF_IRDA:
{
DWORD addr;
memcpy( &addr, ((const SOCKADDR_IRDA *)a)->irdaDeviceID, sizeof(addr) );
addr = ntohl( addr );
return wine_dbg_sprintf("{ family AF_IRDA, addr %08x, name %s }",
addr,
((const SOCKADDR_IRDA *)a)->irdaServiceName);
}
default:
return wine_dbg_sprintf("{ family %d }", a->sa_family);
}
}
static inline const char *debugstr_sockopt(int level, int optname)
{
const char *stropt = NULL, *strlevel = NULL;
#define DEBUG_SOCKLEVEL(x) case (x): strlevel = #x
#define DEBUG_SOCKOPT(x) case (x): stropt = #x; break
switch(level)
{
DEBUG_SOCKLEVEL(WS_SOL_SOCKET);
switch(optname)
{
DEBUG_SOCKOPT(WS_SO_ACCEPTCONN);
DEBUG_SOCKOPT(WS_SO_BROADCAST);
DEBUG_SOCKOPT(WS_SO_BSP_STATE);
DEBUG_SOCKOPT(WS_SO_CONDITIONAL_ACCEPT);
DEBUG_SOCKOPT(WS_SO_CONNECT_TIME);
DEBUG_SOCKOPT(WS_SO_DEBUG);
DEBUG_SOCKOPT(WS_SO_DONTLINGER);
DEBUG_SOCKOPT(WS_SO_DONTROUTE);
DEBUG_SOCKOPT(WS_SO_ERROR);
DEBUG_SOCKOPT(WS_SO_EXCLUSIVEADDRUSE);
DEBUG_SOCKOPT(WS_SO_GROUP_ID);
DEBUG_SOCKOPT(WS_SO_GROUP_PRIORITY);
DEBUG_SOCKOPT(WS_SO_KEEPALIVE);
DEBUG_SOCKOPT(WS_SO_LINGER);
DEBUG_SOCKOPT(WS_SO_MAX_MSG_SIZE);
DEBUG_SOCKOPT(WS_SO_OOBINLINE);
DEBUG_SOCKOPT(WS_SO_OPENTYPE);
DEBUG_SOCKOPT(WS_SO_PROTOCOL_INFOA);
DEBUG_SOCKOPT(WS_SO_PROTOCOL_INFOW);
DEBUG_SOCKOPT(WS_SO_RCVBUF);
DEBUG_SOCKOPT(WS_SO_RCVTIMEO);
DEBUG_SOCKOPT(WS_SO_REUSEADDR);
DEBUG_SOCKOPT(WS_SO_SNDBUF);
DEBUG_SOCKOPT(WS_SO_SNDTIMEO);
DEBUG_SOCKOPT(WS_SO_TYPE);
DEBUG_SOCKOPT(WS_SO_UPDATE_CONNECT_CONTEXT);
}
break;
DEBUG_SOCKLEVEL(WS_NSPROTO_IPX);
switch(optname)
{
DEBUG_SOCKOPT(WS_IPX_PTYPE);
DEBUG_SOCKOPT(WS_IPX_FILTERPTYPE);
DEBUG_SOCKOPT(WS_IPX_DSTYPE);
DEBUG_SOCKOPT(WS_IPX_RECVHDR);
DEBUG_SOCKOPT(WS_IPX_MAXSIZE);
DEBUG_SOCKOPT(WS_IPX_ADDRESS);
DEBUG_SOCKOPT(WS_IPX_MAX_ADAPTER_NUM);
}
break;
DEBUG_SOCKLEVEL(WS_SOL_IRLMP);
switch(optname)
{
DEBUG_SOCKOPT(WS_IRLMP_ENUMDEVICES);
}
break;
DEBUG_SOCKLEVEL(WS_IPPROTO_TCP);
switch(optname)
{
DEBUG_SOCKOPT(WS_TCP_BSDURGENT);
DEBUG_SOCKOPT(WS_TCP_EXPEDITED_1122);
DEBUG_SOCKOPT(WS_TCP_NODELAY);
}
break;
DEBUG_SOCKLEVEL(WS_IPPROTO_IP);
switch(optname)
{
DEBUG_SOCKOPT(WS_IP_ADD_MEMBERSHIP);
DEBUG_SOCKOPT(WS_IP_DONTFRAGMENT);
DEBUG_SOCKOPT(WS_IP_DROP_MEMBERSHIP);
DEBUG_SOCKOPT(WS_IP_HDRINCL);
DEBUG_SOCKOPT(WS_IP_MULTICAST_IF);
DEBUG_SOCKOPT(WS_IP_MULTICAST_LOOP);
DEBUG_SOCKOPT(WS_IP_MULTICAST_TTL);
DEBUG_SOCKOPT(WS_IP_OPTIONS);
DEBUG_SOCKOPT(WS_IP_PKTINFO);
DEBUG_SOCKOPT(WS_IP_RECEIVE_BROADCAST);
DEBUG_SOCKOPT(WS_IP_TOS);
DEBUG_SOCKOPT(WS_IP_TTL);
DEBUG_SOCKOPT(WS_IP_UNICAST_IF);
}
break;
DEBUG_SOCKLEVEL(WS_IPPROTO_IPV6);
switch(optname)
{
DEBUG_SOCKOPT(WS_IPV6_ADD_MEMBERSHIP);
DEBUG_SOCKOPT(WS_IPV6_DROP_MEMBERSHIP);
DEBUG_SOCKOPT(WS_IPV6_MULTICAST_IF);
DEBUG_SOCKOPT(WS_IPV6_MULTICAST_HOPS);
DEBUG_SOCKOPT(WS_IPV6_MULTICAST_LOOP);
DEBUG_SOCKOPT(WS_IPV6_UNICAST_HOPS);
DEBUG_SOCKOPT(WS_IPV6_V6ONLY);
DEBUG_SOCKOPT(WS_IPV6_UNICAST_IF);
DEBUG_SOCKOPT(WS_IPV6_DONTFRAG);
}
break;
}
#undef DEBUG_SOCKLEVEL
#undef DEBUG_SOCKOPT
if (!strlevel)
strlevel = wine_dbg_sprintf("WS_0x%x", level);
if (!stropt)
stropt = wine_dbg_sprintf("WS_0x%x", optname);
return wine_dbg_sprintf("level %s, name %s", strlevel + 3, stropt + 3);
}
static inline const char *debugstr_optval(const char *optval, int optlenval)
{
if (optval && !IS_INTRESOURCE(optval) && optlenval >= 1 && optlenval <= sizeof(DWORD))
{
DWORD value = 0;
memcpy(&value, optval, optlenval);
return wine_dbg_sprintf("%p (%u)", optval, value);
}
return wine_dbg_sprintf("%p", optval);
}
/* HANDLE<->SOCKET conversion (SOCKET is UINT_PTR). */
#define SOCKET2HANDLE(s) ((HANDLE)(s))
#define HANDLE2SOCKET(h) ((SOCKET)(h))
/****************************************************************
* Async IO declarations
****************************************************************/
typedef NTSTATUS async_callback_t( void *user, IO_STATUS_BLOCK *io, NTSTATUS status );
struct ws2_async_io
{
async_callback_t *callback; /* must be the first field */
struct ws2_async_io *next;
};
struct ws2_async_shutdown
{
struct ws2_async_io io;
HANDLE hSocket;
IO_STATUS_BLOCK iosb;
int type;
};
struct ws2_async
{
struct ws2_async_io io;
HANDLE hSocket;
LPWSAOVERLAPPED user_overlapped;
LPWSAOVERLAPPED_COMPLETION_ROUTINE completion_func;
IO_STATUS_BLOCK local_iosb;
struct WS_sockaddr *addr;
union
{
int val; /* for send operations */
int *ptr; /* for recv operations */
} addrlen;
DWORD flags;
DWORD *lpFlags;
WSABUF *control;
unsigned int n_iovecs;
unsigned int first_iovec;
struct iovec iovec[1];
};
struct ws2_accept_async
{
struct ws2_async_io io;
HANDLE listen_socket;
HANDLE accept_socket;
LPOVERLAPPED user_overlapped;
ULONG_PTR cvalue;
PVOID buf; /* buffer to write data to */
int data_len;
int local_len;
int remote_len;
struct ws2_async *read;
};
struct ws2_transmitfile_async
{
struct ws2_async_io io;
char *buffer;
HANDLE file;
DWORD file_read;
DWORD file_bytes;
DWORD bytes_per_send;
TRANSMIT_FILE_BUFFERS buffers;
DWORD flags;
LARGE_INTEGER offset;
struct ws2_async write;
};
static struct ws2_async_io *async_io_freelist;
static void release_async_io( struct ws2_async_io *io )
{
for (;;)
{
struct ws2_async_io *next = async_io_freelist;
io->next = next;
if (InterlockedCompareExchangePointer( (void **)&async_io_freelist, io, next ) == next) return;
}
}
static struct ws2_async_io *alloc_async_io( DWORD size, async_callback_t callback )
{
/* first free remaining previous fileinfos */
struct ws2_async_io *io = InterlockedExchangePointer( (void **)&async_io_freelist, NULL );
while (io)
{
struct ws2_async_io *next = io->next;
HeapFree( GetProcessHeap(), 0, io );
io = next;
}
io = HeapAlloc( GetProcessHeap(), 0, size );
if (io) io->callback = callback;
return io;
}
static NTSTATUS register_async( int type, HANDLE handle, struct ws2_async_io *async, HANDLE event,
PIO_APC_ROUTINE apc, void *apc_context, IO_STATUS_BLOCK *io )
{
NTSTATUS status;
SERVER_START_REQ( register_async )
{
req->type = type;
req->async.handle = wine_server_obj_handle( handle );
req->async.user = wine_server_client_ptr( async );
req->async.iosb = wine_server_client_ptr( io );
req->async.event = wine_server_obj_handle( event );
req->async.apc = wine_server_client_ptr( apc );
req->async.apc_context = wine_server_client_ptr( apc_context );
status = wine_server_call( req );
}
SERVER_END_REQ;
return status;
}
/****************************************************************/
/* ----------------------------------- internal data */
/* ws_... struct conversion flags */
typedef struct /* WSAAsyncSelect() control struct */
{
HANDLE service, event, sock;
HWND hWnd;
UINT uMsg;
LONG lEvent;
} ws_select_info;
#define WS_MAX_SOCKETS_PER_PROCESS 128 /* reasonable guess */
#define WS_MAX_UDP_DATAGRAM 1024
static INT WINAPI WSA_DefaultBlockingHook( FARPROC x );
/* hostent's, servent's and protent's are stored in one buffer per thread,
* as documented on MSDN for the functions that return any of the buffers */
struct per_thread_data
{
int opentype;
struct WS_hostent *he_buffer;
struct WS_servent *se_buffer;
struct WS_protoent *pe_buffer;
struct pollfd *fd_cache;
unsigned int fd_count;
int he_len;
int se_len;
int pe_len;
char ntoa_buffer[16]; /* 4*3 digits + 3 '.' + 1 '\0' */
};
/* internal: routing description information */
struct route {
struct in_addr addr;
IF_INDEX interface;
DWORD metric, default_route;
};
static INT num_startup; /* reference counter */
static FARPROC blocking_hook = (FARPROC)WSA_DefaultBlockingHook;
/* function prototypes */
static struct WS_hostent *WS_create_he(char *name, int aliases, int aliases_size, int addresses, int address_length);
static struct WS_hostent *WS_dup_he(const struct hostent* p_he);
static struct WS_protoent *WS_create_pe( const char *name, char **aliases, int prot );
static struct WS_servent *WS_dup_se(const struct servent* p_se);
static int ws_protocol_info(SOCKET s, int unicode, WSAPROTOCOL_INFOW *buffer, int *size);
int WSAIOCTL_GetInterfaceCount(void);
int WSAIOCTL_GetInterfaceName(int intNumber, char *intName);
static void WS_AddCompletion( SOCKET sock, ULONG_PTR CompletionValue, NTSTATUS CompletionStatus, ULONG Information, BOOL force );
#define MAP_OPTION(opt) { WS_##opt, opt }
static const int ws_flags_map[][2] =
{
MAP_OPTION( MSG_OOB ),
MAP_OPTION( MSG_PEEK ),
MAP_OPTION( MSG_DONTROUTE ),
MAP_OPTION( MSG_WAITALL ),
{ WS_MSG_PARTIAL, 0 },
};
static const int ws_sock_map[][2] =
{
MAP_OPTION( SO_DEBUG ),
MAP_OPTION( SO_ACCEPTCONN ),
MAP_OPTION( SO_REUSEADDR ),
MAP_OPTION( SO_KEEPALIVE ),
MAP_OPTION( SO_DONTROUTE ),
MAP_OPTION( SO_BROADCAST ),
MAP_OPTION( SO_LINGER ),
MAP_OPTION( SO_OOBINLINE ),
MAP_OPTION( SO_SNDBUF ),
MAP_OPTION( SO_RCVBUF ),
MAP_OPTION( SO_ERROR ),
MAP_OPTION( SO_TYPE ),
#ifdef SO_RCVTIMEO
MAP_OPTION( SO_RCVTIMEO ),
#endif
#ifdef SO_SNDTIMEO
MAP_OPTION( SO_SNDTIMEO ),
#endif
};
static const int ws_tcp_map[][2] =
{
#ifdef TCP_NODELAY
MAP_OPTION( TCP_NODELAY ),
#endif
};
static const int ws_ip_map[][2] =
{
MAP_OPTION( IP_MULTICAST_IF ),
MAP_OPTION( IP_MULTICAST_TTL ),
MAP_OPTION( IP_MULTICAST_LOOP ),
MAP_OPTION( IP_ADD_MEMBERSHIP ),
MAP_OPTION( IP_DROP_MEMBERSHIP ),
MAP_OPTION( IP_ADD_SOURCE_MEMBERSHIP ),
MAP_OPTION( IP_DROP_SOURCE_MEMBERSHIP ),
MAP_OPTION( IP_BLOCK_SOURCE ),
MAP_OPTION( IP_UNBLOCK_SOURCE ),
MAP_OPTION( IP_OPTIONS ),
#ifdef IP_HDRINCL
MAP_OPTION( IP_HDRINCL ),
#endif
MAP_OPTION( IP_TOS ),
MAP_OPTION( IP_TTL ),
#if defined(IP_PKTINFO)
MAP_OPTION( IP_PKTINFO ),
#elif defined(IP_RECVDSTADDR)
{ WS_IP_PKTINFO, IP_RECVDSTADDR },
#endif
#ifdef IP_UNICAST_IF
MAP_OPTION( IP_UNICAST_IF ),
#endif
};
static const int ws_ipv6_map[][2] =
{
#ifdef IPV6_ADD_MEMBERSHIP
MAP_OPTION( IPV6_ADD_MEMBERSHIP ),
#endif
#ifdef IPV6_DROP_MEMBERSHIP
MAP_OPTION( IPV6_DROP_MEMBERSHIP ),
#endif
MAP_OPTION( IPV6_MULTICAST_IF ),
MAP_OPTION( IPV6_MULTICAST_HOPS ),
MAP_OPTION( IPV6_MULTICAST_LOOP ),
MAP_OPTION( IPV6_UNICAST_HOPS ),
MAP_OPTION( IPV6_V6ONLY ),
#ifdef IPV6_UNICAST_IF
MAP_OPTION( IPV6_UNICAST_IF ),
#endif
};
static const int ws_af_map[][2] =
{
MAP_OPTION( AF_UNSPEC ),
MAP_OPTION( AF_INET ),
MAP_OPTION( AF_INET6 ),
#ifdef HAS_IPX
MAP_OPTION( AF_IPX ),
#endif
#ifdef AF_IRDA
MAP_OPTION( AF_IRDA ),
#endif
{FROM_PROTOCOL_INFO, FROM_PROTOCOL_INFO},
};
static const int ws_socktype_map[][2] =
{
MAP_OPTION( SOCK_DGRAM ),
MAP_OPTION( SOCK_STREAM ),
MAP_OPTION( SOCK_RAW ),
{FROM_PROTOCOL_INFO, FROM_PROTOCOL_INFO},
};
static const int ws_proto_map[][2] =
{
MAP_OPTION( IPPROTO_IP ),
MAP_OPTION( IPPROTO_TCP ),
MAP_OPTION( IPPROTO_UDP ),
MAP_OPTION( IPPROTO_IPV6 ),
MAP_OPTION( IPPROTO_ICMP ),
MAP_OPTION( IPPROTO_IGMP ),
MAP_OPTION( IPPROTO_RAW ),
MAP_OPTION( IPPROTO_IPIP ),
{FROM_PROTOCOL_INFO, FROM_PROTOCOL_INFO},
};
static const int ws_aiflag_map[][2] =
{
MAP_OPTION( AI_PASSIVE ),
MAP_OPTION( AI_CANONNAME ),
MAP_OPTION( AI_NUMERICHOST ),
#ifdef AI_NUMERICSERV
MAP_OPTION( AI_NUMERICSERV ),
#endif
#ifdef AI_V4MAPPED
MAP_OPTION( AI_V4MAPPED ),
#endif
MAP_OPTION( AI_ADDRCONFIG ),
};
static const int ws_niflag_map[][2] =
{
MAP_OPTION( NI_NOFQDN ),
MAP_OPTION( NI_NUMERICHOST ),
MAP_OPTION( NI_NAMEREQD ),
MAP_OPTION( NI_NUMERICSERV ),
MAP_OPTION( NI_DGRAM ),
};
static const int ws_eai_map[][2] =
{
MAP_OPTION( EAI_AGAIN ),
MAP_OPTION( EAI_BADFLAGS ),
MAP_OPTION( EAI_FAIL ),
MAP_OPTION( EAI_FAMILY ),
MAP_OPTION( EAI_MEMORY ),
/* Note: EAI_NODATA is deprecated, but still
* used by Windows and Linux... We map the newer
* EAI_NONAME to EAI_NODATA for now until Windows
* changes too.
*/
#ifdef EAI_NODATA
MAP_OPTION( EAI_NODATA ),
#endif
#ifdef EAI_NONAME
{ WS_EAI_NODATA, EAI_NONAME },
#endif
MAP_OPTION( EAI_SERVICE ),
MAP_OPTION( EAI_SOCKTYPE ),
{ 0, 0 }
};
static const int ws_poll_map[][2] =
{
MAP_OPTION( POLLERR ),
MAP_OPTION( POLLHUP ),
MAP_OPTION( POLLNVAL ),
MAP_OPTION( POLLWRNORM ),
MAP_OPTION( POLLWRBAND ),
MAP_OPTION( POLLRDNORM ),
{ WS_POLLRDBAND, POLLPRI }
};
static const char magic_loopback_addr[] = {127, 12, 34, 56};
#ifndef HAVE_STRUCT_MSGHDR_MSG_ACCRIGHTS
#if defined(IP_PKTINFO) || defined(IP_RECVDSTADDR)
static inline WSACMSGHDR *fill_control_message(int level, int type, WSACMSGHDR *current, ULONG *maxsize, void *data, int len)
{
ULONG msgsize = sizeof(WSACMSGHDR) + WSA_CMSG_ALIGN(len);
char *ptr = (char *) current + sizeof(WSACMSGHDR);
/* Make sure there is at least enough room for this entry */
if (msgsize > *maxsize)
return NULL;
*maxsize -= msgsize;
/* Fill in the entry */
current->cmsg_len = sizeof(WSACMSGHDR) + len;
current->cmsg_level = level;
current->cmsg_type = type;
memcpy(ptr, data, len);
/* Return the pointer to where next entry should go */
return (WSACMSGHDR *) (ptr + WSA_CMSG_ALIGN(len));
}
#endif /* defined(IP_PKTINFO) || defined(IP_RECVDSTADDR) */
static inline int convert_control_headers(struct msghdr *hdr, WSABUF *control)
{
#if defined(IP_PKTINFO) || defined(IP_RECVDSTADDR)
WSACMSGHDR *cmsg_win = (WSACMSGHDR *) control->buf, *ptr;
ULONG ctlsize = control->len;
struct cmsghdr *cmsg_unix;
ptr = cmsg_win;
/* Loop over all the headers, converting as appropriate */
for (cmsg_unix = CMSG_FIRSTHDR(hdr); cmsg_unix != NULL; cmsg_unix = CMSG_NXTHDR(hdr, cmsg_unix))
{
switch(cmsg_unix->cmsg_level)
{
case IPPROTO_IP:
switch(cmsg_unix->cmsg_type)
{
#if defined(IP_PKTINFO)
case IP_PKTINFO:
{
/* Convert the Unix IP_PKTINFO structure to the Windows version */
struct in_pktinfo *data_unix = (struct in_pktinfo *) CMSG_DATA(cmsg_unix);
struct WS_in_pktinfo data_win;
memcpy(&data_win.ipi_addr,&data_unix->ipi_addr.s_addr,4); /* 4 bytes = 32 address bits */
data_win.ipi_ifindex = data_unix->ipi_ifindex;
ptr = fill_control_message(WS_IPPROTO_IP, WS_IP_PKTINFO, ptr, &ctlsize,
(void*)&data_win, sizeof(data_win));
if (!ptr) goto error;
} break;
#elif defined(IP_RECVDSTADDR)
case IP_RECVDSTADDR:
{
struct in_addr *addr_unix = (struct in_addr *) CMSG_DATA(cmsg_unix);
struct WS_in_pktinfo data_win;
memcpy(&data_win.ipi_addr, &addr_unix->s_addr, 4); /* 4 bytes = 32 address bits */
data_win.ipi_ifindex = 0; /* FIXME */
ptr = fill_control_message(WS_IPPROTO_IP, WS_IP_PKTINFO, ptr, &ctlsize,
(void*)&data_win, sizeof(data_win));
if (!ptr) goto error;
} break;
#endif /* IP_PKTINFO */
default:
FIXME("Unhandled IPPROTO_IP message header type %d\n", cmsg_unix->cmsg_type);
break;
}
break;
default:
FIXME("Unhandled message header level %d\n", cmsg_unix->cmsg_level);
break;
}
}
/* Set the length of the returned control headers */
control->len = (char*)ptr - (char*)cmsg_win;
return 1;
error:
control->len = 0;
return 0;
#else /* defined(IP_PKTINFO) || defined(IP_RECVDSTADDR) */
control->len = 0;
return 1;
#endif /* defined(IP_PKTINFO) || defined(IP_RECVDSTADDR) */
}
#endif /* HAVE_STRUCT_MSGHDR_MSG_ACCRIGHTS */
/* ----------------------------------- error handling */
static NTSTATUS sock_get_ntstatus( int err )
{
switch ( err )
{
case EBADF: return STATUS_INVALID_HANDLE;
case EBUSY: return STATUS_DEVICE_BUSY;
case EPERM:
case EACCES: return STATUS_ACCESS_DENIED;
case EFAULT: return STATUS_NO_MEMORY;
case EINVAL: return STATUS_INVALID_PARAMETER;
case ENFILE:
case EMFILE: return STATUS_TOO_MANY_OPENED_FILES;
case EWOULDBLOCK: return STATUS_CANT_WAIT;
case EINPROGRESS: return STATUS_PENDING;
case EALREADY: return STATUS_NETWORK_BUSY;
case ENOTSOCK: return STATUS_OBJECT_TYPE_MISMATCH;
case EDESTADDRREQ: return STATUS_INVALID_PARAMETER;
case EMSGSIZE: return STATUS_BUFFER_OVERFLOW;
case EPROTONOSUPPORT:
case ESOCKTNOSUPPORT:
case EPFNOSUPPORT:
case EAFNOSUPPORT:
case EPROTOTYPE: return STATUS_NOT_SUPPORTED;
case ENOPROTOOPT: return STATUS_INVALID_PARAMETER;
case EOPNOTSUPP: return STATUS_NOT_SUPPORTED;
case EADDRINUSE: return STATUS_ADDRESS_ALREADY_ASSOCIATED;
case EADDRNOTAVAIL: return STATUS_INVALID_PARAMETER;
case ECONNREFUSED: return STATUS_CONNECTION_REFUSED;
case ESHUTDOWN: return STATUS_PIPE_DISCONNECTED;
case ENOTCONN: return STATUS_CONNECTION_DISCONNECTED;
case ETIMEDOUT: return STATUS_IO_TIMEOUT;
case ENETUNREACH: return STATUS_NETWORK_UNREACHABLE;
case ENETDOWN: return STATUS_NETWORK_BUSY;
case EPIPE:
case ECONNRESET: return STATUS_CONNECTION_RESET;
case ECONNABORTED: return STATUS_CONNECTION_ABORTED;
case 0: return STATUS_SUCCESS;
default:
WARN("Unknown errno %d!\n", err);
return STATUS_UNSUCCESSFUL;
}
}
static UINT sock_get_error( int err )
{
switch(err)
{
case EINTR: return WSAEINTR;
case EPERM:
case EACCES: return WSAEACCES;
case EFAULT: return WSAEFAULT;
case EINVAL: return WSAEINVAL;
case EMFILE: return WSAEMFILE;
case EWOULDBLOCK: return WSAEWOULDBLOCK;
case EINPROGRESS: return WSAEINPROGRESS;
case EALREADY: return WSAEALREADY;
case EBADF:
case ENOTSOCK: return WSAENOTSOCK;
case EDESTADDRREQ: return WSAEDESTADDRREQ;
case EMSGSIZE: return WSAEMSGSIZE;
case EPROTOTYPE: return WSAEPROTOTYPE;
case ENOPROTOOPT: return WSAENOPROTOOPT;
case EPROTONOSUPPORT: return WSAEPROTONOSUPPORT;
case ESOCKTNOSUPPORT: return WSAESOCKTNOSUPPORT;
case EOPNOTSUPP: return WSAEOPNOTSUPP;
case EPFNOSUPPORT: return WSAEPFNOSUPPORT;
case EAFNOSUPPORT: return WSAEAFNOSUPPORT;
case EADDRINUSE: return WSAEADDRINUSE;
case EADDRNOTAVAIL: return WSAEADDRNOTAVAIL;
case ENETDOWN: return WSAENETDOWN;
case ENETUNREACH: return WSAENETUNREACH;
case ENETRESET: return WSAENETRESET;
case ECONNABORTED: return WSAECONNABORTED;
case EPIPE:
case ECONNRESET: return WSAECONNRESET;
case ENOBUFS: return WSAENOBUFS;
case EISCONN: return WSAEISCONN;
case ENOTCONN: return WSAENOTCONN;
case ESHUTDOWN: return WSAESHUTDOWN;
case ETOOMANYREFS: return WSAETOOMANYREFS;
case ETIMEDOUT: return WSAETIMEDOUT;
case ECONNREFUSED: return WSAECONNREFUSED;
case ELOOP: return WSAELOOP;
case ENAMETOOLONG: return WSAENAMETOOLONG;
case EHOSTDOWN: return WSAEHOSTDOWN;
case EHOSTUNREACH: return WSAEHOSTUNREACH;
case ENOTEMPTY: return WSAENOTEMPTY;
#ifdef EPROCLIM
case EPROCLIM: return WSAEPROCLIM;
#endif
#ifdef EUSERS
case EUSERS: return WSAEUSERS;
#endif
#ifdef EDQUOT
case EDQUOT: return WSAEDQUOT;
#endif
#ifdef ESTALE
case ESTALE: return WSAESTALE;
#endif
#ifdef EREMOTE
case EREMOTE: return WSAEREMOTE;
#endif
/* just in case we ever get here and there are no problems */
case 0: return 0;
default:
WARN("Unknown errno %d!\n", err);
return WSAEOPNOTSUPP;
}
}
static UINT wsaErrno(void)
{
int loc_errno = errno;
WARN("errno %d, (%s).\n", loc_errno, strerror(loc_errno));
return sock_get_error( loc_errno );
}
/* most ws2 overlapped functions return an ntstatus-based error code */
static NTSTATUS wsaErrStatus(void)
{
int loc_errno = errno;
WARN("errno %d, (%s).\n", loc_errno, strerror(loc_errno));
return sock_get_ntstatus(loc_errno);
}
static UINT wsaHerrno(int loc_errno)
{
WARN("h_errno %d.\n", loc_errno);
switch(loc_errno)
{
case HOST_NOT_FOUND: return WSAHOST_NOT_FOUND;
case TRY_AGAIN: return WSATRY_AGAIN;
case NO_RECOVERY: return WSANO_RECOVERY;
case NO_DATA: return WSANO_DATA;
case ENOBUFS: return WSAENOBUFS;
case 0: return 0;
default:
WARN("Unknown h_errno %d!\n", loc_errno);
return WSAEOPNOTSUPP;
}
}
static NTSTATUS sock_error_to_ntstatus( DWORD err )
{
switch (err)
{
case 0: return STATUS_SUCCESS;
case WSAEBADF: return STATUS_INVALID_HANDLE;
case WSAEACCES: return STATUS_ACCESS_DENIED;
case WSAEFAULT: return STATUS_NO_MEMORY;
case WSAEINVAL: return STATUS_INVALID_PARAMETER;
case WSAEMFILE: return STATUS_TOO_MANY_OPENED_FILES;
case WSAEWOULDBLOCK: return STATUS_CANT_WAIT;
case WSAEINPROGRESS: return STATUS_PENDING;
case WSAEALREADY: return STATUS_NETWORK_BUSY;
case WSAENOTSOCK: return STATUS_OBJECT_TYPE_MISMATCH;
case WSAEDESTADDRREQ: return STATUS_INVALID_PARAMETER;
case WSAEMSGSIZE: return STATUS_BUFFER_OVERFLOW;
case WSAEPROTONOSUPPORT:
case WSAESOCKTNOSUPPORT:
case WSAEPFNOSUPPORT:
case WSAEAFNOSUPPORT:
case WSAEPROTOTYPE: return STATUS_NOT_SUPPORTED;
case WSAENOPROTOOPT: return STATUS_INVALID_PARAMETER;
case WSAEOPNOTSUPP: return STATUS_NOT_SUPPORTED;
case WSAEADDRINUSE: return STATUS_ADDRESS_ALREADY_ASSOCIATED;
case WSAEADDRNOTAVAIL: return STATUS_INVALID_PARAMETER;
case WSAECONNREFUSED: return STATUS_CONNECTION_REFUSED;
case WSAESHUTDOWN: return STATUS_PIPE_DISCONNECTED;
case WSAENOTCONN: return STATUS_CONNECTION_DISCONNECTED;
case WSAETIMEDOUT: return STATUS_IO_TIMEOUT;
case WSAENETUNREACH: return STATUS_NETWORK_UNREACHABLE;
case WSAENETDOWN: return STATUS_NETWORK_BUSY;
case WSAECONNRESET: return STATUS_CONNECTION_RESET;
case WSAECONNABORTED: return STATUS_CONNECTION_ABORTED;
default:
FIXME("unmapped error %u\n", err);
return STATUS_UNSUCCESSFUL;
}
}
static DWORD NtStatusToWSAError( DWORD status )
{
switch ( status )
{
case STATUS_SUCCESS: return 0;
case STATUS_PENDING: return WSA_IO_PENDING;
case STATUS_OBJECT_TYPE_MISMATCH: return WSAENOTSOCK;
case STATUS_INVALID_HANDLE: return WSAEBADF;
case STATUS_INVALID_PARAMETER: return WSAEINVAL;
case STATUS_PIPE_DISCONNECTED: return WSAESHUTDOWN;
case STATUS_NETWORK_BUSY: return WSAEALREADY;
case STATUS_NETWORK_UNREACHABLE: return WSAENETUNREACH;
case STATUS_CONNECTION_REFUSED: return WSAECONNREFUSED;
case STATUS_CONNECTION_DISCONNECTED: return WSAENOTCONN;
case STATUS_CONNECTION_RESET: return WSAECONNRESET;
case STATUS_CONNECTION_ABORTED: return WSAECONNABORTED;
case STATUS_CANCELLED: return WSA_OPERATION_ABORTED;
case STATUS_ADDRESS_ALREADY_ASSOCIATED: return WSAEADDRINUSE;
case STATUS_IO_TIMEOUT:
case STATUS_TIMEOUT: return WSAETIMEDOUT;
case STATUS_NO_MEMORY: return WSAEFAULT;
case STATUS_ACCESS_DENIED: return WSAEACCES;
case STATUS_TOO_MANY_OPENED_FILES: return WSAEMFILE;
case STATUS_CANT_WAIT: return WSAEWOULDBLOCK;
case STATUS_BUFFER_OVERFLOW: return WSAEMSGSIZE;
case STATUS_NOT_SUPPORTED: return WSAEOPNOTSUPP;
case STATUS_HOST_UNREACHABLE: return WSAEHOSTUNREACH;
default: return RtlNtStatusToDosError( status );
}
}
/* set last error code from NT status without mapping WSA errors */
static inline unsigned int set_error( unsigned int err )
{
if (err)
{
err = NtStatusToWSAError( err );
SetLastError( err );
}
return err;
}
static inline int get_sock_fd( SOCKET s, DWORD access, unsigned int *options )
{
int fd;
if (set_error( wine_server_handle_to_fd( SOCKET2HANDLE(s), access, &fd, options ) ))
return -1;
return fd;
}
static inline void release_sock_fd( SOCKET s, int fd )
{
wine_server_release_fd( SOCKET2HANDLE(s), fd );
}
static void _enable_event( HANDLE s, unsigned int event,
unsigned int sstate, unsigned int cstate )
{
SERVER_START_REQ( enable_socket_event )
{
req->handle = wine_server_obj_handle( s );
req->mask = event;
req->sstate = sstate;
req->cstate = cstate;
wine_server_call( req );
}
SERVER_END_REQ;
}
static DWORD sock_is_blocking(SOCKET s, BOOL *ret)
{
DWORD err;
SERVER_START_REQ( get_socket_event )
{
req->handle = wine_server_obj_handle( SOCKET2HANDLE(s) );
req->service = FALSE;
req->c_event = 0;
err = NtStatusToWSAError( wine_server_call( req ));
*ret = (reply->state & FD_WINE_NONBLOCKING) == 0;
}
SERVER_END_REQ;
return err;
}
static unsigned int _get_sock_mask(SOCKET s)
{
unsigned int ret;
SERVER_START_REQ( get_socket_event )
{
req->handle = wine_server_obj_handle( SOCKET2HANDLE(s) );
req->service = FALSE;
req->c_event = 0;
wine_server_call( req );
ret = reply->mask;
}
SERVER_END_REQ;
return ret;
}
static void _sync_sock_state(SOCKET s)
{
BOOL dummy;
/* do a dummy wineserver request in order to let
the wineserver run through its select loop once */
sock_is_blocking(s, &dummy);
}
static void _get_sock_errors(SOCKET s, int *events)
{
SERVER_START_REQ( get_socket_event )
{
req->handle = wine_server_obj_handle( SOCKET2HANDLE(s) );
req->service = FALSE;
req->c_event = 0;
wine_server_set_reply( req, events, sizeof(int) * FD_MAX_EVENTS );
wine_server_call( req );
}
SERVER_END_REQ;
}
static int get_sock_error(SOCKET s, unsigned int bit)
{
int events[FD_MAX_EVENTS];
_get_sock_errors(s, events);
return events[bit];
}
static int _get_fd_type(int fd)
{
int sock_type = -1;
socklen_t optlen = sizeof(sock_type);
getsockopt(fd, SOL_SOCKET, SO_TYPE, (char*) &sock_type, &optlen);
return sock_type;
}
static BOOL set_dont_fragment(SOCKET s, int level, BOOL value)
{
int fd, optname;
if (level == IPPROTO_IP)
{
#ifdef IP_DONTFRAG
optname = IP_DONTFRAG;
#elif defined(IP_MTU_DISCOVER) && defined(IP_PMTUDISC_DO) && defined(IP_PMTUDISC_DONT)
optname = IP_MTU_DISCOVER;
value = value ? IP_PMTUDISC_DO : IP_PMTUDISC_DONT;
#else
static int once;
if (!once++)
FIXME("IP_DONTFRAGMENT for IPv4 not supported in this platform\n");
return TRUE; /* fake success */
#endif
}
else
{
#ifdef IPV6_DONTFRAG
optname = IPV6_DONTFRAG;
#elif defined(IPV6_MTU_DISCOVER) && defined(IPV6_PMTUDISC_DO) && defined(IPV6_PMTUDISC_DONT)
optname = IPV6_MTU_DISCOVER;
value = value ? IPV6_PMTUDISC_DO : IPV6_PMTUDISC_DONT;
#else
static int once;
if (!once++)
FIXME("IP_DONTFRAGMENT for IPv6 not supported in this platform\n");
return TRUE; /* fake success */
#endif
}
fd = get_sock_fd(s, 0, NULL);
if (fd == -1) return FALSE;
if (!setsockopt(fd, level, optname, &value, sizeof(value)))
value = TRUE;
else
{
WSASetLastError(wsaErrno());
value = FALSE;
}
release_sock_fd(s, fd);
return value;
}
static BOOL get_dont_fragment(SOCKET s, int level, BOOL *out)
{
int fd, optname, value, not_expected;
socklen_t optlen = sizeof(value);
if (level == IPPROTO_IP)
{
#ifdef IP_DONTFRAG
optname = IP_DONTFRAG;
not_expected = 0;
#elif defined(IP_MTU_DISCOVER) && defined(IP_PMTUDISC_DONT)
optname = IP_MTU_DISCOVER;
not_expected = IP_PMTUDISC_DONT;
#else
static int once;
if (!once++)
FIXME("IP_DONTFRAGMENT for IPv4 not supported in this platform\n");
return TRUE; /* fake success */
#endif
}
else
{
#ifdef IPV6_DONTFRAG
optname = IPV6_DONTFRAG;
not_expected = 0;
#elif defined(IPV6_MTU_DISCOVER) && defined(IPV6_PMTUDISC_DONT)
optname = IPV6_MTU_DISCOVER;
not_expected = IPV6_PMTUDISC_DONT;
#else
static int once;
if (!once++)
FIXME("IP_DONTFRAGMENT for IPv6 not supported in this platform\n");
return TRUE; /* fake success */
#endif
}
fd = get_sock_fd(s, 0, NULL);
if (fd == -1) return FALSE;
if (!getsockopt(fd, level, optname, &value, &optlen))
{
*out = value != not_expected;
value = TRUE;
}
else
{
WSASetLastError(wsaErrno());
value = FALSE;
}
release_sock_fd(s, fd);
return value;
}
static struct per_thread_data *get_per_thread_data(void)
{
struct per_thread_data * ptb = NtCurrentTeb()->WinSockData;
/* lazy initialization */
if (!ptb)
{
ptb = HeapAlloc( GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(*ptb) );
NtCurrentTeb()->WinSockData = ptb;
}
return ptb;
}
static void free_per_thread_data(void)
{
struct per_thread_data * ptb = NtCurrentTeb()->WinSockData;
if (!ptb) return;
/* delete scratch buffers */
HeapFree( GetProcessHeap(), 0, ptb->he_buffer );
HeapFree( GetProcessHeap(), 0, ptb->se_buffer );
HeapFree( GetProcessHeap(), 0, ptb->pe_buffer );
HeapFree( GetProcessHeap(), 0, ptb->fd_cache );
HeapFree( GetProcessHeap(), 0, ptb );
NtCurrentTeb()->WinSockData = NULL;
}
/***********************************************************************
* DllMain (WS2_32.init)
*/
BOOL WINAPI DllMain(HINSTANCE hInstDLL, DWORD fdwReason, LPVOID fImpLoad)
{
TRACE("%p 0x%x %p\n", hInstDLL, fdwReason, fImpLoad);
switch (fdwReason) {
case DLL_PROCESS_ATTACH:
break;
case DLL_PROCESS_DETACH:
if (fImpLoad) break;
free_per_thread_data();
DeleteCriticalSection(&csWSgetXXXbyYYY);
break;
case DLL_THREAD_DETACH:
free_per_thread_data();
break;
}
return TRUE;
}
/***********************************************************************
* convert_flags()
*
* Converts send/recv flags from Windows format.
* Return the converted flag bits, unsupported flags remain unchanged.
*/
static int convert_flags(int flags)
{
int i, out;
if (!flags) return 0;
for (out = i = 0; flags && i < ARRAY_SIZE(ws_flags_map); i++)
{
if (ws_flags_map[i][0] & flags)
{
out |= ws_flags_map[i][1];
flags &= ~ws_flags_map[i][0];
}
}
if (flags)
{
FIXME("Unknown send/recv flags 0x%x, using anyway...\n", flags);
out |= flags;
}
return out;
}
/***********************************************************************
* convert_sockopt()
*
* Converts socket flags from Windows format.
* Return 1 if converted, 0 if not (error).
*/
static int convert_sockopt(INT *level, INT *optname)
{
unsigned int i;
switch (*level)
{
case WS_SOL_SOCKET:
*level = SOL_SOCKET;
for(i = 0; i < ARRAY_SIZE(ws_sock_map); i++) {
if( ws_sock_map[i][0] == *optname )
{
*optname = ws_sock_map[i][1];
return 1;
}
}
FIXME("Unknown SOL_SOCKET optname 0x%x\n", *optname);
break;
case WS_IPPROTO_TCP:
*level = IPPROTO_TCP;
for(i = 0; i < ARRAY_SIZE(ws_tcp_map); i++) {
if ( ws_tcp_map[i][0] == *optname )
{
*optname = ws_tcp_map[i][1];
return 1;
}
}
FIXME("Unknown IPPROTO_TCP optname 0x%x\n", *optname);
break;
case WS_IPPROTO_IP:
*level = IPPROTO_IP;
for(i = 0; i < ARRAY_SIZE(ws_ip_map); i++) {
if (ws_ip_map[i][0] == *optname )
{
*optname = ws_ip_map[i][1];
return 1;
}
}
FIXME("Unknown IPPROTO_IP optname 0x%x\n", *optname);
break;
case WS_IPPROTO_IPV6:
*level = IPPROTO_IPV6;
for(i = 0; i < ARRAY_SIZE(ws_ipv6_map); i++) {
if (ws_ipv6_map[i][0] == *optname )
{
*optname = ws_ipv6_map[i][1];
return 1;
}
}
FIXME("Unknown IPPROTO_IPV6 optname 0x%x\n", *optname);
break;
default: FIXME("Unimplemented or unknown socket level\n");
}
return 0;
}
/* ----------------------------------- Per-thread info (or per-process?) */
static char *strdup_lower(const char *str)
{
int i;
char *ret = HeapAlloc( GetProcessHeap(), 0, strlen(str) + 1 );
if (ret)
{
for (i = 0; str[i]; i++) ret[i] = tolower(str[i]);
ret[i] = 0;
}
else SetLastError(WSAENOBUFS);
return ret;
}
/* Utility: get the SO_RCVTIMEO or SO_SNDTIMEO socket option
* from an fd and return the value converted to milli seconds
* or 0 if there is an infinite time out */
static inline INT64 get_rcvsnd_timeo( int fd, BOOL is_recv)
{
struct timeval tv;
socklen_t len = sizeof(tv);
int optname, res;
if (is_recv)
#ifdef SO_RCVTIMEO
optname = SO_RCVTIMEO;
#else
return 0;
#endif
else
#ifdef SO_SNDTIMEO
optname = SO_SNDTIMEO;
#else
return 0;
#endif
res = getsockopt(fd, SOL_SOCKET, optname, &tv, &len);
if (res < 0)
return 0;
return (UINT64)tv.tv_sec * 1000 + tv.tv_usec / 1000;
}
/* utility: given an fd, will block until one of the events occurs */
static inline int do_block( int fd, int events, int timeout )
{
struct pollfd pfd;
int ret;
pfd.fd = fd;
pfd.events = events;
while ((ret = poll(&pfd, 1, timeout)) < 0)
{
if (errno != EINTR)
return -1;
}
if( ret == 0 )
return 0;
return pfd.revents;
}
static int
convert_af_w2u(int windowsaf) {
unsigned int i;
for (i = 0; i < ARRAY_SIZE(ws_af_map); i++)
if (ws_af_map[i][0] == windowsaf)
return ws_af_map[i][1];
FIXME("unhandled Windows address family %d\n", windowsaf);
return -1;
}
static int
convert_af_u2w(int unixaf) {
unsigned int i;
for (i = 0; i < ARRAY_SIZE(ws_af_map); i++)
if (ws_af_map[i][1] == unixaf)
return ws_af_map[i][0];
FIXME("unhandled UNIX address family %d\n", unixaf);
return -1;
}
static int
convert_proto_w2u(int windowsproto) {
unsigned int i;
for (i = 0; i < ARRAY_SIZE(ws_proto_map); i++)
if (ws_proto_map[i][0] == windowsproto)
return ws_proto_map[i][1];
/* check for extended IPX */
if (IS_IPX_PROTO(windowsproto))
return windowsproto;
FIXME("unhandled Windows socket protocol %d\n", windowsproto);
return -1;
}
static int
convert_proto_u2w(int unixproto) {
unsigned int i;
for (i = 0; i < ARRAY_SIZE(ws_proto_map); i++)
if (ws_proto_map[i][1] == unixproto)
return ws_proto_map[i][0];
/* if value is inside IPX range just return it - the kernel simply
* echoes the value used in the socket() function */
if (IS_IPX_PROTO(unixproto))
return unixproto;
FIXME("unhandled UNIX socket protocol %d\n", unixproto);
return -1;
}
static int
convert_socktype_w2u(int windowssocktype) {
unsigned int i;
for (i = 0; i < ARRAY_SIZE(ws_socktype_map); i++)
if (ws_socktype_map[i][0] == windowssocktype)
return ws_socktype_map[i][1];
FIXME("unhandled Windows socket type %d\n", windowssocktype);
return -1;
}
static int
convert_socktype_u2w(int unixsocktype) {
unsigned int i;
for (i = 0; i < ARRAY_SIZE(ws_socktype_map); i++)
if (ws_socktype_map[i][1] == unixsocktype)
return ws_socktype_map[i][0];
FIXME("unhandled UNIX socket type %d\n", unixsocktype);
return -1;
}
static int convert_poll_w2u(int events)
{
int i, ret;
for (i = ret = 0; events && i < ARRAY_SIZE(ws_poll_map); i++)
{
if (ws_poll_map[i][0] & events)
{
ret |= ws_poll_map[i][1];
events &= ~ws_poll_map[i][0];
}
}
if (events)
FIXME("Unsupported WSAPoll() flags 0x%x\n", events);
return ret;
}
static int convert_poll_u2w(int events)
{
int i, ret;
for (i = ret = 0; events && i < ARRAY_SIZE(ws_poll_map); i++)
{
if (ws_poll_map[i][1] & events)
{
ret |= ws_poll_map[i][0];
events &= ~ws_poll_map[i][1];
}
}
if (events)
FIXME("Unsupported poll() flags 0x%x\n", events);
return ret;
}
static int set_ipx_packettype(int sock, int ptype)
{
#ifdef HAS_IPX
int fd = get_sock_fd( sock, 0, NULL ), ret = 0;
TRACE("trying to set IPX_PTYPE: %d (fd: %d)\n", ptype, fd);
if (fd == -1) return SOCKET_ERROR;
/* We try to set the ipx type on ipx socket level. */
#ifdef SOL_IPX
if(setsockopt(fd, SOL_IPX, IPX_TYPE, &ptype, sizeof(ptype)) == -1)
{
ERR("IPX: could not set ipx option type; expect weird behaviour\n");
ret = SOCKET_ERROR;
}
#else
{
struct ipx val;
/* Should we retrieve val using a getsockopt call and then
* set the modified one? */
val.ipx_pt = ptype;
setsockopt(fd, 0, SO_DEFAULT_HEADERS, &val, sizeof(struct ipx));
}
#endif
release_sock_fd( sock, fd );
return ret;
#else
WARN("IPX support is not enabled, can't set packet type\n");
return SOCKET_ERROR;
#endif
}
/* ----------------------------------- API -----
*
* Init / cleanup / error checking.
*/
/***********************************************************************
* WSAStartup (WS2_32.115)
*/
int WINAPI WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData)
{
TRACE("verReq=%x\n", wVersionRequested);
if (LOBYTE(wVersionRequested) < 1)
return WSAVERNOTSUPPORTED;
if (!lpWSAData) return WSAEINVAL;
num_startup++;
/* that's the whole of the negotiation for now */
lpWSAData->wVersion = wVersionRequested;
/* return winsock information */
lpWSAData->wHighVersion = 0x0202;
strcpy(lpWSAData->szDescription, "WinSock 2.0" );
strcpy(lpWSAData->szSystemStatus, "Running" );
lpWSAData->iMaxSockets = WS_MAX_SOCKETS_PER_PROCESS;
lpWSAData->iMaxUdpDg = WS_MAX_UDP_DATAGRAM;
/* don't do anything with lpWSAData->lpVendorInfo */
/* (some apps don't allocate the space for this field) */
TRACE("succeeded starts: %d\n", num_startup);
return 0;
}
/***********************************************************************
* WSACleanup (WS2_32.116)
*/
INT WINAPI WSACleanup(void)
{
if (num_startup) {
num_startup--;
TRACE("pending cleanups: %d\n", num_startup);
return 0;
}
SetLastError(WSANOTINITIALISED);
return SOCKET_ERROR;
}
/***********************************************************************
* WSAGetLastError (WS2_32.111)
*/
INT WINAPI WSAGetLastError(void)
{
return GetLastError();
}
/***********************************************************************
* WSASetLastError (WS2_32.112)
*/
void WINAPI WSASetLastError(INT iError) {
SetLastError(iError);
}
static struct WS_hostent *check_buffer_he(int size)
{
struct per_thread_data * ptb = get_per_thread_data();
if (ptb->he_buffer)
{
if (ptb->he_len >= size ) return ptb->he_buffer;
HeapFree( GetProcessHeap(), 0, ptb->he_buffer );
}
ptb->he_buffer = HeapAlloc( GetProcessHeap(), 0, (ptb->he_len = size) );
if (!ptb->he_buffer) SetLastError(WSAENOBUFS);
return ptb->he_buffer;
}
static struct WS_servent *check_buffer_se(int size)
{
struct per_thread_data * ptb = get_per_thread_data();
if (ptb->se_buffer)
{
if (ptb->se_len >= size ) return ptb->se_buffer;
HeapFree( GetProcessHeap(), 0, ptb->se_buffer );
}
ptb->se_buffer = HeapAlloc( GetProcessHeap(), 0, (ptb->se_len = size) );
if (!ptb->se_buffer) SetLastError(WSAENOBUFS);
return ptb->se_buffer;
}
static struct WS_protoent *check_buffer_pe(int size)
{
struct per_thread_data * ptb = get_per_thread_data();
if (ptb->pe_buffer)
{
if (ptb->pe_len >= size ) return ptb->pe_buffer;
HeapFree( GetProcessHeap(), 0, ptb->pe_buffer );
}
ptb->pe_buffer = HeapAlloc( GetProcessHeap(), 0, (ptb->pe_len = size) );
if (!ptb->pe_buffer) SetLastError(WSAENOBUFS);
return ptb->pe_buffer;
}
/* ----------------------------------- i/o APIs */
static inline BOOL supported_pf(int pf)
{
switch (pf)
{
case WS_AF_INET:
case WS_AF_INET6:
return TRUE;
#ifdef HAS_IPX
case WS_AF_IPX:
return TRUE;
#endif
#ifdef HAS_IRDA
case WS_AF_IRDA:
return TRUE;
#endif
default:
return FALSE;
}
}
static inline BOOL supported_protocol(int protocol)
{
int i;
for (i = 0; i < ARRAY_SIZE(valid_protocols); i++)
if (protocol == valid_protocols[i])
return TRUE;
return FALSE;
}
/**********************************************************************/
/* Returns the length of the converted address if successful, 0 if it was too
* small to start with or unknown family or invalid address buffer.
*/
static unsigned int ws_sockaddr_ws2u(const struct WS_sockaddr* wsaddr, int wsaddrlen,
union generic_unix_sockaddr *uaddr)
{
unsigned int uaddrlen = 0;
if (!wsaddr)
return 0;
switch (wsaddr->sa_family)
{
#ifdef HAS_IPX
case WS_AF_IPX:
{
const struct WS_sockaddr_ipx* wsipx=(const struct WS_sockaddr_ipx*)wsaddr;
struct sockaddr_ipx* uipx = (struct sockaddr_ipx *)uaddr;
if (wsaddrlen<sizeof(struct WS_sockaddr_ipx))
return 0;
uaddrlen = sizeof(struct sockaddr_ipx);
memset( uaddr, 0, uaddrlen );
uipx->sipx_family=AF_IPX;
uipx->sipx_port=wsipx->sa_socket;
/* copy sa_netnum and sa_nodenum to sipx_network and sipx_node
* in one go
*/
memcpy(&uipx->sipx_network,wsipx->sa_netnum,sizeof(uipx->sipx_network)+sizeof(uipx->sipx_node));
#ifdef IPX_FRAME_NONE
uipx->sipx_type=IPX_FRAME_NONE;
#endif
break;
}
#endif
case WS_AF_INET6: {
struct sockaddr_in6* uin6 = (struct sockaddr_in6 *)uaddr;
const struct WS_sockaddr_in6* win6 = (const struct WS_sockaddr_in6*)wsaddr;
/* Note: Windows has 2 versions of the sockaddr_in6 struct, one with
* scope_id, one without.
*/
if (wsaddrlen >= sizeof(struct WS_sockaddr_in6_old)) {
uaddrlen = sizeof(struct sockaddr_in6);
memset( uaddr, 0, uaddrlen );
uin6->sin6_family = AF_INET6;
uin6->sin6_port = win6->sin6_port;
uin6->sin6_flowinfo = win6->sin6_flowinfo;
#ifdef HAVE_STRUCT_SOCKADDR_IN6_SIN6_SCOPE_ID
if (wsaddrlen >= sizeof(struct WS_sockaddr_in6)) uin6->sin6_scope_id = win6->sin6_scope_id;
#endif
memcpy(&uin6->sin6_addr,&win6->sin6_addr,16); /* 16 bytes = 128 address bits */
break;
}
FIXME("bad size %d for WS_sockaddr_in6\n",wsaddrlen);
return 0;
}
case WS_AF_INET: {
struct sockaddr_in* uin = (struct sockaddr_in *)uaddr;
const struct WS_sockaddr_in* win = (const struct WS_sockaddr_in*)wsaddr;
if (wsaddrlen<sizeof(struct WS_sockaddr_in))
return 0;
uaddrlen = sizeof(struct sockaddr_in);
memset( uaddr, 0, uaddrlen );
uin->sin_family = AF_INET;
uin->sin_port = win->sin_port;
memcpy(&uin->sin_addr,&win->sin_addr,4); /* 4 bytes = 32 address bits */
break;
}
#ifdef HAS_IRDA
case WS_AF_IRDA: {
struct sockaddr_irda *uin = (struct sockaddr_irda *)uaddr;
const SOCKADDR_IRDA *win = (const SOCKADDR_IRDA *)wsaddr;
if (wsaddrlen < sizeof(SOCKADDR_IRDA))
return 0;
uaddrlen = sizeof(struct sockaddr_irda);
memset( uaddr, 0, uaddrlen );
uin->sir_family = AF_IRDA;
if (!strncmp( win->irdaServiceName, "LSAP-SEL", strlen( "LSAP-SEL" ) ))
{
unsigned int lsap_sel = 0;
sscanf( win->irdaServiceName, "LSAP-SEL%u", &lsap_sel );
uin->sir_lsap_sel = lsap_sel;
}
else
{
uin->sir_lsap_sel = LSAP_ANY;
memcpy( uin->sir_name, win->irdaServiceName, 25 );
}
memcpy( &uin->sir_addr, win->irdaDeviceID, sizeof(uin->sir_addr) );
break;
}
#endif
case WS_AF_UNSPEC: {
/* Try to determine the needed space by the passed windows sockaddr space */
switch (wsaddrlen) {
default: /* likely an ipv4 address */
case sizeof(struct WS_sockaddr_in):
uaddrlen = sizeof(struct sockaddr_in);
break;
#ifdef HAS_IPX
case sizeof(struct WS_sockaddr_ipx):
uaddrlen = sizeof(struct sockaddr_ipx);
break;
#endif
#ifdef HAS_IRDA
case sizeof(SOCKADDR_IRDA):
uaddrlen = sizeof(struct sockaddr_irda);
break;
#endif
case sizeof(struct WS_sockaddr_in6):
case sizeof(struct WS_sockaddr_in6_old):
uaddrlen = sizeof(struct sockaddr_in6);
break;
}
memset( uaddr, 0, uaddrlen );
break;
}
default:
FIXME("Unknown address family %d, return NULL.\n", wsaddr->sa_family);
return 0;
}
return uaddrlen;
}
static BOOL is_sockaddr_bound(const struct sockaddr *uaddr, int uaddrlen)
{
switch (uaddr->sa_family)
{
#ifdef HAS_IPX
case AF_IPX:
{
static const struct sockaddr_ipx emptyAddr;
struct sockaddr_ipx *ipx = (struct sockaddr_ipx*) uaddr;
return ipx->sipx_port
|| memcmp(&ipx->sipx_network, &emptyAddr.sipx_network, sizeof(emptyAddr.sipx_network))
|| memcmp(&ipx->sipx_node, &emptyAddr.sipx_node, sizeof(emptyAddr.sipx_node));
}
#endif
case AF_INET6:
{
static const struct sockaddr_in6 emptyAddr;
const struct sockaddr_in6 *in6 = (const struct sockaddr_in6*) uaddr;
return in6->sin6_port || memcmp(&in6->sin6_addr, &emptyAddr.sin6_addr, sizeof(struct in6_addr));
}
case AF_INET:
{
static const struct sockaddr_in emptyAddr;
const struct sockaddr_in *in = (const struct sockaddr_in*) uaddr;
return in->sin_port || memcmp(&in->sin_addr, &emptyAddr.sin_addr, sizeof(struct in_addr));
}
case AF_UNSPEC:
return FALSE;
default:
FIXME("unknown address family %d\n", uaddr->sa_family);
return TRUE;
}
}
/* Returns -1 if getsockname fails, 0 if not bound, 1 otherwise */
static int is_fd_bound(int fd, union generic_unix_sockaddr *uaddr, socklen_t *uaddrlen)
{
union generic_unix_sockaddr inaddr;
socklen_t inlen;
int res;
if (!uaddr) uaddr = &inaddr;
if (!uaddrlen) uaddrlen = &inlen;
*uaddrlen = sizeof(inaddr);
res = getsockname(fd, &uaddr->addr, uaddrlen);
if (!res) res = is_sockaddr_bound(&uaddr->addr, *uaddrlen);
return res;
}
/* Returns 0 if successful, -1 if the buffer is too small */
static int ws_sockaddr_u2ws(const struct sockaddr* uaddr, struct WS_sockaddr* wsaddr, int* wsaddrlen)
{
int res;
switch(uaddr->sa_family)
{
#ifdef HAS_IPX
case AF_IPX:
{
const struct sockaddr_ipx* uipx=(const struct sockaddr_ipx*)uaddr;
struct WS_sockaddr_ipx* wsipx=(struct WS_sockaddr_ipx*)wsaddr;
res=-1;
switch (*wsaddrlen) /* how much can we copy? */
{
default:
res=0; /* enough */
*wsaddrlen = sizeof(*wsipx);
wsipx->sa_socket=uipx->sipx_port;
/* fall through */
case 13:
case 12:
memcpy(wsipx->sa_nodenum,uipx->sipx_node,sizeof(wsipx->sa_nodenum));
/* fall through */
case 11:
case 10:
case 9:
case 8:
case 7:
case 6:
memcpy(wsipx->sa_netnum,&uipx->sipx_network,sizeof(wsipx->sa_netnum));
/* fall through */
case 5:
case 4:
case 3:
case 2:
wsipx->sa_family=WS_AF_IPX;
/* fall through */
case 1:
case 0:
/* way too small */
break;
}
}
break;
#endif
#ifdef HAS_IRDA
case AF_IRDA: {
const struct sockaddr_irda *uin = (const struct sockaddr_irda *)uaddr;
SOCKADDR_IRDA *win = (SOCKADDR_IRDA *)wsaddr;
if (*wsaddrlen < sizeof(SOCKADDR_IRDA))
return -1;
win->irdaAddressFamily = WS_AF_IRDA;
memcpy( win->irdaDeviceID, &uin->sir_addr, sizeof(win->irdaDeviceID) );
if (uin->sir_lsap_sel != LSAP_ANY)
sprintf( win->irdaServiceName, "LSAP-SEL%u", uin->sir_lsap_sel );
else
memcpy( win->irdaServiceName, uin->sir_name,
sizeof(win->irdaServiceName) );
return 0;
}
#endif
case AF_INET6: {
const struct sockaddr_in6* uin6 = (const struct sockaddr_in6*)uaddr;
struct WS_sockaddr_in6_old* win6old = (struct WS_sockaddr_in6_old*)wsaddr;
if (*wsaddrlen < sizeof(struct WS_sockaddr_in6_old))
return -1;
win6old->sin6_family = WS_AF_INET6;
win6old->sin6_port = uin6->sin6_port;
win6old->sin6_flowinfo = uin6->sin6_flowinfo;
memcpy(&win6old->sin6_addr,&uin6->sin6_addr,16); /* 16 bytes = 128 address bits */
#ifdef HAVE_STRUCT_SOCKADDR_IN6_SIN6_SCOPE_ID
if (*wsaddrlen >= sizeof(struct WS_sockaddr_in6)) {
struct WS_sockaddr_in6* win6 = (struct WS_sockaddr_in6*)wsaddr;
win6->sin6_scope_id = uin6->sin6_scope_id;
*wsaddrlen = sizeof(struct WS_sockaddr_in6);
}
else
*wsaddrlen = sizeof(struct WS_sockaddr_in6_old);
#else
*wsaddrlen = sizeof(struct WS_sockaddr_in6_old);
#endif
return 0;
}
case AF_INET: {
const struct sockaddr_in* uin = (const struct sockaddr_in*)uaddr;
struct WS_sockaddr_in* win = (struct WS_sockaddr_in*)wsaddr;
if (*wsaddrlen < sizeof(struct WS_sockaddr_in))
return -1;
win->sin_family = WS_AF_INET;
win->sin_port = uin->sin_port;
memcpy(&win->sin_addr,&uin->sin_addr,4); /* 4 bytes = 32 address bits */
memset(win->sin_zero, 0, 8); /* Make sure the null padding is null */
*wsaddrlen = sizeof(struct WS_sockaddr_in);
return 0;
}
case AF_UNSPEC: {
memset(wsaddr,0,*wsaddrlen);
return 0;
}
default:
FIXME("Unknown address family %d\n", uaddr->sa_family);
return -1;
}
return res;
}
static INT WS_DuplicateSocket(BOOL unicode, SOCKET s, DWORD dwProcessId, LPWSAPROTOCOL_INFOW lpProtocolInfo)
{
HANDLE hProcess;
int size;
WSAPROTOCOL_INFOW infow;
TRACE("(unicode %d, socket %04lx, processid %x, buffer %p)\n",
unicode, s, dwProcessId, lpProtocolInfo);
if (!ws_protocol_info(s, unicode, &infow, &size))
return SOCKET_ERROR;
if (!(hProcess = OpenProcess(PROCESS_DUP_HANDLE, FALSE, dwProcessId)))
{
SetLastError(WSAEINVAL);
return SOCKET_ERROR;
}
if (!lpProtocolInfo)
{
CloseHandle(hProcess);
SetLastError(WSAEFAULT);
return SOCKET_ERROR;
}
/* I don't know what the real Windoze does next, this is a hack */
/* ...we could duplicate and then use ConvertToGlobalHandle on the duplicate, then let
* the target use the global duplicate, or we could copy a reference to us to the structure
* and let the target duplicate it from us, but let's do it as simple as possible */
memcpy(lpProtocolInfo, &infow, size);
DuplicateHandle(GetCurrentProcess(), SOCKET2HANDLE(s),
hProcess, (LPHANDLE)&lpProtocolInfo->dwServiceFlags3,
0, FALSE, DUPLICATE_SAME_ACCESS);
CloseHandle(hProcess);
lpProtocolInfo->dwServiceFlags4 = 0xff00ff00; /* magic */
return 0;
}
/*****************************************************************************
* WS_EnterSingleProtocolW [internal]
*
* enters the protocol information of one given protocol into the given
* buffer.
*
* RETURNS
* TRUE if a protocol was entered into the buffer.
*
* BUGS
* - only implemented for IPX, SPX, SPXII, TCP, UDP
* - there is no check that the operating system supports the returned
* protocols
*/
static BOOL WS_EnterSingleProtocolW( INT protocol, WSAPROTOCOL_INFOW* info )
{
memset( info, 0, sizeof(WSAPROTOCOL_INFOW) );
info->iProtocol = protocol;
switch (protocol)
{
case WS_IPPROTO_TCP:
info->dwServiceFlags1 = XP1_IFS_HANDLES | XP1_EXPEDITED_DATA |
XP1_GRACEFUL_CLOSE | XP1_GUARANTEED_ORDER |
XP1_GUARANTEED_DELIVERY;
info->ProviderId = ProviderIdIP;
info->dwCatalogEntryId = 0x3e9;
info->dwProviderFlags = PFL_MATCHES_PROTOCOL_ZERO;
info->ProtocolChain.ChainLen = 1;
info->iVersion = 2;
info->iAddressFamily = WS_AF_INET;
info->iMaxSockAddr = 0x10;
info->iMinSockAddr = 0x10;
info->iSocketType = WS_SOCK_STREAM;
strcpyW( info->szProtocol, NameTcpW );
break;
case WS_IPPROTO_UDP:
info->dwServiceFlags1 = XP1_IFS_HANDLES | XP1_SUPPORT_BROADCAST |
XP1_SUPPORT_MULTIPOINT | XP1_MESSAGE_ORIENTED |
XP1_CONNECTIONLESS;
info->ProviderId = ProviderIdIP;
info->dwCatalogEntryId = 0x3ea;
info->dwProviderFlags = PFL_MATCHES_PROTOCOL_ZERO;
info->ProtocolChain.ChainLen = 1;
info->iVersion = 2;
info->iAddressFamily = WS_AF_INET;
info->iMaxSockAddr = 0x10;
info->iMinSockAddr = 0x10;
info->iSocketType = WS_SOCK_DGRAM;
info->dwMessageSize = 0xffbb;
strcpyW( info->szProtocol, NameUdpW );
break;
case WS_NSPROTO_IPX:
info->dwServiceFlags1 = XP1_PARTIAL_MESSAGE | XP1_SUPPORT_BROADCAST |
XP1_SUPPORT_MULTIPOINT | XP1_MESSAGE_ORIENTED |
XP1_CONNECTIONLESS;
info->ProviderId = ProviderIdIPX;
info->dwCatalogEntryId = 0x406;
info->dwProviderFlags = PFL_MATCHES_PROTOCOL_ZERO;
info->ProtocolChain.ChainLen = 1;
info->iVersion = 2;
info->iAddressFamily = WS_AF_IPX;
info->iMaxSockAddr = 0x10;
info->iMinSockAddr = 0x0e;
info->iSocketType = WS_SOCK_DGRAM;
info->iProtocolMaxOffset = 0xff;
info->dwMessageSize = 0x240;
strcpyW( info->szProtocol, NameIpxW );
break;
case WS_NSPROTO_SPX:
info->dwServiceFlags1 = XP1_IFS_HANDLES | XP1_PSEUDO_STREAM |
XP1_MESSAGE_ORIENTED | XP1_GUARANTEED_ORDER |
XP1_GUARANTEED_DELIVERY;
info->ProviderId = ProviderIdSPX;
info->dwCatalogEntryId = 0x407;
info->dwProviderFlags = PFL_MATCHES_PROTOCOL_ZERO;
info->ProtocolChain.ChainLen = 1;
info->iVersion = 2;
info->iAddressFamily = WS_AF_IPX;
info->iMaxSockAddr = 0x10;
info->iMinSockAddr = 0x0e;
info->iSocketType = WS_SOCK_SEQPACKET;
info->dwMessageSize = 0xffffffff;
strcpyW( info->szProtocol, NameSpxW );
break;
case WS_NSPROTO_SPXII:
info->dwServiceFlags1 = XP1_IFS_HANDLES | XP1_GRACEFUL_CLOSE |
XP1_PSEUDO_STREAM | XP1_MESSAGE_ORIENTED |
XP1_GUARANTEED_ORDER | XP1_GUARANTEED_DELIVERY;
info->ProviderId = ProviderIdSPX;
info->dwCatalogEntryId = 0x409;
info->dwProviderFlags = PFL_MATCHES_PROTOCOL_ZERO;
info->ProtocolChain.ChainLen = 1;
info->iVersion = 2;
info->iAddressFamily = WS_AF_IPX;
info->iMaxSockAddr = 0x10;
info->iMinSockAddr = 0x0e;
info->iSocketType = WS_SOCK_SEQPACKET;
info->dwMessageSize = 0xffffffff;
strcpyW( info->szProtocol, NameSpxIIW );
break;
default:
FIXME("unknown Protocol <0x%08x>\n", protocol);
return FALSE;
}
return TRUE;
}
/*****************************************************************************
* WS_EnterSingleProtocolA [internal]
*
* see function WS_EnterSingleProtocolW
*
*/
static BOOL WS_EnterSingleProtocolA( INT protocol, WSAPROTOCOL_INFOA* info )
{
WSAPROTOCOL_INFOW infow;
INT ret;
memset( info, 0, sizeof(WSAPROTOCOL_INFOA) );
ret = WS_EnterSingleProtocolW( protocol, &infow );
if (ret)
{
/* convert the structure from W to A */
memcpy( info, &infow, FIELD_OFFSET( WSAPROTOCOL_INFOA, szProtocol ) );
WideCharToMultiByte( CP_ACP, 0, infow.szProtocol, -1,
info->szProtocol, WSAPROTOCOL_LEN+1, NULL, NULL );
}
return ret;
}
static INT WS_EnumProtocols( BOOL unicode, const INT *protocols, LPWSAPROTOCOL_INFOW buffer, LPDWORD len )
{
INT i = 0, items = 0;
DWORD size = 0;
union _info
{
LPWSAPROTOCOL_INFOA a;
LPWSAPROTOCOL_INFOW w;
} info;
info.w = buffer;
if (!protocols) protocols = valid_protocols;
while (protocols[i])
{
if(supported_protocol(protocols[i++]))
items++;
}
size = items * (unicode ? sizeof(WSAPROTOCOL_INFOW) : sizeof(WSAPROTOCOL_INFOA));
TRACE("unicode %d, protocols %p, buffer %p, length %p %d, items %d, required %d\n",
unicode, protocols, buffer, len, len ? *len : 0, items, size);
if (*len < size || !buffer)
{
*len = size;
SetLastError(WSAENOBUFS);
return SOCKET_ERROR;
}
for (i = items = 0; protocols[i]; i++)
{
if (!supported_protocol(protocols[i])) continue;
if (unicode)
{
if (WS_EnterSingleProtocolW( protocols[i], &info.w[items] ))
items++;
}
else
{
if (WS_EnterSingleProtocolA( protocols[i], &info.a[items] ))
items++;
}
}
return items;
}
static BOOL ws_protocol_info(SOCKET s, int unicode, WSAPROTOCOL_INFOW *buffer, int *size)
{
NTSTATUS status;
int address_family;
int socket_type;
int protocol;
*size = unicode ? sizeof(WSAPROTOCOL_INFOW) : sizeof(WSAPROTOCOL_INFOA);
memset(buffer, 0, *size);
SERVER_START_REQ( get_socket_info )
{
req->handle = wine_server_obj_handle( SOCKET2HANDLE(s) );
status = wine_server_call( req );
if (!status)
{
address_family = convert_af_u2w(reply->family);
socket_type = convert_socktype_u2w(reply->type);
protocol = convert_proto_u2w(reply->protocol);
}
}
SERVER_END_REQ;
if (status)
{
unsigned int err = NtStatusToWSAError( status );
SetLastError( err == WSAEBADF ? WSAENOTSOCK : err );
return FALSE;
}
if (unicode)
WS_EnterSingleProtocolW( protocol, buffer);
else
WS_EnterSingleProtocolA( protocol, (WSAPROTOCOL_INFOA *)buffer);
buffer->iAddressFamily = address_family;
buffer->iSocketType = socket_type;
buffer->iProtocol = protocol;
return TRUE;
}
/**************************************************************************
* Functions for handling overlapped I/O
**************************************************************************/
/* user APC called upon async completion */
static void WINAPI ws2_async_apc( void *arg, IO_STATUS_BLOCK *iosb, ULONG reserved )
{
struct ws2_async *wsa = arg;
if (wsa->completion_func) wsa->completion_func( NtStatusToWSAError(iosb->u.Status),
iosb->Information, wsa->user_overlapped,
wsa->flags );
release_async_io( &wsa->io );
}
/***********************************************************************
* WS2_recv (INTERNAL)
*
* Workhorse for both synchronous and asynchronous recv() operations.
*/
static int WS2_recv( int fd, struct ws2_async *wsa, int flags )
{
#ifndef HAVE_STRUCT_MSGHDR_MSG_ACCRIGHTS
char pktbuf[512];
#endif
struct msghdr hdr;
union generic_unix_sockaddr unix_sockaddr;
int n;
hdr.msg_name = NULL;
if (wsa->addr)
{
hdr.msg_namelen = sizeof(unix_sockaddr);
hdr.msg_name = &unix_sockaddr;
}
else
hdr.msg_namelen = 0;
hdr.msg_iov = wsa->iovec + wsa->first_iovec;
hdr.msg_iovlen = wsa->n_iovecs - wsa->first_iovec;
#ifdef HAVE_STRUCT_MSGHDR_MSG_ACCRIGHTS
hdr.msg_accrights = NULL;
hdr.msg_accrightslen = 0;
#else
hdr.msg_control = pktbuf;
hdr.msg_controllen = sizeof(pktbuf);
hdr.msg_flags = 0;
#endif
while ((n = __wine_locked_recvmsg( fd, &hdr, flags )) == -1)
{
if (errno != EINTR)
return -1;
}
#ifdef HAVE_STRUCT_MSGHDR_MSG_ACCRIGHTS
if (wsa->control)
{
ERR("Message control headers cannot be properly supported on this system.\n");
wsa->control->len = 0;
}
#else
if (wsa->control && !convert_control_headers(&hdr, wsa->control))
{
WARN("Application passed insufficient room for control headers.\n");
*wsa->lpFlags |= WS_MSG_CTRUNC;
errno = EMSGSIZE;
return -1;
}
#endif
/* if this socket is connected and lpFrom is not NULL, Linux doesn't give us
* msg_name and msg_namelen from recvmsg, but it does set msg_namelen to zero.
*
* quoting linux 2.6 net/ipv4/tcp.c:
* "According to UNIX98, msg_name/msg_namelen are ignored
* on connected socket. I was just happy when found this 8) --ANK"
*
* likewise MSDN says that lpFrom and lpFromlen are ignored for
* connection-oriented sockets, so don't try to update lpFrom.
*/
if (wsa->addr && hdr.msg_namelen)
ws_sockaddr_u2ws( &unix_sockaddr.addr, wsa->addr, wsa->addrlen.ptr );
return n;
}
/***********************************************************************
* WS2_async_recv (INTERNAL)
*
* Handler for overlapped recv() operations.
*/
static NTSTATUS WS2_async_recv( void *user, IO_STATUS_BLOCK *iosb, NTSTATUS status )
{
struct ws2_async *wsa = user;
int result = 0, fd;
switch (status)
{
case STATUS_ALERTED:
if ((status = wine_server_handle_to_fd( wsa->hSocket, FILE_READ_DATA, &fd, NULL ) ))
break;
result = WS2_recv( fd, wsa, convert_flags(wsa->flags) );
wine_server_release_fd( wsa->hSocket, fd );
if (result >= 0)
{
status = STATUS_SUCCESS;
_enable_event( wsa->hSocket, FD_READ, 0, 0 );
}
else
{
if (errno == EAGAIN)
{
status = STATUS_PENDING;
_enable_event( wsa->hSocket, FD_READ, 0, 0 );
}
else
{
result = 0;
status = wsaErrStatus();
}
}
break;
}
if (status != STATUS_PENDING)
{
iosb->u.Status = status;
iosb->Information = result;
if (!wsa->completion_func)
release_async_io( &wsa->io );
}
return status;
}
/***********************************************************************
* WS2_async_accept_recv (INTERNAL)
*
* This function is used to finish the read part of an accept request. It is
* needed to place the completion on the correct socket (listener).
*/
static NTSTATUS WS2_async_accept_recv( void *user, IO_STATUS_BLOCK *iosb, NTSTATUS status )
{
struct ws2_accept_async *wsa = user;
status = WS2_async_recv( wsa->read, iosb, status );
if (status == STATUS_PENDING)
return status;
if (wsa->cvalue)
WS_AddCompletion( HANDLE2SOCKET(wsa->listen_socket), wsa->cvalue, iosb->u.Status, iosb->Information, TRUE );
release_async_io( &wsa->io );
return status;
}
/***********************************************************************
* WS2_async_accept (INTERNAL)
*
* This is the function called to satisfy the AcceptEx callback
*/
static NTSTATUS WS2_async_accept( void *user, IO_STATUS_BLOCK *iosb, NTSTATUS status )
{
struct ws2_accept_async *wsa = user;
int len;
char *addr;
TRACE("status: 0x%x listen: %p, accept: %p\n", status, wsa->listen_socket, wsa->accept_socket);
if (status == STATUS_ALERTED)
{
SERVER_START_REQ( accept_into_socket )
{
req->lhandle = wine_server_obj_handle( wsa->listen_socket );
req->ahandle = wine_server_obj_handle( wsa->accept_socket );
status = wine_server_call( req );
}
SERVER_END_REQ;
if (NtStatusToWSAError( status ) == WSAEWOULDBLOCK)
return STATUS_PENDING;
if (status == STATUS_INVALID_HANDLE)
{
FIXME("AcceptEx accepting socket closed but request was not cancelled\n");
status = STATUS_CANCELLED;
}
}
else if (status == STATUS_HANDLES_CLOSED)
status = STATUS_CANCELLED; /* strange windows behavior */
if (status != STATUS_SUCCESS)
goto finish;
/* WS2 Spec says size param is extra 16 bytes long...what do we put in it? */
addr = ((char *)wsa->buf) + wsa->data_len;
len = wsa->local_len - sizeof(int);
WS_getsockname(HANDLE2SOCKET(wsa->accept_socket),
(struct WS_sockaddr *)(addr + sizeof(int)), &len);
*(int *)addr = len;
addr += wsa->local_len;
len = wsa->remote_len - sizeof(int);
WS_getpeername(HANDLE2SOCKET(wsa->accept_socket),
(struct WS_sockaddr *)(addr + sizeof(int)), &len);
*(int *)addr = len;
if (!wsa->read)
goto finish;
wsa->io.callback = WS2_async_accept_recv;
status = register_async( ASYNC_TYPE_READ, wsa->accept_socket, &wsa->io,
wsa->user_overlapped->hEvent, NULL, NULL, iosb);
if (status != STATUS_PENDING)
goto finish;
/* The APC has finished but no completion should be sent for the operation yet, additional processing
* needs to be performed by WS2_async_accept_recv() first. */
return STATUS_MORE_PROCESSING_REQUIRED;
finish:
iosb->u.Status = status;
iosb->Information = 0;
if (wsa->read) release_async_io( &wsa->read->io );
release_async_io( &wsa->io );
return status;
}
/***********************************************************************
* WS2_send (INTERNAL)
*
* Workhorse for both synchronous and asynchronous send() operations.
*/
static int WS2_send( int fd, struct ws2_async *wsa, int flags )
{
struct msghdr hdr;
union generic_unix_sockaddr unix_addr;
int n, ret;
hdr.msg_name = NULL;
hdr.msg_namelen = 0;
if (wsa->addr)
{
hdr.msg_name = &unix_addr;
hdr.msg_namelen = ws_sockaddr_ws2u( wsa->addr, wsa->addrlen.val, &unix_addr );
if ( !hdr.msg_namelen )
{
errno = EFAULT;
return -1;
}
#if defined(HAS_IPX) && defined(SOL_IPX)
if(wsa->addr->sa_family == WS_AF_IPX)
{
struct sockaddr_ipx* uipx = (struct sockaddr_ipx*)hdr.msg_name;
int val=0;
socklen_t len = sizeof(int);
/* The packet type is stored at the ipx socket level; At least the linux kernel seems
* to do something with it in case hdr.msg_name is NULL. Nonetheless can we use it to store
* the packet type and then we can retrieve it using getsockopt. After that we can set the
* ipx type in the sockaddr_opx structure with the stored value.
*/
if(getsockopt(fd, SOL_IPX, IPX_TYPE, &val, &len) != -1)
uipx->sipx_type = val;
}
#endif
}
hdr.msg_iov = wsa->iovec + wsa->first_iovec;
hdr.msg_iovlen = wsa->n_iovecs - wsa->first_iovec;
#ifdef HAVE_STRUCT_MSGHDR_MSG_ACCRIGHTS
hdr.msg_accrights = NULL;
hdr.msg_accrightslen = 0;
#else
hdr.msg_control = NULL;
hdr.msg_controllen = 0;
hdr.msg_flags = 0;
#endif
while ((ret = sendmsg(fd, &hdr, flags)) == -1)
{
if (errno == EISCONN)
{
hdr.msg_name = 0;
hdr.msg_namelen = 0;
continue;
}
if (errno != EINTR)
return -1;
}
n = ret;
while (wsa->first_iovec < wsa->n_iovecs && wsa->iovec[wsa->first_iovec].iov_len <= n)
n -= wsa->iovec[wsa->first_iovec++].iov_len;
if (wsa->first_iovec < wsa->n_iovecs)
{
wsa->iovec[wsa->first_iovec].iov_base = (char*)wsa->iovec[wsa->first_iovec].iov_base + n;
wsa->iovec[wsa->first_iovec].iov_len -= n;
}
return ret;
}
/***********************************************************************
* WS2_async_send (INTERNAL)
*
* Handler for overlapped send() operations.
*/
static NTSTATUS WS2_async_send( void *user, IO_STATUS_BLOCK *iosb, NTSTATUS status )
{
struct ws2_async *wsa = user;
int result = 0, fd;
switch (status)
{
case STATUS_ALERTED:
if ( wsa->n_iovecs <= wsa->first_iovec )
{
/* Nothing to do */
status = STATUS_SUCCESS;
break;
}
if ((status = wine_server_handle_to_fd( wsa->hSocket, FILE_WRITE_DATA, &fd, NULL ) ))
break;
/* check to see if the data is ready (non-blocking) */
result = WS2_send( fd, wsa, convert_flags(wsa->flags) );
wine_server_release_fd( wsa->hSocket, fd );
if (result >= 0)
{
if (wsa->first_iovec < wsa->n_iovecs)
status = STATUS_PENDING;
else
status = STATUS_SUCCESS;
iosb->Information += result;
}
else if (errno == EAGAIN)
{
status = STATUS_PENDING;
}
else
{
status = wsaErrStatus();
}
break;
}
if (status != STATUS_PENDING)
{
iosb->u.Status = status;
if (!wsa->completion_func)
release_async_io( &wsa->io );
}
return status;
}
/***********************************************************************
* WS2_async_shutdown (INTERNAL)
*
* Handler for shutdown() operations on overlapped sockets.
*/
static NTSTATUS WS2_async_shutdown( void *user, IO_STATUS_BLOCK *iosb, NTSTATUS status )
{
struct ws2_async_shutdown *wsa = user;
int fd, err = 1;
switch (status)
{
case STATUS_ALERTED:
if ((status = wine_server_handle_to_fd( wsa->hSocket, 0, &fd, NULL ) ))
break;
switch ( wsa->type )
{
case ASYNC_TYPE_READ: err = shutdown( fd, 0 ); break;
case ASYNC_TYPE_WRITE: err = shutdown( fd, 1 ); break;
}
status = err ? wsaErrStatus() : STATUS_SUCCESS;
wine_server_release_fd( wsa->hSocket, fd );
break;
}
iosb->u.Status = status;
iosb->Information = 0;
release_async_io( &wsa->io );
return status;
}
/***********************************************************************
* WS2_register_async_shutdown (INTERNAL)
*
* Helper function for WS_shutdown() on overlapped sockets.
*/
static int WS2_register_async_shutdown( SOCKET s, int type )
{
struct ws2_async_shutdown *wsa;
NTSTATUS status;
TRACE("socket %04lx type %d\n", s, type);
wsa = (struct ws2_async_shutdown *)alloc_async_io( sizeof(*wsa), WS2_async_shutdown );
if ( !wsa )
return WSAEFAULT;
wsa->hSocket = SOCKET2HANDLE(s);
wsa->type = type;
status = register_async( type, wsa->hSocket, &wsa->io, 0, NULL, NULL, &wsa->iosb );
if (status != STATUS_PENDING)
{
HeapFree( GetProcessHeap(), 0, wsa );
return NtStatusToWSAError( status );
}
return 0;
}
/***********************************************************************
* accept (WS2_32.1)
*/
SOCKET WINAPI WS_accept(SOCKET s, struct WS_sockaddr *addr, int *addrlen32)
{
DWORD err;
SOCKET as;
int fd;
BOOL is_blocking;
TRACE("socket %04lx\n", s );
err = sock_is_blocking(s, &is_blocking);
if (err)
goto error;
for (;;)
{
/* try accepting first (if there is a deferred connection) */
SERVER_START_REQ( accept_socket )
{
req->lhandle = wine_server_obj_handle( SOCKET2HANDLE(s) );
req->access = GENERIC_READ|GENERIC_WRITE|SYNCHRONIZE;
req->attributes = OBJ_INHERIT;
err = NtStatusToWSAError( wine_server_call( req ));
as = HANDLE2SOCKET( wine_server_ptr_handle( reply->handle ));
}
SERVER_END_REQ;
if (!err)
{
if (addr && addrlen32 && WS_getpeername(as, addr, addrlen32))
{
WS_closesocket(as);
return SOCKET_ERROR;
}
TRACE("\taccepted %04lx\n", as);
return as;
}
if (!is_blocking) break;
if (err != WSAEWOULDBLOCK) break;
fd = get_sock_fd( s, FILE_READ_DATA, NULL );
/* block here */
do_block(fd, POLLIN, -1);
_sync_sock_state(s); /* let wineserver notice connection */
release_sock_fd( s, fd );
}
error:
WARN(" -> ERROR %d\n", err);
SetLastError(err);
return INVALID_SOCKET;
}
/***********************************************************************
* AcceptEx
*/
static BOOL WINAPI WS2_AcceptEx(SOCKET listener, SOCKET acceptor, PVOID dest, DWORD dest_len,
DWORD local_addr_len, DWORD rem_addr_len, LPDWORD received,
LPOVERLAPPED overlapped)
{
DWORD status;
struct ws2_accept_async *wsa;
int fd;
TRACE("(%04lx, %04lx, %p, %d, %d, %d, %p, %p)\n", listener, acceptor, dest, dest_len, local_addr_len,
rem_addr_len, received, overlapped);
if (!overlapped)
{
SetLastError(WSA_INVALID_PARAMETER);
return FALSE;
}
overlapped->Internal = STATUS_PENDING;
if (!dest)
{
SetLastError(WSAEINVAL);
return FALSE;
}
if (!rem_addr_len)
{
SetLastError(WSAEFAULT);
return FALSE;
}
fd = get_sock_fd( listener, FILE_READ_DATA, NULL );
if (fd == -1)
{
SetLastError(WSAENOTSOCK);
return FALSE;
}
release_sock_fd( listener, fd );
fd = get_sock_fd( acceptor, FILE_READ_DATA, NULL );
if (fd == -1)
{
SetLastError(WSAENOTSOCK);
return FALSE;
}
release_sock_fd( acceptor, fd );
wsa = (struct ws2_accept_async *)alloc_async_io( sizeof(*wsa), WS2_async_accept );
if(!wsa)
{
SetLastError(WSAEFAULT);
return FALSE;
}
wsa->listen_socket = SOCKET2HANDLE(listener);
wsa->accept_socket = SOCKET2HANDLE(acceptor);
wsa->user_overlapped = overlapped;
wsa->cvalue = !((ULONG_PTR)overlapped->hEvent & 1) ? (ULONG_PTR)overlapped : 0;
wsa->buf = dest;
wsa->data_len = dest_len;
wsa->local_len = local_addr_len;
wsa->remote_len = rem_addr_len;
wsa->read = NULL;
if (wsa->data_len)
{
/* set up a read request if we need it */
wsa->read = (struct ws2_async *)alloc_async_io( offsetof(struct ws2_async, iovec[1]), WS2_async_accept_recv );
if (!wsa->read)
{
HeapFree( GetProcessHeap(), 0, wsa );
SetLastError(WSAEFAULT);
return FALSE;
}
wsa->read->hSocket = wsa->accept_socket;
wsa->read->flags = 0;
wsa->read->lpFlags = &wsa->read->flags;
wsa->read->addr = NULL;
wsa->read->addrlen.ptr = NULL;
wsa->read->control = NULL;
wsa->read->n_iovecs = 1;
wsa->read->first_iovec = 0;
wsa->read->completion_func = NULL;
wsa->read->iovec[0].iov_base = wsa->buf;
wsa->read->iovec[0].iov_len = wsa->data_len;
}
status = register_async( ASYNC_TYPE_READ, SOCKET2HANDLE(listener), &wsa->io,
overlapped->hEvent, NULL, (void *)wsa->cvalue, (IO_STATUS_BLOCK *)overlapped );
if(status != STATUS_PENDING)
{
HeapFree( GetProcessHeap(), 0, wsa->read );
HeapFree( GetProcessHeap(), 0, wsa );
}
SetLastError( NtStatusToWSAError(status) );
return FALSE;
}
/***********************************************************************
* WS2_ReadFile (INTERNAL)
*
* Perform an APC-safe ReadFile operation
*/
static NTSTATUS WS2_ReadFile(HANDLE hFile, PIO_STATUS_BLOCK io_status, char* buffer, ULONG length,
PLARGE_INTEGER offset)
{
int result = -1, unix_handle;
unsigned int options;
NTSTATUS status;
TRACE( "(%p,%p,0x%08x)\n", hFile, buffer,length );
status = wine_server_handle_to_fd( hFile, FILE_READ_DATA, &unix_handle, &options );
if (status) return status;
while (result == -1)
{
if (offset->QuadPart != FILE_USE_FILE_POINTER_POSITION)
result = pread( unix_handle, buffer, length, offset->QuadPart );
else
result = read( unix_handle, buffer, length );
if (errno != EINTR)
break;
}
if (!result)
status = (length ? STATUS_END_OF_FILE : STATUS_SUCCESS);
else if (result != -1)
status = STATUS_SUCCESS;
else if (errno != EAGAIN)
status = wsaErrStatus();
else
status = STATUS_PENDING;
wine_server_release_fd( hFile, unix_handle );
TRACE("= 0x%08x (%d)\n", status, result);
if (status == STATUS_SUCCESS || status == STATUS_END_OF_FILE)
{
io_status->u.Status = status;
io_status->Information = result;
}
return status;
}
/***********************************************************************
* WS2_transmitfile_getbuffer (INTERNAL)
*
* Pick the appropriate buffer for a TransmitFile send operation.
*/
static NTSTATUS WS2_transmitfile_getbuffer( int fd, struct ws2_transmitfile_async *wsa )
{
/* send any incomplete writes from a previous iteration */
if (wsa->write.first_iovec < wsa->write.n_iovecs)
return STATUS_PENDING;
/* process the header (if applicable) */
if (wsa->buffers.Head)
{
wsa->write.first_iovec = 0;
wsa->write.n_iovecs = 1;
wsa->write.iovec[0].iov_base = wsa->buffers.Head;
wsa->write.iovec[0].iov_len = wsa->buffers.HeadLength;
wsa->buffers.Head = NULL;
return STATUS_PENDING;
}
/* process the main file */
if (wsa->file)
{
DWORD bytes_per_send = wsa->bytes_per_send;
IO_STATUS_BLOCK iosb;
NTSTATUS status;
iosb.Information = 0;
/* when the size of the transfer is limited ensure that we don't go past that limit */
if (wsa->file_bytes != 0)
bytes_per_send = min(bytes_per_send, wsa->file_bytes - wsa->file_read);
status = WS2_ReadFile( wsa->file, &iosb, wsa->buffer, bytes_per_send, &wsa->offset );
if (wsa->offset.QuadPart != FILE_USE_FILE_POINTER_POSITION)
wsa->offset.QuadPart += iosb.Information;
if (status == STATUS_END_OF_FILE)
wsa->file = NULL; /* continue on to the footer */
else if (status != STATUS_SUCCESS)
return status;
else
{
if (iosb.Information)
{
wsa->write.first_iovec = 0;
wsa->write.n_iovecs = 1;
wsa->write.iovec[0].iov_base = wsa->buffer;
wsa->write.iovec[0].iov_len = iosb.Information;
wsa->file_read += iosb.Information;
}
if (wsa->file_bytes != 0 && wsa->file_read >= wsa->file_bytes)
wsa->file = NULL;
return STATUS_PENDING;
}
}
/* send the footer (if applicable) */
if (wsa->buffers.Tail)
{
wsa->write.first_iovec = 0;
wsa->write.n_iovecs = 1;
wsa->write.iovec[0].iov_base = wsa->buffers.Tail;
wsa->write.iovec[0].iov_len = wsa->buffers.TailLength;
wsa->buffers.Tail = NULL;
return STATUS_PENDING;
}
return STATUS_SUCCESS;
}
/***********************************************************************
* WS2_transmitfile_base (INTERNAL)
*
* Shared implementation for both synchronous and asynchronous TransmitFile.
*/
static NTSTATUS WS2_transmitfile_base( int fd, struct ws2_transmitfile_async *wsa )
{
NTSTATUS status;
status = WS2_transmitfile_getbuffer( fd, wsa );
if (status == STATUS_PENDING)
{
IO_STATUS_BLOCK *iosb = (IO_STATUS_BLOCK *)wsa->write.user_overlapped;
int n;
n = WS2_send( fd, &wsa->write, convert_flags(wsa->write.flags) );
if (n >= 0)
{
if (iosb) iosb->Information += n;
}
else if (errno != EAGAIN)
return wsaErrStatus();
}
return status;
}
/***********************************************************************
* WS2_async_transmitfile (INTERNAL)
*
* Asynchronous callback for overlapped TransmitFile operations.
*/
static NTSTATUS WS2_async_transmitfile( void *user, IO_STATUS_BLOCK *iosb, NTSTATUS status )
{
struct ws2_transmitfile_async *wsa = user;
int fd;
if (status == STATUS_ALERTED)
{
if (!(status = wine_server_handle_to_fd( wsa->write.hSocket, FILE_WRITE_DATA, &fd, NULL )))
{
status = WS2_transmitfile_base( fd, wsa );
wine_server_release_fd( wsa->write.hSocket, fd );
}
if (status == STATUS_PENDING)
return status;
}
iosb->u.Status = status;
release_async_io( &wsa->io );
return status;
}
/***********************************************************************
* TransmitFile
*/
static BOOL WINAPI WS2_TransmitFile( SOCKET s, HANDLE h, DWORD file_bytes, DWORD bytes_per_send,
LPOVERLAPPED overlapped, LPTRANSMIT_FILE_BUFFERS buffers,
DWORD flags )
{
union generic_unix_sockaddr uaddr;
socklen_t uaddrlen = sizeof(uaddr);
struct ws2_transmitfile_async *wsa;
NTSTATUS status;
int fd;
TRACE("(%lx, %p, %d, %d, %p, %p, %d)\n", s, h, file_bytes, bytes_per_send, overlapped,
buffers, flags );
fd = get_sock_fd( s, FILE_WRITE_DATA, NULL );
if (fd == -1)
{
WSASetLastError( WSAENOTSOCK );
return FALSE;
}
if (getpeername( fd, &uaddr.addr, &uaddrlen ) != 0)
{
release_sock_fd( s, fd );
WSASetLastError( WSAENOTCONN );
return FALSE;
}
if (flags)
FIXME("Flags are not currently supported (0x%x).\n", flags);
if (h && GetFileType( h ) != FILE_TYPE_DISK)
{
FIXME("Non-disk file handles are not currently supported.\n");
release_sock_fd( s, fd );
WSASetLastError( WSAEOPNOTSUPP );
return FALSE;
}
/* set reasonable defaults when requested */
if (!bytes_per_send)
bytes_per_send = (1 << 16); /* Depends on OS version: PAGE_SIZE, 2*PAGE_SIZE, or 2^16 */
if (!(wsa = (struct ws2_transmitfile_async *)alloc_async_io( sizeof(*wsa) + bytes_per_send,
WS2_async_transmitfile )))
{
release_sock_fd( s, fd );
WSASetLastError( WSAEFAULT );
return FALSE;
}
if (buffers)
wsa->buffers = *buffers;
else
memset(&wsa->buffers, 0x0, sizeof(wsa->buffers));
wsa->buffer = (char *)(wsa + 1);
wsa->file = h;
wsa->file_read = 0;
wsa->file_bytes = file_bytes;
wsa->bytes_per_send = bytes_per_send;
wsa->flags = flags;
wsa->offset.QuadPart = FILE_USE_FILE_POINTER_POSITION;
wsa->write.hSocket = SOCKET2HANDLE(s);
wsa->write.addr = NULL;
wsa->write.addrlen.val = 0;
wsa->write.flags = 0;
wsa->write.lpFlags = &wsa->flags;
wsa->write.control = NULL;
wsa->write.n_iovecs = 0;
wsa->write.first_iovec = 0;
wsa->write.user_overlapped = overlapped;
if (overlapped)
{
IO_STATUS_BLOCK *iosb = (IO_STATUS_BLOCK *)overlapped;
int status;
wsa->offset.u.LowPart = overlapped->u.s.Offset;
wsa->offset.u.HighPart = overlapped->u.s.OffsetHigh;
iosb->u.Status = STATUS_PENDING;
iosb->Information = 0;
status = register_async( ASYNC_TYPE_WRITE, SOCKET2HANDLE(s), &wsa->io,
overlapped->hEvent, NULL, NULL, iosb );
if(status != STATUS_PENDING) HeapFree( GetProcessHeap(), 0, wsa );
release_sock_fd( s, fd );
WSASetLastError( NtStatusToWSAError(status) );
return FALSE;
}
do
{
status = WS2_transmitfile_base( fd, wsa );
if (status == STATUS_PENDING)
{
/* block here */
do_block(fd, POLLOUT, -1);
_sync_sock_state(s); /* let wineserver notice connection */
}
}
while (status == STATUS_PENDING);
release_sock_fd( s, fd );
if (status != STATUS_SUCCESS)
WSASetLastError( NtStatusToWSAError(status) );
HeapFree( GetProcessHeap(), 0, wsa );
return (status == STATUS_SUCCESS);
}
/***********************************************************************
* GetAcceptExSockaddrs
*/
static void WINAPI WS2_GetAcceptExSockaddrs(PVOID buffer, DWORD data_size, DWORD local_size, DWORD remote_size,
struct WS_sockaddr **local_addr, LPINT local_addr_len,
struct WS_sockaddr **remote_addr, LPINT remote_addr_len)
{
char *cbuf = buffer;
TRACE("(%p, %d, %d, %d, %p, %p, %p, %p)\n", buffer, data_size, local_size, remote_size, local_addr,
local_addr_len, remote_addr, remote_addr_len );
cbuf += data_size;
*local_addr_len = *(int *) cbuf;
*local_addr = (struct WS_sockaddr *)(cbuf + sizeof(int));
cbuf += local_size;
*remote_addr_len = *(int *) cbuf;
*remote_addr = (struct WS_sockaddr *)(cbuf + sizeof(int));
}
/***********************************************************************
* WSASendMsg
*/
int WINAPI WSASendMsg( SOCKET s, LPWSAMSG msg, DWORD dwFlags, LPDWORD lpNumberOfBytesSent,
LPWSAOVERLAPPED lpOverlapped,
LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine)
{
if (!msg)
{
SetLastError( WSAEFAULT );
return SOCKET_ERROR;
}
return WS2_sendto( s, msg->lpBuffers, msg->dwBufferCount, lpNumberOfBytesSent,
dwFlags, msg->name, msg->namelen,
lpOverlapped, lpCompletionRoutine );
}
/***********************************************************************
* WSARecvMsg
*
* Perform a receive operation that is capable of returning message
* control headers. It is important to note that the WSAMSG parameter
* must remain valid throughout the operation, even when an overlapped
* receive is performed.
*/
static int WINAPI WS2_WSARecvMsg( SOCKET s, LPWSAMSG msg, LPDWORD lpNumberOfBytesRecvd,
LPWSAOVERLAPPED lpOverlapped,
LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine )
{
if (!msg)
{
SetLastError( WSAEFAULT );
return SOCKET_ERROR;
}
return WS2_recv_base( s, msg->lpBuffers, msg->dwBufferCount, lpNumberOfBytesRecvd,
&msg->dwFlags, msg->name, &msg->namelen,
lpOverlapped, lpCompletionRoutine, &msg->Control );
}
/***********************************************************************
* interface_bind (INTERNAL)
*
* Take bind() calls on any name corresponding to a local network adapter and restrict the given socket to
* operating only on the specified interface. This restriction consists of two components:
* 1) An outgoing packet restriction suggesting the egress interface for all packets.
* 2) An incoming packet restriction dropping packets not meant for the interface.
* If the function succeeds in placing these restrictions (returns TRUE) then the name for the bind() may
* safely be changed to INADDR_ANY, permitting the transmission and receipt of broadcast packets on the
* socket. This behavior is only relevant to UDP sockets and is needed for applications that expect to be able
* to receive broadcast packets on a socket that is bound to a specific network interface.
*/
static BOOL interface_bind( SOCKET s, int fd, struct sockaddr *addr )
{
struct sockaddr_in *in_sock = (struct sockaddr_in *) addr;
in_addr_t bind_addr = in_sock->sin_addr.s_addr;
PIP_ADAPTER_INFO adapters = NULL, adapter;
BOOL ret = FALSE;
DWORD adap_size;
int enable = 1;
if (bind_addr == htonl(INADDR_ANY) || bind_addr == htonl(INADDR_LOOPBACK))
return FALSE; /* Not binding to a network adapter, special interface binding unnecessary. */
if (_get_fd_type(fd) != SOCK_DGRAM)
return FALSE; /* Special interface binding is only necessary for UDP datagrams. */
if (GetAdaptersInfo(NULL, &adap_size) != ERROR_BUFFER_OVERFLOW)
goto cleanup;
adapters = HeapAlloc(GetProcessHeap(), 0, adap_size);
if (adapters == NULL || GetAdaptersInfo(adapters, &adap_size) != NO_ERROR)
goto cleanup;
/* Search the IPv4 adapter list for the appropriate binding interface */
for (adapter = adapters; adapter != NULL; adapter = adapter->Next)
{
in_addr_t adapter_addr = (in_addr_t) inet_addr(adapter->IpAddressList.IpAddress.String);
if (bind_addr == adapter_addr)
{
#if defined(IP_BOUND_IF)
/* IP_BOUND_IF sets both the incoming and outgoing restriction at once */
if (setsockopt(fd, IPPROTO_IP, IP_BOUND_IF, &adapter->Index, sizeof(adapter->Index)) != 0)
goto cleanup;
ret = TRUE;
#elif defined(LINUX_BOUND_IF)
in_addr_t ifindex = (in_addr_t) htonl(adapter->Index);
struct interface_filter specific_interface_filter;
struct sock_fprog filter_prog;
if (setsockopt(fd, IPPROTO_IP, IP_UNICAST_IF, &ifindex, sizeof(ifindex)) != 0)
goto cleanup; /* Failed to suggest egress interface */
specific_interface_filter = generic_interface_filter;
specific_interface_filter.iface_rule.k = adapter->Index;
specific_interface_filter.ip_rule.k = htonl(adapter_addr);
filter_prog.len = sizeof(generic_interface_filter)/sizeof(struct sock_filter);
filter_prog.filter = (struct sock_filter *) &specific_interface_filter;
if (setsockopt(fd, SOL_SOCKET, SO_ATTACH_FILTER, &filter_prog, sizeof(filter_prog)) != 0)
goto cleanup; /* Failed to specify incoming packet filter */
ret = TRUE;
#else
FIXME("Broadcast packets on interface-bound sockets are not currently supported on this platform, "
"receiving broadcast packets will not work on socket %04lx.\n", s);
#endif
if (ret)
{
EnterCriticalSection(&cs_if_addr_cache);
if (if_addr_cache_size <= adapter->Index)
{
unsigned int new_size;
in_addr_t *new;
new_size = max(if_addr_cache_size * 2, adapter->Index + 1);
if (!(new = heap_realloc(if_addr_cache, sizeof(*if_addr_cache) * new_size)))
{
ERR("No memory.\n");
ret = FALSE;
LeaveCriticalSection(&cs_if_addr_cache);
break;
}
memset(new + if_addr_cache_size, 0, sizeof(*if_addr_cache)
* (new_size - if_addr_cache_size));
if_addr_cache = new;
if_addr_cache_size = new_size;
}
if (if_addr_cache[adapter->Index] && if_addr_cache[adapter->Index] != adapter_addr)
WARN("Adapter addr for iface index %u has changed.\n", adapter->Index);
if_addr_cache[adapter->Index] = adapter_addr;
LeaveCriticalSection(&cs_if_addr_cache);
}
break;
}
}
/* Will soon be switching to INADDR_ANY: permit address reuse */
if (ret && setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &enable, sizeof(enable)) == 0)
TRACE("Socket %04lx bound to interface index %d\n", s, adapter->Index);
else
ret = FALSE;
cleanup:
if(!ret)
ERR("Failed to bind to interface, receiving broadcast packets will not work on socket %04lx.\n", s);
HeapFree(GetProcessHeap(), 0, adapters);
return ret;
}
/***********************************************************************
* bind (WS2_32.2)
*/
int WINAPI WS_bind(SOCKET s, const struct WS_sockaddr* name, int namelen)
{
int fd = get_sock_fd( s, 0, NULL );
int res = SOCKET_ERROR;
TRACE("socket %04lx, ptr %p %s, length %d\n", s, name, debugstr_sockaddr(name), namelen);
if (fd != -1)
{
if (!name || (name->sa_family && !supported_pf(name->sa_family)))
{
SetLastError(WSAEAFNOSUPPORT);
}
else
{
union generic_unix_sockaddr uaddr;
unsigned int uaddrlen = ws_sockaddr_ws2u(name, namelen, &uaddr);
if (!uaddrlen)
{
SetLastError(WSAEFAULT);
}
else
{
if (name->sa_family == WS_AF_INET)
{
struct sockaddr_in *in4 = (struct sockaddr_in*) &uaddr;
if (memcmp(&in4->sin_addr, magic_loopback_addr, 4) == 0)
{
/* Trying to bind to the default host interface, using
* INADDR_ANY instead*/
WARN("Trying to bind to magic IP address, using "
"INADDR_ANY instead.\n");
in4->sin_addr.s_addr = htonl(INADDR_ANY);
}
else if (interface_bind(s, fd, &uaddr.addr))
in4->sin_addr.s_addr = htonl(INADDR_ANY);
}
if (bind(fd, &uaddr.addr, uaddrlen) < 0)
{
int loc_errno = errno;
WARN("\tfailure - errno = %i\n", errno);
errno = loc_errno;
switch (errno)
{
case EADDRNOTAVAIL:
SetLastError(WSAEINVAL);
break;
case EADDRINUSE:
{
int optval = 0;
socklen_t optlen = sizeof(optval);
/* Windows >= 2003 will return different results depending on
* SO_REUSEADDR, WSAEACCES may be returned representing that
* the socket hijacking protection prevented the bind */
if (!getsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&optval, &optlen) && optval)
{
SetLastError(WSAEACCES);
break;
}
/* fall through */
}
default:
SetLastError(wsaErrno());
break;
}
}
else
{
res=0; /* success */
}
}
}
release_sock_fd( s, fd );
}
return res;
}
/***********************************************************************
* closesocket (WS2_32.3)
*/
int WINAPI WS_closesocket(SOCKET s)
{
int res = SOCKET_ERROR, fd;
if (num_startup)
{
fd = get_sock_fd(s, FILE_READ_DATA, NULL);
if (fd >= 0)
{
release_sock_fd(s, fd);
if (CloseHandle(SOCKET2HANDLE(s)))
res = 0;
}
else
SetLastError(WSAENOTSOCK);
}
else
SetLastError(WSANOTINITIALISED);
TRACE("(socket %04lx) -> %d\n", s, res);
return res;
}
static int do_connect(int fd, const struct WS_sockaddr* name, int namelen)
{
union generic_unix_sockaddr uaddr;
unsigned int uaddrlen = ws_sockaddr_ws2u(name, namelen, &uaddr);
if (!uaddrlen)
return WSAEFAULT;
if (name->sa_family == WS_AF_INET)
{
struct sockaddr_in *in4 = (struct sockaddr_in*) &uaddr;
if (memcmp(&in4->sin_addr, magic_loopback_addr, 4) == 0)
{
/* Trying to connect to magic replace-loopback address,
* assuming we really want to connect to localhost */
TRACE("Trying to connect to magic IP address, using "
"INADDR_LOOPBACK instead.\n");
in4->sin_addr.s_addr = htonl(INADDR_LOOPBACK);
}
}
if (connect(fd, &uaddr.addr, uaddrlen) == 0)
return 0;
return wsaErrno();
}
/***********************************************************************
* connect (WS2_32.4)
*/
int WINAPI WS_connect(SOCKET s, const struct WS_sockaddr* name, int namelen)
{
int fd = get_sock_fd( s, FILE_READ_DATA, NULL );
TRACE("socket %04lx, ptr %p %s, length %d\n", s, name, debugstr_sockaddr(name), namelen);
if (fd != -1)
{
BOOL is_blocking;
int ret = do_connect(fd, name, namelen);
if (ret == 0)
goto connect_success;
if (ret == WSAEINPROGRESS)
{
/* tell wineserver that a connection is in progress */
_enable_event(SOCKET2HANDLE(s), FD_CONNECT|FD_READ|FD_WRITE,
FD_CONNECT,
FD_WINE_CONNECTED|FD_WINE_LISTENING);
ret = sock_is_blocking( s, &is_blocking );
if (!ret)
{
if (is_blocking)
{
do_block(fd, POLLIN | POLLOUT, -1);
_sync_sock_state(s); /* let wineserver notice connection */
/* retrieve any error codes from it */
if (!(ret = get_sock_error(s, FD_CONNECT_BIT))) goto connect_success;
}
else ret = WSAEWOULDBLOCK;
}
}
release_sock_fd( s, fd );
SetLastError(ret);
}
return SOCKET_ERROR;
connect_success:
release_sock_fd( s, fd );
_enable_event(SOCKET2HANDLE(s), FD_CONNECT|FD_READ|FD_WRITE,
FD_WINE_CONNECTED|FD_READ|FD_WRITE,
FD_CONNECT|FD_WINE_LISTENING);
TRACE("\tconnected %04lx\n", s);
return 0;
}
/***********************************************************************
* WSAConnect (WS2_32.30)
*/
int WINAPI WSAConnect( SOCKET s, const struct WS_sockaddr* name, int namelen,
LPWSABUF lpCallerData, LPWSABUF lpCalleeData,
LPQOS lpSQOS, LPQOS lpGQOS )
{
if ( lpCallerData || lpCalleeData || lpSQOS || lpGQOS )
FIXME("unsupported parameters!\n");
return WS_connect( s, name, namelen );
}
/***********************************************************************
* ConnectEx
*/
static BOOL WINAPI WS2_ConnectEx(SOCKET s, const struct WS_sockaddr* name, int namelen,
PVOID sendBuf, DWORD sendBufLen, LPDWORD sent, LPOVERLAPPED ov)
{
int fd, ret, status;
if (!ov)
{
SetLastError( ERROR_INVALID_PARAMETER );
return FALSE;
}
fd = get_sock_fd( s, FILE_READ_DATA, NULL );
if (fd == -1)
{
SetLastError( WSAENOTSOCK );
return FALSE;
}
TRACE("socket %04lx, ptr %p %s, length %d, sendptr %p, len %d, ov %p\n",
s, name, debugstr_sockaddr(name), namelen, sendBuf, sendBufLen, ov);
ret = is_fd_bound(fd, NULL, NULL);
if (ret <= 0)
{
SetLastError(ret == -1 ? wsaErrno() : WSAEINVAL);
release_sock_fd( s, fd );
return FALSE;
}
ret = do_connect(fd, name, namelen);
if (ret == 0)
{
WSABUF wsabuf;
_enable_event(SOCKET2HANDLE(s), FD_CONNECT|FD_READ|FD_WRITE,
FD_WINE_CONNECTED|FD_READ|FD_WRITE,
FD_CONNECT|FD_WINE_LISTENING);
wsabuf.len = sendBufLen;
wsabuf.buf = (char*) sendBuf;
/* WSASend takes care of completion if need be */
if (WSASend(s, &wsabuf, sendBuf ? 1 : 0, sent, 0, ov, NULL) != SOCKET_ERROR)
goto connection_success;
}
else if (ret == WSAEINPROGRESS)
{
struct ws2_async *wsa;
ULONG_PTR cvalue = (((ULONG_PTR)ov->hEvent & 1) == 0) ? (ULONG_PTR)ov : 0;
_enable_event(SOCKET2HANDLE(s), FD_CONNECT|FD_READ|FD_WRITE,
FD_CONNECT,
FD_WINE_CONNECTED|FD_WINE_LISTENING);
/* Indirectly call WSASend */
if (!(wsa = (struct ws2_async *)alloc_async_io( offsetof( struct ws2_async, iovec[1] ), WS2_async_send )))
{
SetLastError(WSAEFAULT);
}
else
{
IO_STATUS_BLOCK *iosb = (IO_STATUS_BLOCK *)ov;
iosb->u.Status = STATUS_PENDING;
iosb->Information = 0;
wsa->hSocket = SOCKET2HANDLE(s);
wsa->addr = NULL;
wsa->addrlen.val = 0;
wsa->flags = 0;
wsa->lpFlags = &wsa->flags;
wsa->control = NULL;
wsa->n_iovecs = sendBuf ? 1 : 0;
wsa->first_iovec = 0;
wsa->completion_func = NULL;
wsa->iovec[0].iov_base = sendBuf;
wsa->iovec[0].iov_len = sendBufLen;
status = register_async( ASYNC_TYPE_WRITE, wsa->hSocket, &wsa->io, ov->hEvent,
NULL, (void *)cvalue, iosb );
if (status != STATUS_PENDING) HeapFree(GetProcessHeap(), 0, wsa);
/* If the connect already failed */
if (status == STATUS_PIPE_DISCONNECTED)
{
ov->Internal = sock_error_to_ntstatus( get_sock_error( s, FD_CONNECT_BIT ));
ov->InternalHigh = 0;
if (cvalue) WS_AddCompletion( s, cvalue, ov->Internal, ov->InternalHigh, FALSE );
if (ov->hEvent) NtSetEvent( ov->hEvent, NULL );
status = STATUS_PENDING;
}
SetLastError( NtStatusToWSAError(status) );
}
}
else
{
SetLastError(ret);
}
release_sock_fd( s, fd );
return FALSE;
connection_success:
release_sock_fd( s, fd );
return TRUE;
}
/***********************************************************************
* DisconnectEx
*/
static BOOL WINAPI WS2_DisconnectEx( SOCKET s, LPOVERLAPPED ov, DWORD flags, DWORD reserved )
{
TRACE( "socket %04lx, ov %p, flags 0x%x, reserved 0x%x\n", s, ov, flags, reserved );
if (flags & TF_REUSE_SOCKET)
FIXME( "Reusing socket not supported yet\n" );
if (ov)
{
ov->Internal = STATUS_PENDING;
ov->InternalHigh = 0;
}
return !WS_shutdown( s, SD_BOTH );
}
/***********************************************************************
* getpeername (WS2_32.5)
*/
int WINAPI WS_getpeername(SOCKET s, struct WS_sockaddr *name, int *namelen)
{
int fd;
int res;
TRACE("socket %04lx, ptr %p, len %08x\n", s, name, namelen ? *namelen : 0);
fd = get_sock_fd( s, 0, NULL );
res = SOCKET_ERROR;
if (fd != -1)
{
union generic_unix_sockaddr uaddr;
socklen_t uaddrlen = sizeof(uaddr);
if (getpeername(fd, &uaddr.addr, &uaddrlen) == 0)
{
if (!name || !namelen)
SetLastError(WSAEFAULT);
else if (ws_sockaddr_u2ws(&uaddr.addr, name, namelen) != 0)
/* The buffer was too small */
SetLastError(WSAEFAULT);
else
{
res = 0;
TRACE("=> %s\n", debugstr_sockaddr(name));
}
}
else
SetLastError(wsaErrno());
release_sock_fd( s, fd );
}
return res;
}
/* When binding to an UDP address with filter support the getsockname call on the socket
* will always return 0.0.0.0 instead of the filtered interface address. This function
* checks if the socket is interface-bound on UDP and return the correct address.
* This is required because applications often do a bind() with port zero followed by a
* getsockname() to retrieve the port and address acquired.
*/
static void interface_bind_check(int fd, struct sockaddr_in *addr)
{
#if !defined(IP_BOUND_IF) && !defined(LINUX_BOUND_IF)
return;
#else
unsigned int ifindex;
int ret;
socklen_t len;
/* Check for IPv4, address 0.0.0.0 and UDP socket */
if (addr->sin_family != AF_INET || addr->sin_addr.s_addr != 0)
return;
if (_get_fd_type(fd) != SOCK_DGRAM)
return;
len = sizeof(ifindex);
#if defined(IP_BOUND_IF)
ret = getsockopt(fd, IPPROTO_IP, IP_BOUND_IF, &ifindex, &len);
#elif defined(LINUX_BOUND_IF)
ret = getsockopt(fd, IPPROTO_IP, IP_UNICAST_IF, &ifindex, &len);
if (!ret) ifindex = ntohl(ifindex);
#endif
if (!ret)
{
EnterCriticalSection(&cs_if_addr_cache);
if (ifindex < if_addr_cache_size)
addr->sin_addr.s_addr = if_addr_cache[ifindex];
else
ERR("No cache entry for ifindex %u.\n", ifindex);
LeaveCriticalSection(&cs_if_addr_cache);
}
#endif
}
/***********************************************************************
* getsockname (WS2_32.6)
*/
int WINAPI WS_getsockname(SOCKET s, struct WS_sockaddr *name, int *namelen)
{
int fd;
int res;
TRACE("socket %04lx, ptr %p, len %08x\n", s, name, namelen ? *namelen : 0);
/* Check if what we've received is valid. Should we use IsBadReadPtr? */
if( (name == NULL) || (namelen == NULL) )
{
SetLastError( WSAEFAULT );
return SOCKET_ERROR;
}
fd = get_sock_fd( s, 0, NULL );
res = SOCKET_ERROR;
if (fd != -1)
{
union generic_unix_sockaddr uaddr;
socklen_t uaddrlen;
int bound = is_fd_bound(fd, &uaddr, &uaddrlen);
if (bound <= 0)
{
SetLastError(bound == -1 ? wsaErrno() : WSAEINVAL);
}
else if (ws_sockaddr_u2ws(&uaddr.addr, name, namelen) != 0)
{
/* The buffer was too small */
SetLastError(WSAEFAULT);
}
else
{
interface_bind_check(fd, (struct sockaddr_in*) &uaddr);
if (ws_sockaddr_u2ws(&uaddr.addr, name, namelen) != 0)
{
/* The buffer was too small */
SetLastError(WSAEFAULT);
}
else
{
res = 0;
TRACE("=> %s\n", debugstr_sockaddr(name));
}
}
release_sock_fd( s, fd );
}
return res;
}
/***********************************************************************
* getsockopt (WS2_32.7)
*/
INT WINAPI WS_getsockopt(SOCKET s, INT level,
INT optname, char *optval, INT *optlen)
{
int fd;
INT ret = 0;
TRACE("(socket %04lx, %s, optval %s, optlen %p (%d))\n", s,
debugstr_sockopt(level, optname), debugstr_optval(optval, 0),
optlen, optlen ? *optlen : 0);
switch(level)
{
case WS_SOL_SOCKET:
{
switch(optname)
{
/* Handle common cases. The special cases are below, sorted
* alphabetically */
case WS_SO_BROADCAST:
case WS_SO_DEBUG:
case WS_SO_KEEPALIVE:
case WS_SO_OOBINLINE:
case WS_SO_RCVBUF:
case WS_SO_REUSEADDR:
case WS_SO_SNDBUF:
if ( (fd = get_sock_fd( s, 0, NULL )) == -1)
return SOCKET_ERROR;
convert_sockopt(&level, &optname);
if (getsockopt(fd, level, optname, optval, (socklen_t *)optlen) != 0 )
{
SetLastError(wsaErrno());
ret = SOCKET_ERROR;
}
release_sock_fd( s, fd );
return ret;
case WS_SO_ACCEPTCONN:
if ( (fd = get_sock_fd( s, 0, NULL )) == -1)
return SOCKET_ERROR;
if (getsockopt(fd, SOL_SOCKET, SO_ACCEPTCONN, optval, (socklen_t *)optlen) != 0 )
{
SetLastError(wsaErrno());
ret = SOCKET_ERROR;
}
else
{
/* BSD returns != 0 while Windows return exact == 1 */
if (*(int *)optval) *(int *)optval = 1;
}
release_sock_fd( s, fd );
return ret;
case WS_SO_BSP_STATE:
{
int req_size, addr_size;
WSAPROTOCOL_INFOW infow;
CSADDR_INFO *csinfo;
ret = ws_protocol_info(s, TRUE, &infow, &addr_size);
if (ret)
{
if (infow.iAddressFamily == WS_AF_INET)
addr_size = sizeof(struct sockaddr_in);
else if (infow.iAddressFamily == WS_AF_INET6)
addr_size = sizeof(struct sockaddr_in6);
else
{
FIXME("Family %d is unsupported for SO_BSP_STATE\n", infow.iAddressFamily);
SetLastError(WSAEAFNOSUPPORT);
return SOCKET_ERROR;
}
req_size = sizeof(CSADDR_INFO) + addr_size * 2;
if (*optlen < req_size)
{
ret = 0;
SetLastError(WSAEFAULT);
}
else
{
union generic_unix_sockaddr uaddr;
socklen_t uaddrlen;
if ( (fd = get_sock_fd( s, 0, NULL )) == -1)
return SOCKET_ERROR;
csinfo = (CSADDR_INFO*) optval;
/* Check if the sock is bound */
if (is_fd_bound(fd, &uaddr, &uaddrlen) == 1)
{
csinfo->LocalAddr.lpSockaddr =
(LPSOCKADDR) (optval + sizeof(CSADDR_INFO));
ws_sockaddr_u2ws(&uaddr.addr, csinfo->LocalAddr.lpSockaddr, &addr_size);
csinfo->LocalAddr.iSockaddrLength = addr_size;
}
else
{
csinfo->LocalAddr.lpSockaddr = NULL;
csinfo->LocalAddr.iSockaddrLength = 0;
}
/* Check if the sock is connected */
if (!getpeername(fd, &uaddr.addr, &uaddrlen) &&
is_sockaddr_bound(&uaddr.addr, uaddrlen))
{
csinfo->RemoteAddr.lpSockaddr =
(LPSOCKADDR) (optval + sizeof(CSADDR_INFO) + addr_size);
ws_sockaddr_u2ws(&uaddr.addr, csinfo->RemoteAddr.lpSockaddr, &addr_size);
csinfo->RemoteAddr.iSockaddrLength = addr_size;
}
else
{
csinfo->RemoteAddr.lpSockaddr = NULL;
csinfo->RemoteAddr.iSockaddrLength = 0;
}
csinfo->iSocketType = infow.iSocketType;
csinfo->iProtocol = infow.iProtocol;
release_sock_fd( s, fd );
}
}
return ret ? 0 : SOCKET_ERROR;
}
case WS_SO_DONTLINGER:
{
struct linger lingval;
socklen_t len = sizeof(struct linger);
if (!optlen || *optlen < sizeof(BOOL)|| !optval)
{
SetLastError(WSAEFAULT);
return SOCKET_ERROR;
}
if ( (fd = get_sock_fd( s, 0, NULL )) == -1)
return SOCKET_ERROR;
if (getsockopt(fd, SOL_SOCKET, SO_LINGER, &lingval, &len) != 0 )
{
SetLastError(wsaErrno());
ret = SOCKET_ERROR;
}
else
{
*(BOOL *)optval = !lingval.l_onoff;
*optlen = sizeof(BOOL);
}
release_sock_fd( s, fd );
return ret;
}
case WS_SO_CONNECT_TIME:
{
static int pretendtime = 0;
struct WS_sockaddr addr;
int len = sizeof(addr);
if (!optlen || *optlen < sizeof(DWORD) || !optval)
{
SetLastError(WSAEFAULT);
return SOCKET_ERROR;
}
if (WS_getpeername(s, &addr, &len) == SOCKET_ERROR)
*(DWORD *)optval = ~0u;
else
{
if (!pretendtime) FIXME("WS_SO_CONNECT_TIME - faking results\n");
*(DWORD *)optval = pretendtime++;
}
*optlen = sizeof(DWORD);
return ret;
}
/* As mentioned in setsockopt, Windows ignores this, so we
* always return true here */
case WS_SO_DONTROUTE:
if (!optlen || *optlen < sizeof(BOOL) || !optval)
{
SetLastError(WSAEFAULT);
return SOCKET_ERROR;
}
*(BOOL *)optval = TRUE;
*optlen = sizeof(BOOL);
return 0;
case WS_SO_ERROR:
{
if ( (fd = get_sock_fd( s, 0, NULL )) == -1)
return SOCKET_ERROR;
if (getsockopt(fd, SOL_SOCKET, SO_ERROR, optval, (socklen_t *)optlen) != 0 )
{
SetLastError(wsaErrno());
ret = SOCKET_ERROR;
}
release_sock_fd( s, fd );
/* The wineserver may have swallowed the error before us */
if (!ret && *(int*) optval == 0)
{
int i, events[FD_MAX_EVENTS];
_get_sock_errors(s, events);
for (i = 0; i < FD_MAX_EVENTS; i++)
{
if(events[i])
{
TRACE("returning SO_ERROR %d from wine server\n", events[i]);
*(int*) optval = events[i];
break;
}
}
}
return ret;
}
case WS_SO_LINGER:
{
struct linger lingval;
socklen_t len = sizeof(struct linger);
/* struct linger and LINGER have different sizes */
if (!optlen || *optlen < sizeof(LINGER) || !optval)
{
SetLastError(WSAEFAULT);
return SOCKET_ERROR;
}
if ( (fd = get_sock_fd( s, 0, NULL )) == -1)
return SOCKET_ERROR;
if (_get_fd_type(fd) == SOCK_DGRAM)
{
SetLastError(WSAENOPROTOOPT);
ret = SOCKET_ERROR;
}
else if (getsockopt(fd, SOL_SOCKET, SO_LINGER, &lingval, &len) != 0)
{
SetLastError(wsaErrno());
ret = SOCKET_ERROR;
}
else
{
((LINGER *)optval)->l_onoff = lingval.l_onoff;
((LINGER *)optval)->l_linger = lingval.l_linger;
*optlen = sizeof(struct linger);
}
release_sock_fd( s, fd );
return ret;
}
case WS_SO_MAX_MSG_SIZE:
if (!optlen || *optlen < sizeof(int) || !optval)
{
SetLastError(WSAEFAULT);
return SOCKET_ERROR;
}
TRACE("getting global SO_MAX_MSG_SIZE = 65507\n");
*(int *)optval = 65507;
*optlen = sizeof(int);
return 0;
/* SO_OPENTYPE does not require a valid socket handle. */
case WS_SO_OPENTYPE:
if (!optlen || *optlen < sizeof(int) || !optval)
{
SetLastError(WSAEFAULT);
return SOCKET_ERROR;
}
*(int *)optval = get_per_thread_data()->opentype;
*optlen = sizeof(int);
TRACE("getting global SO_OPENTYPE = 0x%x\n", *((int*)optval) );
return 0;
case WS_SO_PROTOCOL_INFOA:
case WS_SO_PROTOCOL_INFOW:
{
int size;
WSAPROTOCOL_INFOW infow;
ret = ws_protocol_info(s, optname == WS_SO_PROTOCOL_INFOW, &infow, &size);
if (ret)
{
if (!optlen || !optval || *optlen < size)
{
if(optlen) *optlen = size;
ret = 0;
SetLastError(WSAEFAULT);
}
else
memcpy(optval, &infow, size);
}
return ret ? 0 : SOCKET_ERROR;
}
case WS_SO_RCVTIMEO:
case WS_SO_SNDTIMEO:
{
INT64 timeout;
if (!optlen || *optlen < sizeof(int)|| !optval)
{
SetLastError(WSAEFAULT);
return SOCKET_ERROR;
}
if ( (fd = get_sock_fd( s, 0, NULL )) == -1)
return SOCKET_ERROR;
timeout = get_rcvsnd_timeo(fd, optname == WS_SO_RCVTIMEO);
*(int *)optval = timeout <= UINT_MAX ? timeout : UINT_MAX;
release_sock_fd( s, fd );
return ret;
}
case WS_SO_TYPE:
{
int sock_type;
if (!optlen || *optlen < sizeof(int) || !optval)
{
SetLastError(WSAEFAULT);
return SOCKET_ERROR;
}
if ( (fd = get_sock_fd( s, 0, NULL )) == -1)
return SOCKET_ERROR;
sock_type = _get_fd_type(fd);
if (sock_type == -1)
{
SetLastError(wsaErrno());
ret = SOCKET_ERROR;
}
else
(*(int *)optval) = convert_socktype_u2w(sock_type);
release_sock_fd( s, fd );
return ret;
}
default:
TRACE("Unknown SOL_SOCKET optname: 0x%08x\n", optname);
SetLastError(WSAENOPROTOOPT);
return SOCKET_ERROR;
} /* end switch(optname) */
}/* end case WS_SOL_SOCKET */
#ifdef HAS_IPX
case WS_NSPROTO_IPX:
{
struct WS_sockaddr_ipx addr;
IPX_ADDRESS_DATA *data;
int namelen;
switch(optname)
{
case WS_IPX_PTYPE:
if ((fd = get_sock_fd( s, 0, NULL )) == -1) return SOCKET_ERROR;
#ifdef SOL_IPX
if(getsockopt(fd, SOL_IPX, IPX_TYPE, optval, (socklen_t *)optlen) == -1)
{
ret = SOCKET_ERROR;
}
#else
{
struct ipx val;
socklen_t len=sizeof(struct ipx);
if(getsockopt(fd, 0, SO_DEFAULT_HEADERS, &val, &len) == -1 )
ret = SOCKET_ERROR;
else
*optval = (int)val.ipx_pt;
}
#endif
TRACE("ptype: %d (fd: %d)\n", *(int*)optval, fd);
release_sock_fd( s, fd );
return ret;
case WS_IPX_ADDRESS:
/*
* On a Win2000 system with one network card there are usually
* three ipx devices one with a speed of 28.8kbps, 10Mbps and 100Mbps.
* Using this call you can then retrieve info about this all.
* In case of Linux it is a bit different. Usually you have
* only "one" device active and further it is not possible to
* query things like the linkspeed.
*/
FIXME("IPX_ADDRESS\n");
namelen = sizeof(struct WS_sockaddr_ipx);
memset(&addr, 0, sizeof(struct WS_sockaddr_ipx));
WS_getsockname(s, (struct WS_sockaddr*)&addr, &namelen);
data = (IPX_ADDRESS_DATA*)optval;
memcpy(data->nodenum,addr.sa_nodenum,sizeof(data->nodenum));
memcpy(data->netnum,addr.sa_netnum,sizeof(data->netnum));
data->adapternum = 0;
data->wan = FALSE; /* We are not on a wan for now .. */
data->status = FALSE; /* Since we are not on a wan, the wan link isn't up */
data->maxpkt = 1467; /* This value is the default one, at least on Win2k/WinXP */
data->linkspeed = 100000; /* Set the line speed in 100bit/s to 10 Mbit;
* note 1MB = 1000kB in this case */
return 0;
case WS_IPX_MAX_ADAPTER_NUM:
FIXME("IPX_MAX_ADAPTER_NUM\n");
*(int*)optval = 1; /* As noted under IPX_ADDRESS we have just one card. */
return 0;
default:
FIXME("IPX optname:%x\n", optname);
return SOCKET_ERROR;
}/* end switch(optname) */
} /* end case WS_NSPROTO_IPX */
#endif
#ifdef HAS_IRDA
#define MAX_IRDA_DEVICES 10
case WS_SOL_IRLMP:
switch(optname)
{
case WS_IRLMP_ENUMDEVICES:
{
char buf[sizeof(struct irda_device_list) +
(MAX_IRDA_DEVICES - 1) * sizeof(struct irda_device_info)];
int res;
socklen_t len = sizeof(buf);
if ( (fd = get_sock_fd( s, 0, NULL )) == -1)
return SOCKET_ERROR;
res = getsockopt( fd, SOL_IRLMP, IRLMP_ENUMDEVICES, buf, &len );
release_sock_fd( s, fd );
if (res < 0)
{
SetLastError(wsaErrno());
return SOCKET_ERROR;
}
else
{
struct irda_device_list *src = (struct irda_device_list *)buf;
DEVICELIST *dst = (DEVICELIST *)optval;
INT needed = sizeof(DEVICELIST);
unsigned int i;
if (src->len > 0)
needed += (src->len - 1) * sizeof(IRDA_DEVICE_INFO);
if (*optlen < needed)
{
SetLastError(WSAEFAULT);
return SOCKET_ERROR;
}
*optlen = needed;
TRACE("IRLMP_ENUMDEVICES: %d devices found:\n", src->len);
dst->numDevice = src->len;
for (i = 0; i < src->len; i++)
{
TRACE("saddr = %08x, daddr = %08x, info = %s, hints = %02x%02x\n",
src->dev[i].saddr, src->dev[i].daddr,
src->dev[i].info, src->dev[i].hints[0],
src->dev[i].hints[1]);
memcpy( dst->Device[i].irdaDeviceID,
&src->dev[i].daddr,
sizeof(dst->Device[i].irdaDeviceID) ) ;
memcpy( dst->Device[i].irdaDeviceName,
src->dev[i].info,
sizeof(dst->Device[i].irdaDeviceName) ) ;
memcpy( &dst->Device[i].irdaDeviceHints1,
&src->dev[i].hints[0],
sizeof(dst->Device[i].irdaDeviceHints1) ) ;
memcpy( &dst->Device[i].irdaDeviceHints2,
&src->dev[i].hints[1],
sizeof(dst->Device[i].irdaDeviceHints2) ) ;
dst->Device[i].irdaCharSet = src->dev[i].charset;
}
return 0;
}
}
default:
FIXME("IrDA optname:0x%x\n", optname);
return SOCKET_ERROR;
}
break; /* case WS_SOL_IRLMP */
#undef MAX_IRDA_DEVICES
#endif
/* Levels WS_IPPROTO_TCP and WS_IPPROTO_IP convert directly */
case WS_IPPROTO_TCP:
switch(optname)
{
case WS_TCP_NODELAY:
if ( (fd = get_sock_fd( s, 0, NULL )) == -1)
return SOCKET_ERROR;
convert_sockopt(&level, &optname);
if (getsockopt(fd, level, optname, optval, (socklen_t *)optlen) != 0 )
{
SetLastError(wsaErrno());
ret = SOCKET_ERROR;
}
release_sock_fd( s, fd );
return ret;
}
FIXME("Unknown IPPROTO_TCP optname 0x%08x\n", optname);
return SOCKET_ERROR;
case WS_IPPROTO_IP:
switch(optname)
{
case WS_IP_ADD_MEMBERSHIP:
case WS_IP_DROP_MEMBERSHIP:
#ifdef IP_HDRINCL
case WS_IP_HDRINCL:
#endif
case WS_IP_MULTICAST_IF:
case WS_IP_MULTICAST_LOOP:
case WS_IP_MULTICAST_TTL:
case WS_IP_OPTIONS:
#if defined(IP_PKTINFO) || defined(IP_RECVDSTADDR)
case WS_IP_PKTINFO:
#endif
case WS_IP_TOS:
case WS_IP_TTL:
#ifdef IP_UNICAST_IF
case WS_IP_UNICAST_IF:
#endif
if ( (fd = get_sock_fd( s, 0, NULL )) == -1)
return SOCKET_ERROR;
convert_sockopt(&level, &optname);
if (getsockopt(fd, level, optname, optval, (socklen_t *)optlen) != 0 )
{
SetLastError(wsaErrno());
ret = SOCKET_ERROR;
}
release_sock_fd( s, fd );
return ret;
case WS_IP_DONTFRAGMENT:
return get_dont_fragment(s, IPPROTO_IP, (BOOL *)optval) ? 0 : SOCKET_ERROR;
}
FIXME("Unknown IPPROTO_IP optname 0x%08x\n", optname);
return SOCKET_ERROR;
case WS_IPPROTO_IPV6:
switch(optname)
{
#ifdef IPV6_ADD_MEMBERSHIP
case WS_IPV6_ADD_MEMBERSHIP:
#endif
#ifdef IPV6_DROP_MEMBERSHIP
case WS_IPV6_DROP_MEMBERSHIP:
#endif
case WS_IPV6_MULTICAST_IF:
case WS_IPV6_MULTICAST_HOPS:
case WS_IPV6_MULTICAST_LOOP:
case WS_IPV6_UNICAST_HOPS:
case WS_IPV6_V6ONLY:
#ifdef IPV6_UNICAST_IF
case WS_IPV6_UNICAST_IF:
#endif
if ( (fd = get_sock_fd( s, 0, NULL )) == -1)
return SOCKET_ERROR;
convert_sockopt(&level, &optname);
if (getsockopt(fd, level, optname, optval, (socklen_t *)optlen) != 0 )
{
SetLastError(wsaErrno());
ret = SOCKET_ERROR;
}
release_sock_fd( s, fd );
return ret;
case WS_IPV6_DONTFRAG:
return get_dont_fragment(s, IPPROTO_IPV6, (BOOL *)optval) ? 0 : SOCKET_ERROR;
}
FIXME("Unknown IPPROTO_IPV6 optname 0x%08x\n", optname);
return SOCKET_ERROR;
default:
WARN("Unknown level: 0x%08x\n", level);
SetLastError(WSAEINVAL);
return SOCKET_ERROR;
} /* end switch(level) */
}
/***********************************************************************
* htonl (WS2_32.8)
*/
WS_u_long WINAPI WS_htonl(WS_u_long hostlong)
{
return htonl(hostlong);
}
/***********************************************************************
* htons (WS2_32.9)
*/
WS_u_short WINAPI WS_htons(WS_u_short hostshort)
{
return htons(hostshort);
}
/***********************************************************************
* WSAHtonl (WS2_32.46)
* From MSDN description of error codes, this function should also
* check if WinSock has been initialized and the socket is a valid
* socket. But why? This function only translates a host byte order
* u_long into a network byte order u_long...
*/
int WINAPI WSAHtonl(SOCKET s, WS_u_long hostlong, WS_u_long *lpnetlong)
{
if (lpnetlong)
{
*lpnetlong = htonl(hostlong);
return 0;
}
SetLastError(WSAEFAULT);
return SOCKET_ERROR;
}
/***********************************************************************
* WSAHtons (WS2_32.47)
* From MSDN description of error codes, this function should also
* check if WinSock has been initialized and the socket is a valid
* socket. But why? This function only translates a host byte order
* u_short into a network byte order u_short...
*/
int WINAPI WSAHtons(SOCKET s, WS_u_short hostshort, WS_u_short *lpnetshort)
{
if (lpnetshort)
{
*lpnetshort = htons(hostshort);
return 0;
}
SetLastError(WSAEFAULT);
return SOCKET_ERROR;
}
/***********************************************************************
* inet_addr (WS2_32.11)
*/
WS_u_long WINAPI WS_inet_addr(const char *cp)
{
if (!cp) return INADDR_NONE;
return inet_addr(cp);
}
/***********************************************************************
* ntohl (WS2_32.14)
*/
WS_u_long WINAPI WS_ntohl(WS_u_long netlong)
{
return ntohl(netlong);
}
/***********************************************************************
* ntohs (WS2_32.15)
*/
WS_u_short WINAPI WS_ntohs(WS_u_short netshort)
{
return ntohs(netshort);
}
/***********************************************************************
* inet_ntoa (WS2_32.12)
*/
char* WINAPI WS_inet_ntoa(struct WS_in_addr in)
{
unsigned int long_ip = ntohl(in.WS_s_addr);
struct per_thread_data *data = get_per_thread_data();
sprintf( data->ntoa_buffer, "%u.%u.%u.%u",
(long_ip >> 24) & 0xff,
(long_ip >> 16) & 0xff,
(long_ip >> 8) & 0xff,
long_ip & 0xff);
return data->ntoa_buffer;
}
static const char *debugstr_wsaioctl(DWORD code)
{
const char *name = NULL, *buf_type, *family;
#define IOCTL_NAME(x) case x: name = #x; break
switch (code)
{
IOCTL_NAME(WS_FIONBIO);
IOCTL_NAME(WS_FIONREAD);
IOCTL_NAME(WS_SIOCATMARK);
/* IOCTL_NAME(WS_SIO_ACQUIRE_PORT_RESERVATION); */
IOCTL_NAME(WS_SIO_ADDRESS_LIST_CHANGE);
IOCTL_NAME(WS_SIO_ADDRESS_LIST_QUERY);
IOCTL_NAME(WS_SIO_ASSOCIATE_HANDLE);
/* IOCTL_NAME(WS_SIO_ASSOCIATE_PORT_RESERVATION);
IOCTL_NAME(WS_SIO_BASE_HANDLE);
IOCTL_NAME(WS_SIO_BSP_HANDLE);
IOCTL_NAME(WS_SIO_BSP_HANDLE_SELECT);
IOCTL_NAME(WS_SIO_BSP_HANDLE_POLL);
IOCTL_NAME(WS_SIO_CHK_QOS); */
IOCTL_NAME(WS_SIO_ENABLE_CIRCULAR_QUEUEING);
IOCTL_NAME(WS_SIO_FIND_ROUTE);
IOCTL_NAME(WS_SIO_FLUSH);
IOCTL_NAME(WS_SIO_GET_BROADCAST_ADDRESS);
IOCTL_NAME(WS_SIO_GET_EXTENSION_FUNCTION_POINTER);
IOCTL_NAME(WS_SIO_GET_GROUP_QOS);
IOCTL_NAME(WS_SIO_GET_INTERFACE_LIST);
/* IOCTL_NAME(WS_SIO_GET_INTERFACE_LIST_EX); */
IOCTL_NAME(WS_SIO_GET_QOS);
/* IOCTL_NAME(WS_SIO_IDEAL_SEND_BACKLOG_CHANGE);
IOCTL_NAME(WS_SIO_IDEAL_SEND_BACKLOG_QUERY); */
IOCTL_NAME(WS_SIO_KEEPALIVE_VALS);
IOCTL_NAME(WS_SIO_MULTIPOINT_LOOPBACK);
IOCTL_NAME(WS_SIO_MULTICAST_SCOPE);
/* IOCTL_NAME(WS_SIO_QUERY_RSS_SCALABILITY_INFO);
IOCTL_NAME(WS_SIO_QUERY_WFP_ALE_ENDPOINT_HANDLE); */
IOCTL_NAME(WS_SIO_RCVALL);
IOCTL_NAME(WS_SIO_RCVALL_IGMPMCAST);
IOCTL_NAME(WS_SIO_RCVALL_MCAST);
/* IOCTL_NAME(WS_SIO_RELEASE_PORT_RESERVATION); */
IOCTL_NAME(WS_SIO_ROUTING_INTERFACE_CHANGE);
IOCTL_NAME(WS_SIO_ROUTING_INTERFACE_QUERY);
IOCTL_NAME(WS_SIO_SET_COMPATIBILITY_MODE);
IOCTL_NAME(WS_SIO_SET_GROUP_QOS);
IOCTL_NAME(WS_SIO_SET_QOS);
IOCTL_NAME(WS_SIO_TRANSLATE_HANDLE);
IOCTL_NAME(WS_SIO_UDP_CONNRESET);
}
#undef IOCTL_NAME
if (name)
return name + 3;
/* If this is not a known code split its bits */
switch(code & 0x18000000)
{
case WS_IOC_WS2:
family = "IOC_WS2";
break;
case WS_IOC_PROTOCOL:
family = "IOC_PROTOCOL";
break;
case WS_IOC_VENDOR:
family = "IOC_VENDOR";
break;
default: /* WS_IOC_UNIX */
{
BYTE size = (code >> 16) & WS_IOCPARM_MASK;
char x = (code & 0xff00) >> 8;
BYTE y = code & 0xff;
char args[14];
switch (code & (WS_IOC_VOID|WS_IOC_INOUT))
{
case WS_IOC_VOID:
buf_type = "_IO";
sprintf(args, "%d, %d", x, y);
break;
case WS_IOC_IN:
buf_type = "_IOW";
sprintf(args, "'%c', %d, %d", x, y, size);
break;
case WS_IOC_OUT:
buf_type = "_IOR";
sprintf(args, "'%c', %d, %d", x, y, size);
break;
default:
buf_type = "?";
sprintf(args, "'%c', %d, %d", x, y, size);
break;
}
return wine_dbg_sprintf("%s(%s)", buf_type, args);
}
}
/* We are different from WS_IOC_UNIX. */
switch (code & (WS_IOC_VOID|WS_IOC_INOUT))
{
case WS_IOC_VOID:
buf_type = "_WSAIO";
break;
case WS_IOC_INOUT:
buf_type = "_WSAIORW";
break;
case WS_IOC_IN:
buf_type = "_WSAIOW";
break;
case WS_IOC_OUT:
buf_type = "_WSAIOR";
break;
default:
buf_type = "?";
break;
}
return wine_dbg_sprintf("%s(%s, %d)", buf_type, family,
(USHORT)(code & 0xffff));
}
/* do an ioctl call through the server */
static DWORD server_ioctl_sock( SOCKET s, DWORD code, LPVOID in_buff, DWORD in_size,
LPVOID out_buff, DWORD out_size, LPDWORD ret_size,
LPWSAOVERLAPPED overlapped,
LPWSAOVERLAPPED_COMPLETION_ROUTINE completion )
{
HANDLE event = overlapped ? overlapped->hEvent : 0;
HANDLE handle = SOCKET2HANDLE( s );
struct ws2_async *wsa = NULL;
IO_STATUS_BLOCK *io = (PIO_STATUS_BLOCK)overlapped, iosb;
void *cvalue = NULL;
NTSTATUS status;
if (completion)
{
if (!(wsa = (struct ws2_async *)alloc_async_io( sizeof(*wsa), NULL )))
return WSA_NOT_ENOUGH_MEMORY;
wsa->hSocket = handle;
wsa->user_overlapped = overlapped;
wsa->completion_func = completion;
if (!io) io = &wsa->local_iosb;
cvalue = wsa;
}
else if (!io)
io = &iosb;
else if (!((ULONG_PTR)overlapped->hEvent & 1))
cvalue = overlapped;
status = NtDeviceIoControlFile( handle, event, wsa ? ws2_async_apc : NULL, cvalue, io, code,
in_buff, in_size, out_buff, out_size );
if (status == STATUS_NOT_SUPPORTED)
{
FIXME("Unsupported ioctl %x (device=%x access=%x func=%x method=%x)\n",
code, code >> 16, (code >> 14) & 3, (code >> 2) & 0xfff, code & 3);
}
else if (status == STATUS_SUCCESS)
*ret_size = io->Information; /* "Information" is the size written to the output buffer */
if (status != STATUS_PENDING) RtlFreeHeap( GetProcessHeap(), 0, wsa );
return NtStatusToWSAError( status );
}
/**********************************************************************
* WSAIoctl (WS2_32.50)
*
*/
INT WINAPI WSAIoctl(SOCKET s, DWORD code, LPVOID in_buff, DWORD in_size, LPVOID out_buff,
DWORD out_size, LPDWORD ret_size, LPWSAOVERLAPPED overlapped,
LPWSAOVERLAPPED_COMPLETION_ROUTINE completion )
{
int fd;
DWORD status = 0, total = 0;
TRACE("%04lx, %s, %p, %d, %p, %d, %p, %p, %p\n",
s, debugstr_wsaioctl(code), in_buff, in_size, out_buff, out_size, ret_size, overlapped, completion);
switch (code)
{
case WS_FIONBIO:
if (in_size != sizeof(WS_u_long) || IS_INTRESOURCE(in_buff))
{
SetLastError(WSAEFAULT);
return SOCKET_ERROR;
}
TRACE("-> FIONBIO (%x)\n", *(WS_u_long*)in_buff);
if (_get_sock_mask(s))
{
/* AsyncSelect()'ed sockets are always nonblocking */
if (!*(WS_u_long *)in_buff) status = WSAEINVAL;
break;
}
if (*(WS_u_long *)in_buff)
_enable_event(SOCKET2HANDLE(s), 0, FD_WINE_NONBLOCKING, 0);
else
_enable_event(SOCKET2HANDLE(s), 0, 0, FD_WINE_NONBLOCKING);
break;
case WS_FIONREAD:
{
#if defined(linux)
int listening = 0;
socklen_t len = sizeof(listening);
#endif
if (out_size != sizeof(WS_u_long) || IS_INTRESOURCE(out_buff))
{
SetLastError(WSAEFAULT);
return SOCKET_ERROR;
}
if ((fd = get_sock_fd( s, 0, NULL )) == -1) return SOCKET_ERROR;
#if defined(linux)
/* On Linux, FIONREAD on listening socket always fails (see tcp(7)).
However, it succeeds on native. */
if (!getsockopt( fd, SOL_SOCKET, SO_ACCEPTCONN, &listening, &len ) && listening)
(*(WS_u_long *) out_buff) = 0;
else
#endif
if (ioctl(fd, FIONREAD, out_buff ) == -1)
status = wsaErrno();
release_sock_fd( s, fd );
break;
}
case WS_SIOCATMARK:
{
unsigned int oob = 0, atmark = 0;
socklen_t oobsize = sizeof(int);
if (out_size != sizeof(WS_u_long) || IS_INTRESOURCE(out_buff))
{
SetLastError(WSAEFAULT);
return SOCKET_ERROR;
}
if ((fd = get_sock_fd( s, 0, NULL )) == -1) return SOCKET_ERROR;
/* SO_OOBINLINE sockets must always return TRUE to SIOCATMARK */
if ((getsockopt(fd, SOL_SOCKET, SO_OOBINLINE, &oob, &oobsize ) == -1)
|| (!oob && ioctl(fd, SIOCATMARK, &atmark ) == -1))
status = wsaErrno();
else
{
/* The SIOCATMARK value read from ioctl() is reversed
* because BSD returns TRUE if it's in the OOB mark
* while Windows returns TRUE if there are NO OOB bytes.
*/
(*(WS_u_long *) out_buff) = oob || !atmark;
}
release_sock_fd( s, fd );
break;
}
case WS_FIOASYNC:
WARN("Warning: WS1.1 shouldn't be using async I/O\n");
SetLastError(WSAEINVAL);
return SOCKET_ERROR;
case WS_SIO_GET_INTERFACE_LIST:
{
INTERFACE_INFO* intArray = out_buff;
DWORD size, numInt = 0, apiReturn;
TRACE("-> SIO_GET_INTERFACE_LIST request\n");
if (!out_buff || !ret_size)
{
SetLastError(WSAEFAULT);
return SOCKET_ERROR;
}
fd = get_sock_fd( s, 0, NULL );
if (fd == -1) return SOCKET_ERROR;
apiReturn = GetAdaptersInfo(NULL, &size);
if (apiReturn == ERROR_BUFFER_OVERFLOW)
{
PIP_ADAPTER_INFO table = HeapAlloc(GetProcessHeap(),0,size);
if (table)
{
if (GetAdaptersInfo(table, &size) == NO_ERROR)
{
PIP_ADAPTER_INFO ptr;
for (ptr = table, numInt = 0; ptr; ptr = ptr->Next)
{
unsigned int addr, mask, bcast;
struct ifreq ifInfo;
/* Skip interfaces without an IPv4 address. */
if (ptr->IpAddressList.IpAddress.String[0] == '\0')
continue;
if ((numInt + 1)*sizeof(INTERFACE_INFO)/sizeof(IP_ADAPTER_INFO) > out_size)
{
WARN("Buffer too small = %u, out_size = %u\n", numInt + 1, out_size);
status = WSAEFAULT;
break;
}
/* Socket Status Flags */
lstrcpynA(ifInfo.ifr_name, ptr->AdapterName, IFNAMSIZ);
if (ioctl(fd, SIOCGIFFLAGS, &ifInfo) < 0)
{
ERR("Error obtaining status flags for socket!\n");
status = WSAEINVAL;
break;
}
else
{
/* set flags; the values of IFF_* are not the same
under Linux and Windows, therefore must generate
new flags */
intArray->iiFlags = 0;
if (ifInfo.ifr_flags & IFF_BROADCAST)
intArray->iiFlags |= WS_IFF_BROADCAST;
#ifdef IFF_POINTOPOINT
if (ifInfo.ifr_flags & IFF_POINTOPOINT)
intArray->iiFlags |= WS_IFF_POINTTOPOINT;
#endif
if (ifInfo.ifr_flags & IFF_LOOPBACK)
intArray->iiFlags |= WS_IFF_LOOPBACK;
if (ifInfo.ifr_flags & IFF_UP)
intArray->iiFlags |= WS_IFF_UP;
if (ifInfo.ifr_flags & IFF_MULTICAST)
intArray->iiFlags |= WS_IFF_MULTICAST;
}
addr = inet_addr(ptr->IpAddressList.IpAddress.String);
mask = inet_addr(ptr->IpAddressList.IpMask.String);
bcast = addr | ~mask;
intArray->iiAddress.AddressIn.sin_family = WS_AF_INET;
intArray->iiAddress.AddressIn.sin_port = 0;
intArray->iiAddress.AddressIn.sin_addr.WS_s_addr = addr;
intArray->iiNetmask.AddressIn.sin_family = WS_AF_INET;
intArray->iiNetmask.AddressIn.sin_port = 0;
intArray->iiNetmask.AddressIn.sin_addr.WS_s_addr = mask;
intArray->iiBroadcastAddress.AddressIn.sin_family = WS_AF_INET;
intArray->iiBroadcastAddress.AddressIn.sin_port = 0;
intArray->iiBroadcastAddress.AddressIn.sin_addr.WS_s_addr = bcast;
intArray++;
numInt++;
}
}
else
{
ERR("Unable to get interface table!\n");
status = WSAEINVAL;
}
HeapFree(GetProcessHeap(),0,table);
}
else status = WSAEINVAL;
}
else if (apiReturn != ERROR_NO_DATA)
{
ERR("Unable to get interface table!\n");
status = WSAEINVAL;
}
/* Calculate the size of the array being returned */
total = sizeof(INTERFACE_INFO) * numInt;
release_sock_fd( s, fd );
break;
}
case WS_SIO_ADDRESS_LIST_QUERY:
{
DWORD size;
TRACE("-> SIO_ADDRESS_LIST_QUERY request\n");
if (!ret_size)
{
SetLastError(WSAEFAULT);
return SOCKET_ERROR;
}
if (out_size && out_size < FIELD_OFFSET(SOCKET_ADDRESS_LIST, Address[0]))
{
*ret_size = 0;
SetLastError(WSAEINVAL);
return SOCKET_ERROR;
}
if (GetAdaptersInfo(NULL, &size) == ERROR_BUFFER_OVERFLOW)
{
IP_ADAPTER_INFO *p, *table = HeapAlloc(GetProcessHeap(), 0, size);
SOCKET_ADDRESS_LIST *sa_list;
SOCKADDR_IN *sockaddr;
SOCKET_ADDRESS *sa;
unsigned int i;
DWORD num;
if (!table || GetAdaptersInfo(table, &size))
{
HeapFree(GetProcessHeap(), 0, table);
status = WSAEINVAL;
break;
}
for (p = table, num = 0; p; p = p->Next)
if (p->IpAddressList.IpAddress.String[0]) num++;
total = FIELD_OFFSET(SOCKET_ADDRESS_LIST, Address[num]) + num * sizeof(*sockaddr);
if (total > out_size || !out_buff)
{
*ret_size = total;
HeapFree(GetProcessHeap(), 0, table);
status = WSAEFAULT;
break;
}
sa_list = out_buff;
sa = sa_list->Address;
sockaddr = (SOCKADDR_IN *)&sa[num];
sa_list->iAddressCount = num;
for (p = table, i = 0; p; p = p->Next)
{
if (!p->IpAddressList.IpAddress.String[0]) continue;
sa[i].lpSockaddr = (SOCKADDR *)&sockaddr[i];
sa[i].iSockaddrLength = sizeof(SOCKADDR);
sockaddr[i].sin_family = WS_AF_INET;
sockaddr[i].sin_port = 0;
sockaddr[i].sin_addr.WS_s_addr = inet_addr(p->IpAddressList.IpAddress.String);
i++;
}
HeapFree(GetProcessHeap(), 0, table);
}
else
{
WARN("unable to get IP address list\n");
status = WSAEINVAL;
}
break;
}
case WS_SIO_FLUSH:
FIXME("SIO_FLUSH: stub.\n");
break;
case WS_SIO_GET_EXTENSION_FUNCTION_POINTER:
{
#define EXTENSION_FUNCTION(x, y) { x, y, #y },
static const struct
{
GUID guid;
void *func_ptr;
const char *name;
} guid_funcs[] = {
EXTENSION_FUNCTION(WSAID_CONNECTEX, WS2_ConnectEx)
EXTENSION_FUNCTION(WSAID_DISCONNECTEX, WS2_DisconnectEx)
EXTENSION_FUNCTION(WSAID_ACCEPTEX, WS2_AcceptEx)
EXTENSION_FUNCTION(WSAID_GETACCEPTEXSOCKADDRS, WS2_GetAcceptExSockaddrs)
EXTENSION_FUNCTION(WSAID_TRANSMITFILE, WS2_TransmitFile)
/* EXTENSION_FUNCTION(WSAID_TRANSMITPACKETS, WS2_TransmitPackets) */
EXTENSION_FUNCTION(WSAID_WSARECVMSG, WS2_WSARecvMsg)
EXTENSION_FUNCTION(WSAID_WSASENDMSG, WSASendMsg)
};
#undef EXTENSION_FUNCTION
BOOL found = FALSE;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(guid_funcs); i++)
{
if (IsEqualGUID(&guid_funcs[i].guid, in_buff))
{
found = TRUE;
break;
}
}
if (found)
{
TRACE("-> got %s\n", guid_funcs[i].name);
*(void **)out_buff = guid_funcs[i].func_ptr;
total = sizeof(void *);
break;
}
FIXME("SIO_GET_EXTENSION_FUNCTION_POINTER %s: stub\n", debugstr_guid(in_buff));
status = WSAEOPNOTSUPP;
break;
}
case WS_SIO_KEEPALIVE_VALS:
{
struct tcp_keepalive *k;
int keepalive, keepidle, keepintvl;
if (!in_buff || in_size < sizeof(struct tcp_keepalive))
{
SetLastError(WSAEFAULT);
return SOCKET_ERROR;
}
k = in_buff;
keepalive = k->onoff ? 1 : 0;
keepidle = max( 1, (k->keepalivetime + 500) / 1000 );
keepintvl = max( 1, (k->keepaliveinterval + 500) / 1000 );
TRACE("onoff: %d, keepalivetime: %d, keepaliveinterval: %d\n", keepalive, keepidle, keepintvl);
fd = get_sock_fd(s, 0, NULL);
if (setsockopt(fd, SOL_SOCKET, SO_KEEPALIVE, (void *)&keepalive, sizeof(int)) == -1)
status = WSAEINVAL;
#if defined(TCP_KEEPIDLE) || defined(TCP_KEEPINTVL)
/* these values need to be set only if SO_KEEPALIVE is enabled */
else if(keepalive)
{
#ifndef TCP_KEEPIDLE
FIXME("ignoring keepalive timeout\n");
#else
if (setsockopt(fd, IPPROTO_TCP, TCP_KEEPIDLE, (void *)&keepidle, sizeof(int)) == -1)
status = WSAEINVAL;
else
#endif
#ifdef TCP_KEEPINTVL
if (setsockopt(fd, IPPROTO_TCP, TCP_KEEPINTVL, (void *)&keepintvl, sizeof(int)) == -1)
status = WSAEINVAL;
#else
FIXME("ignoring keepalive interval\n");
#endif
}
#else
else
FIXME("ignoring keepalive interval and timeout\n");
#endif
release_sock_fd(s, fd);
break;
}
case WS_SIO_ROUTING_INTERFACE_QUERY:
{
struct WS_sockaddr *daddr = (struct WS_sockaddr *)in_buff;
struct WS_sockaddr_in *daddr_in = (struct WS_sockaddr_in *)daddr;
struct WS_sockaddr_in *saddr_in = out_buff;
MIB_IPFORWARDROW row;
PMIB_IPADDRTABLE ipAddrTable = NULL;
DWORD size, i, found_index;
TRACE("-> WS_SIO_ROUTING_INTERFACE_QUERY request\n");
if (!in_buff || in_size < sizeof(struct WS_sockaddr) ||
!out_buff || out_size < sizeof(struct WS_sockaddr_in) || !ret_size)
{
SetLastError(WSAEFAULT);
return SOCKET_ERROR;
}
if (daddr->sa_family != WS_AF_INET)
{
FIXME("unsupported address family %d\n", daddr->sa_family);
status = WSAEAFNOSUPPORT;
break;
}
if (GetBestRoute(daddr_in->sin_addr.S_un.S_addr, 0, &row) != NOERROR ||
GetIpAddrTable(NULL, &size, FALSE) != ERROR_INSUFFICIENT_BUFFER)
{
status = WSAEFAULT;
break;
}
ipAddrTable = HeapAlloc(GetProcessHeap(), 0, size);
if (GetIpAddrTable(ipAddrTable, &size, FALSE))
{
HeapFree(GetProcessHeap(), 0, ipAddrTable);
status = WSAEFAULT;
break;
}
for (i = 0, found_index = ipAddrTable->dwNumEntries;
i < ipAddrTable->dwNumEntries; i++)
{
if (ipAddrTable->table[i].dwIndex == row.dwForwardIfIndex)
found_index = i;
}
if (found_index == ipAddrTable->dwNumEntries)
{
ERR("no matching IP address for interface %d\n",
row.dwForwardIfIndex);
HeapFree(GetProcessHeap(), 0, ipAddrTable);
status = WSAEFAULT;
break;
}
saddr_in->sin_family = WS_AF_INET;
saddr_in->sin_addr.S_un.S_addr = ipAddrTable->table[found_index].dwAddr;
saddr_in->sin_port = 0;
total = sizeof(struct WS_sockaddr_in);
HeapFree(GetProcessHeap(), 0, ipAddrTable);
break;
}
case WS_SIO_SET_COMPATIBILITY_MODE:
TRACE("WS_SIO_SET_COMPATIBILITY_MODE ignored\n");
status = WSAEOPNOTSUPP;
break;
case WS_SIO_UDP_CONNRESET:
FIXME("WS_SIO_UDP_CONNRESET stub\n");
break;
case 0x667e: /* Netscape tries hard to use bogus ioctl 0x667e */
SetLastError(WSAEOPNOTSUPP);
return SOCKET_ERROR;
default:
status = WSAEOPNOTSUPP;
break;
}
if (status == WSAEOPNOTSUPP)
{
status = server_ioctl_sock(s, code, in_buff, in_size, out_buff, out_size, &total,
overlapped, completion);
if (status != WSAEOPNOTSUPP)
{
if (status == 0 || status == WSA_IO_PENDING)
TRACE("-> %s request\n", debugstr_wsaioctl(code));
else
ERR("-> %s request failed with status 0x%x\n", debugstr_wsaioctl(code), status);
/* overlapped and completion operations will be handled by the server */
completion = NULL;
overlapped = NULL;
}
else
FIXME("unsupported WS_IOCTL cmd (%s)\n", debugstr_wsaioctl(code));
}
if (completion)
{
FIXME( "completion routine %p not supported\n", completion );
}
else if (overlapped)
{
ULONG_PTR cvalue = (overlapped && ((ULONG_PTR)overlapped->hEvent & 1) == 0) ? (ULONG_PTR)overlapped : 0;
overlapped->Internal = sock_error_to_ntstatus( status );
overlapped->InternalHigh = total;
if (cvalue) WS_AddCompletion( HANDLE2SOCKET(s), cvalue, overlapped->Internal, total, FALSE );
if (overlapped->hEvent) NtSetEvent( overlapped->hEvent, NULL );
}
if (!status)
{
if (ret_size) *ret_size = total;
return 0;
}
SetLastError( status );
return SOCKET_ERROR;
}
/***********************************************************************
* ioctlsocket (WS2_32.10)
*/
int WINAPI WS_ioctlsocket(SOCKET s, LONG cmd, WS_u_long *argp)
{
DWORD ret_size;
return WSAIoctl( s, cmd, argp, sizeof(WS_u_long), argp, sizeof(WS_u_long), &ret_size, NULL, NULL );
}
/***********************************************************************
* listen (WS2_32.13)
*/
int WINAPI WS_listen(SOCKET s, int backlog)
{
int fd = get_sock_fd( s, FILE_READ_DATA, NULL ), ret = SOCKET_ERROR;
TRACE("socket %04lx, backlog %d\n", s, backlog);
if (fd != -1)
{
int bound = is_fd_bound(fd, NULL, NULL);
if (bound <= 0)
{
SetLastError(bound == -1 ? wsaErrno() : WSAEINVAL);
}
else if (listen(fd, backlog) == 0)
{
_enable_event(SOCKET2HANDLE(s), FD_ACCEPT,
FD_WINE_LISTENING,
FD_CONNECT|FD_WINE_CONNECTED);
ret = 0;
}
else
SetLastError(wsaErrno());
release_sock_fd( s, fd );
}
else
SetLastError(WSAENOTSOCK);
return ret;
}
/***********************************************************************
* recv (WS2_32.16)
*/
int WINAPI WS_recv(SOCKET s, char *buf, int len, int flags)
{
DWORD n, dwFlags = flags;
WSABUF wsabuf;
wsabuf.len = len;
wsabuf.buf = buf;
if ( WS2_recv_base(s, &wsabuf, 1, &n, &dwFlags, NULL, NULL, NULL, NULL, NULL) == SOCKET_ERROR )
return SOCKET_ERROR;
else
return n;
}
/***********************************************************************
* recvfrom (WS2_32.17)
*/
int WINAPI WS_recvfrom(SOCKET s, char *buf, INT len, int flags,
struct WS_sockaddr *from, int *fromlen)
{
DWORD n, dwFlags = flags;
WSABUF wsabuf;
wsabuf.len = len;
wsabuf.buf = buf;
if ( WS2_recv_base(s, &wsabuf, 1, &n, &dwFlags, from, fromlen, NULL, NULL, NULL) == SOCKET_ERROR )
return SOCKET_ERROR;
else
return n;
}
/* allocate a poll array for the corresponding fd sets */
static struct pollfd *fd_sets_to_poll( const WS_fd_set *readfds, const WS_fd_set *writefds,
const WS_fd_set *exceptfds, int *count_ptr )
{
unsigned int i, j = 0, count = 0;
struct pollfd *fds;
struct per_thread_data *ptb = get_per_thread_data();
if (readfds) count += readfds->fd_count;
if (writefds) count += writefds->fd_count;
if (exceptfds) count += exceptfds->fd_count;
*count_ptr = count;
if (!count)
{
SetLastError(WSAEINVAL);
return NULL;
}
/* check if the cache can hold all descriptors, if not do the resizing */
if (ptb->fd_count < count)
{
if (!(fds = HeapAlloc(GetProcessHeap(), 0, count * sizeof(fds[0]))))
{
SetLastError( ERROR_NOT_ENOUGH_MEMORY );
return NULL;
}
HeapFree(GetProcessHeap(), 0, ptb->fd_cache);
ptb->fd_cache = fds;
ptb->fd_count = count;
}
else
fds = ptb->fd_cache;
if (readfds)
for (i = 0; i < readfds->fd_count; i++, j++)
{
fds[j].fd = get_sock_fd( readfds->fd_array[i], FILE_READ_DATA, NULL );
if (fds[j].fd == -1) goto failed;
fds[j].revents = 0;
if (is_fd_bound(fds[j].fd, NULL, NULL) == 1)
{
fds[j].events = POLLIN;
}
else
{
release_sock_fd( readfds->fd_array[i], fds[j].fd );
fds[j].fd = -1;
fds[j].events = 0;
}
}
if (writefds)
for (i = 0; i < writefds->fd_count; i++, j++)
{
fds[j].fd = get_sock_fd( writefds->fd_array[i], FILE_WRITE_DATA, NULL );
if (fds[j].fd == -1) goto failed;
fds[j].revents = 0;
if (is_fd_bound(fds[j].fd, NULL, NULL) == 1 ||
_get_fd_type(fds[j].fd) == SOCK_DGRAM)
{
fds[j].events = POLLOUT;
}
else
{
release_sock_fd( writefds->fd_array[i], fds[j].fd );
fds[j].fd = -1;
fds[j].events = 0;
}
}
if (exceptfds)
for (i = 0; i < exceptfds->fd_count; i++, j++)
{
fds[j].fd = get_sock_fd( exceptfds->fd_array[i], 0, NULL );
if (fds[j].fd == -1) goto failed;
fds[j].revents = 0;
if (is_fd_bound(fds[j].fd, NULL, NULL) == 1)
{
int oob_inlined = 0;
socklen_t olen = sizeof(oob_inlined);
fds[j].events = POLLHUP;
/* Check if we need to test for urgent data or not */
getsockopt(fds[j].fd, SOL_SOCKET, SO_OOBINLINE, (char*) &oob_inlined, &olen);
if (!oob_inlined)
fds[j].events |= POLLPRI;
}
else
{
release_sock_fd( exceptfds->fd_array[i], fds[j].fd );
fds[j].fd = -1;
fds[j].events = 0;
}
}
return fds;
failed:
count = j;
j = 0;
if (readfds)
for (i = 0; i < readfds->fd_count && j < count; i++, j++)
if (fds[j].fd != -1) release_sock_fd( readfds->fd_array[i], fds[j].fd );
if (writefds)
for (i = 0; i < writefds->fd_count && j < count; i++, j++)
if (fds[j].fd != -1) release_sock_fd( writefds->fd_array[i], fds[j].fd );
if (exceptfds)
for (i = 0; i < exceptfds->fd_count && j < count; i++, j++)
if (fds[j].fd != -1) release_sock_fd( exceptfds->fd_array[i], fds[j].fd );
return NULL;
}
/* release the file descriptor obtained in fd_sets_to_poll */
/* must be called with the original fd_set arrays, before calling get_poll_results */
static void release_poll_fds( const WS_fd_set *readfds, const WS_fd_set *writefds,
const WS_fd_set *exceptfds, struct pollfd *fds )
{
unsigned int i, j = 0;
if (readfds)
{
for (i = 0; i < readfds->fd_count; i++, j++)
if (fds[j].fd != -1) release_sock_fd( readfds->fd_array[i], fds[j].fd );
}
if (writefds)
{
for (i = 0; i < writefds->fd_count; i++, j++)
if (fds[j].fd != -1) release_sock_fd( writefds->fd_array[i], fds[j].fd );
}
if (exceptfds)
{
for (i = 0; i < exceptfds->fd_count; i++, j++)
{
if (fds[j].fd == -1) continue;
release_sock_fd( exceptfds->fd_array[i], fds[j].fd );
if (fds[j].revents & POLLHUP)
{
int fd = get_sock_fd( exceptfds->fd_array[i], 0, NULL );
if (fd != -1)
release_sock_fd( exceptfds->fd_array[i], fd );
else
fds[j].revents = 0;
}
}
}
}
static int do_poll(struct pollfd *pollfds, int count, int timeout)
{
struct timeval tv1, tv2;
int ret, torig = timeout;
if (timeout > 0) gettimeofday( &tv1, 0 );
while ((ret = poll( pollfds, count, timeout )) < 0)
{
if (errno != EINTR) break;
if (timeout < 0) continue;
if (timeout == 0) return 0;
gettimeofday( &tv2, 0 );
tv2.tv_sec -= tv1.tv_sec;
tv2.tv_usec -= tv1.tv_usec;
if (tv2.tv_usec < 0)
{
tv2.tv_usec += 1000000;
tv2.tv_sec -= 1;
}
timeout = torig - (tv2.tv_sec * 1000) - (tv2.tv_usec + 999) / 1000;
if (timeout <= 0) return 0;
}
return ret;
}
/* map the poll results back into the Windows fd sets */
static int get_poll_results( WS_fd_set *readfds, WS_fd_set *writefds, WS_fd_set *exceptfds,
const struct pollfd *fds )
{
const struct pollfd *poll_writefds = fds + (readfds ? readfds->fd_count : 0);
const struct pollfd *poll_exceptfds = poll_writefds + (writefds ? writefds->fd_count : 0);
unsigned int i, k, total = 0;
if (readfds)
{
for (i = k = 0; i < readfds->fd_count; i++)
{
if (fds[i].revents ||
(readfds == writefds && (poll_writefds[i].revents & POLLOUT) && !(poll_writefds[i].revents & POLLHUP)) ||
(readfds == exceptfds && poll_exceptfds[i].revents))
readfds->fd_array[k++] = readfds->fd_array[i];
}
readfds->fd_count = k;
total += k;
}
if (writefds && writefds != readfds)
{
for (i = k = 0; i < writefds->fd_count; i++)
{
if (((poll_writefds[i].revents & POLLOUT) && !(poll_writefds[i].revents & POLLHUP)) ||
(writefds == exceptfds && poll_exceptfds[i].revents))
writefds->fd_array[k++] = writefds->fd_array[i];
}
writefds->fd_count = k;
total += k;
}
if (exceptfds && exceptfds != readfds && exceptfds != writefds)
{
for (i = k = 0; i < exceptfds->fd_count; i++)
if (poll_exceptfds[i].revents) exceptfds->fd_array[k++] = exceptfds->fd_array[i];
exceptfds->fd_count = k;
total += k;
}
return total;
}
/***********************************************************************
* select (WS2_32.18)
*/
int WINAPI WS_select(int nfds, WS_fd_set *ws_readfds,
WS_fd_set *ws_writefds, WS_fd_set *ws_exceptfds,
const struct WS_timeval* ws_timeout)
{
struct pollfd *pollfds;
int count, ret, timeout = -1;
TRACE("read %p, write %p, excp %p timeout %p\n",
ws_readfds, ws_writefds, ws_exceptfds, ws_timeout);
if (!(pollfds = fd_sets_to_poll( ws_readfds, ws_writefds, ws_exceptfds, &count )))
return SOCKET_ERROR;
if (ws_timeout)
timeout = (ws_timeout->tv_sec * 1000) + (ws_timeout->tv_usec + 999) / 1000;
ret = do_poll(pollfds, count, timeout);
release_poll_fds( ws_readfds, ws_writefds, ws_exceptfds, pollfds );
if (ret == -1) SetLastError(wsaErrno());
else ret = get_poll_results( ws_readfds, ws_writefds, ws_exceptfds, pollfds );
return ret;
}
/***********************************************************************
* WSAPoll
*/
int WINAPI WSAPoll(WSAPOLLFD *wfds, ULONG count, int timeout)
{
int i, ret;
struct pollfd *ufds;
if (!count)
{
SetLastError(WSAEINVAL);
return SOCKET_ERROR;
}
if (!wfds)
{
SetLastError(WSAEFAULT);
return SOCKET_ERROR;
}
if (!(ufds = HeapAlloc(GetProcessHeap(), 0, count * sizeof(ufds[0]))))
{
SetLastError(WSAENOBUFS);
return SOCKET_ERROR;
}
for (i = 0; i < count; i++)
{
ufds[i].fd = get_sock_fd(wfds[i].fd, 0, NULL);
ufds[i].events = convert_poll_w2u(wfds[i].events);
ufds[i].revents = 0;
}
ret = do_poll(ufds, count, timeout);
for (i = 0; i < count; i++)
{
if (ufds[i].fd != -1)
{
release_sock_fd(wfds[i].fd, ufds[i].fd);
if (ufds[i].revents & POLLHUP)
{
/* Check if the socket still exists */
int fd = get_sock_fd(wfds[i].fd, 0, NULL);
if (fd != -1)
{
wfds[i].revents = WS_POLLHUP;
release_sock_fd(wfds[i].fd, fd);
}
else
wfds[i].revents = WS_POLLNVAL;
}
else
wfds[i].revents = convert_poll_u2w(ufds[i].revents);
}
else
wfds[i].revents = WS_POLLNVAL;
}
HeapFree(GetProcessHeap(), 0, ufds);
return ret;
}
/* helper to send completion messages for client-only i/o operation case */
static void WS_AddCompletion( SOCKET sock, ULONG_PTR CompletionValue, NTSTATUS CompletionStatus,
ULONG Information, BOOL async )
{
SERVER_START_REQ( add_fd_completion )
{
req->handle = wine_server_obj_handle( SOCKET2HANDLE(sock) );
req->cvalue = CompletionValue;
req->status = CompletionStatus;
req->information = Information;
req->async = async;
wine_server_call( req );
}
SERVER_END_REQ;
}
/***********************************************************************
* send (WS2_32.19)
*/
int WINAPI WS_send(SOCKET s, const char *buf, int len, int flags)
{
DWORD n;
WSABUF wsabuf;
wsabuf.len = len;
wsabuf.buf = (char*) buf;
if ( WS2_sendto( s, &wsabuf, 1, &n, flags, NULL, 0, NULL, NULL) == SOCKET_ERROR )
return SOCKET_ERROR;
else
return n;
}
/***********************************************************************
* WSASend (WS2_32.72)
*/
INT WINAPI WSASend( SOCKET s, LPWSABUF lpBuffers, DWORD dwBufferCount,
LPDWORD lpNumberOfBytesSent, DWORD dwFlags,
LPWSAOVERLAPPED lpOverlapped,
LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine )
{
return WS2_sendto( s, lpBuffers, dwBufferCount, lpNumberOfBytesSent, dwFlags,
NULL, 0, lpOverlapped, lpCompletionRoutine );
}
/***********************************************************************
* WSASendDisconnect (WS2_32.73)
*/
INT WINAPI WSASendDisconnect( SOCKET s, LPWSABUF lpBuffers )
{
return WS_shutdown( s, SD_SEND );
}
static int WS2_sendto( SOCKET s, LPWSABUF lpBuffers, DWORD dwBufferCount,
LPDWORD lpNumberOfBytesSent, DWORD dwFlags,
const struct WS_sockaddr *to, int tolen,
LPWSAOVERLAPPED lpOverlapped,
LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine )
{
unsigned int i, options;
int n, fd, err, overlapped, flags;
struct ws2_async *wsa = NULL, localwsa;
int totalLength = 0;
DWORD bytes_sent;
BOOL is_blocking;
TRACE("socket %04lx, wsabuf %p, nbufs %d, flags %d, to %p, tolen %d, ovl %p, func %p\n",
s, lpBuffers, dwBufferCount, dwFlags,
to, tolen, lpOverlapped, lpCompletionRoutine);
fd = get_sock_fd( s, FILE_WRITE_DATA, &options );
TRACE( "fd=%d, options=%x\n", fd, options );
if ( fd == -1 ) return SOCKET_ERROR;
if (!lpOverlapped && !lpNumberOfBytesSent)
{
err = WSAEFAULT;
goto error;
}
overlapped = (lpOverlapped || lpCompletionRoutine) &&
!(options & (FILE_SYNCHRONOUS_IO_ALERT | FILE_SYNCHRONOUS_IO_NONALERT));
if (overlapped || dwBufferCount > 1)
{
if (!(wsa = (struct ws2_async *)alloc_async_io( offsetof(struct ws2_async, iovec[dwBufferCount]),
WS2_async_send )))
{
err = WSAEFAULT;
goto error;
}
}
else
wsa = &localwsa;
wsa->hSocket = SOCKET2HANDLE(s);
wsa->addr = (struct WS_sockaddr *)to;
wsa->addrlen.val = tolen;
wsa->flags = dwFlags;
wsa->lpFlags = &wsa->flags;
wsa->control = NULL;
wsa->n_iovecs = dwBufferCount;
wsa->first_iovec = 0;
for ( i = 0; i < dwBufferCount; i++ )
{
wsa->iovec[i].iov_base = lpBuffers[i].buf;
wsa->iovec[i].iov_len = lpBuffers[i].len;
totalLength += lpBuffers[i].len;
}
flags = convert_flags(dwFlags);
n = WS2_send( fd, wsa, flags );
if (n == -1 && errno != EAGAIN)
{
err = wsaErrno();
goto error;
}
if (overlapped)
{
IO_STATUS_BLOCK *iosb = lpOverlapped ? (IO_STATUS_BLOCK *)lpOverlapped : &wsa->local_iosb;
ULONG_PTR cvalue = (lpOverlapped && ((ULONG_PTR)lpOverlapped->hEvent & 1) == 0) ? (ULONG_PTR)lpOverlapped : 0;
wsa->user_overlapped = lpOverlapped;
wsa->completion_func = lpCompletionRoutine;
release_sock_fd( s, fd );
if (n == -1 || n < totalLength)
{
iosb->u.Status = STATUS_PENDING;
iosb->Information = n == -1 ? 0 : n;
if (wsa->completion_func)
err = register_async( ASYNC_TYPE_WRITE, wsa->hSocket, &wsa->io, NULL,
ws2_async_apc, wsa, iosb );
else
err = register_async( ASYNC_TYPE_WRITE, wsa->hSocket, &wsa->io, lpOverlapped->hEvent,
NULL, (void *)cvalue, iosb );
/* Enable the event only after starting the async. The server will deliver it as soon as
the async is done. */
_enable_event(SOCKET2HANDLE(s), FD_WRITE, 0, 0);
if (err != STATUS_PENDING) HeapFree( GetProcessHeap(), 0, wsa );
SetLastError(NtStatusToWSAError( err ));
return SOCKET_ERROR;
}
iosb->u.Status = STATUS_SUCCESS;
iosb->Information = n;
if (lpNumberOfBytesSent) *lpNumberOfBytesSent = n;
if (!wsa->completion_func)
{
if (cvalue) WS_AddCompletion( s, cvalue, STATUS_SUCCESS, n, FALSE );
if (lpOverlapped->hEvent) SetEvent( lpOverlapped->hEvent );
HeapFree( GetProcessHeap(), 0, wsa );
}
else NtQueueApcThread( GetCurrentThread(), (PNTAPCFUNC)ws2_async_apc,
(ULONG_PTR)wsa, (ULONG_PTR)iosb, 0 );
SetLastError(ERROR_SUCCESS);
return 0;
}
if ((err = sock_is_blocking( s, &is_blocking ))) goto error;
if ( is_blocking )
{
/* On a blocking non-overlapped stream socket,
* sending blocks until the entire buffer is sent. */
DWORD timeout_start = GetTickCount();
bytes_sent = n == -1 ? 0 : n;
while (wsa->first_iovec < wsa->n_iovecs)
{
struct pollfd pfd;
int poll_timeout = -1;
INT64 timeout = get_rcvsnd_timeo(fd, FALSE);
if (timeout)
{
timeout -= GetTickCount() - timeout_start;
if (timeout < 0) poll_timeout = 0;
else poll_timeout = timeout <= INT_MAX ? timeout : INT_MAX;
}
pfd.fd = fd;
pfd.events = POLLOUT;
if (!poll_timeout || !poll( &pfd, 1, poll_timeout ))
{
err = WSAETIMEDOUT;
goto error; /* msdn says a timeout in send is fatal */
}
n = WS2_send( fd, wsa, flags );
if (n == -1 && errno != EAGAIN)
{
err = wsaErrno();
goto error;
}
if (n >= 0)
bytes_sent += n;
}
}
else /* non-blocking */
{
if (n < totalLength)
_enable_event(SOCKET2HANDLE(s), FD_WRITE, 0, 0);
if (n == -1)
{
err = WSAEWOULDBLOCK;
goto error;
}
bytes_sent = n;
}
TRACE(" -> %i bytes\n", bytes_sent);
if (lpNumberOfBytesSent) *lpNumberOfBytesSent = bytes_sent;
if (wsa != &localwsa) HeapFree( GetProcessHeap(), 0, wsa );
release_sock_fd( s, fd );
SetLastError(ERROR_SUCCESS);
return 0;
error:
if (wsa != &localwsa) HeapFree( GetProcessHeap(), 0, wsa );
release_sock_fd( s, fd );
WARN(" -> ERROR %d\n", err);
SetLastError(err);
return SOCKET_ERROR;
}
/***********************************************************************
* WSASendTo (WS2_32.74)
*/
INT WINAPI WSASendTo( SOCKET s, LPWSABUF lpBuffers, DWORD dwBufferCount,
LPDWORD lpNumberOfBytesSent, DWORD dwFlags,
const struct WS_sockaddr *to, int tolen,
LPWSAOVERLAPPED lpOverlapped,
LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine )
{
return WS2_sendto( s, lpBuffers, dwBufferCount,
lpNumberOfBytesSent, dwFlags,
to, tolen,
lpOverlapped, lpCompletionRoutine );
}
/***********************************************************************
* sendto (WS2_32.20)
*/
int WINAPI WS_sendto(SOCKET s, const char *buf, int len, int flags,
const struct WS_sockaddr *to, int tolen)
{
DWORD n;
WSABUF wsabuf;
wsabuf.len = len;
wsabuf.buf = (char*) buf;
if ( WS2_sendto(s, &wsabuf, 1, &n, flags, to, tolen, NULL, NULL) == SOCKET_ERROR )
return SOCKET_ERROR;
else
return n;
}
/***********************************************************************
* setsockopt (WS2_32.21)
*/
int WINAPI WS_setsockopt(SOCKET s, int level, int optname,
const char *optval, int optlen)
{
int fd;
int woptval;
struct linger linger;
struct timeval tval;
struct ip_mreq_source mreq_source;
TRACE("(socket %04lx, %s, optval %s, optlen %d)\n", s,
debugstr_sockopt(level, optname), debugstr_optval(optval, optlen),
optlen);
/* some broken apps pass the value directly instead of a pointer to it */
if(optlen && IS_INTRESOURCE(optval))
{
SetLastError(WSAEFAULT);
return SOCKET_ERROR;
}
switch(level)
{
case WS_SOL_SOCKET:
switch(optname)
{
/* Some options need some conversion before they can be sent to
* setsockopt. The conversions are done here, then they will fall through
* to the general case. Special options that are not passed to
* setsockopt follow below that.*/
case WS_SO_DONTLINGER:
if (!optval)
{
SetLastError(WSAEFAULT);
return SOCKET_ERROR;
}
linger.l_onoff = *(const int*)optval == 0;
linger.l_linger = 0;
level = SOL_SOCKET;
optname = SO_LINGER;
optval = (char*)&linger;
optlen = sizeof(struct linger);
break;
case WS_SO_LINGER:
if (!optval)
{
SetLastError(WSAEFAULT);
return SOCKET_ERROR;
}
linger.l_onoff = ((LINGER*)optval)->l_onoff;
linger.l_linger = ((LINGER*)optval)->l_linger;
level = SOL_SOCKET;
optname = SO_LINGER;
optval = (char*)&linger;
optlen = sizeof(struct linger);
break;
case WS_SO_SNDBUF:
if (!*(const int *)optval)
{
FIXME("SO_SNDBUF ignoring request to disable send buffering\n");
#ifdef __APPLE__
return 0;
#endif
}
convert_sockopt(&level, &optname);
break;
case WS_SO_RCVBUF:
if (*(const int*)optval < 2048)
{
WARN("SO_RCVBF for %d bytes is too small: ignored\n", *(const int*)optval );
return 0;
}
/* Fall through */
/* The options listed here don't need any special handling. Thanks to
* the conversion happening above, options from there will fall through
* to this, too.*/
case WS_SO_ACCEPTCONN:
case WS_SO_BROADCAST:
case WS_SO_ERROR:
case WS_SO_KEEPALIVE:
case WS_SO_OOBINLINE:
/* BSD socket SO_REUSEADDR is not 100% compatible to winsock semantics.
* however, using it the BSD way fixes bug 8513 and seems to be what
* most programmers assume, anyway */
case WS_SO_REUSEADDR:
case WS_SO_TYPE:
convert_sockopt(&level, &optname);
break;
/* SO_DEBUG is a privileged operation, ignore it. */
case WS_SO_DEBUG:
TRACE("Ignoring SO_DEBUG\n");
return 0;
/* For some reason the game GrandPrixLegends does set SO_DONTROUTE on its
* socket. According to MSDN, this option is silently ignored.*/
case WS_SO_DONTROUTE:
TRACE("Ignoring SO_DONTROUTE\n");
return 0;
/* Stops two sockets from being bound to the same port. Always happens
* on unix systems, so just drop it. */
case WS_SO_EXCLUSIVEADDRUSE:
TRACE("Ignoring SO_EXCLUSIVEADDRUSE, is always set.\n");
return 0;
/* After a ConnectEx call succeeds, the socket can't be used with half of the
* normal winsock functions on windows. We don't have that problem. */
case WS_SO_UPDATE_CONNECT_CONTEXT:
TRACE("Ignoring SO_UPDATE_CONNECT_CONTEXT, since our sockets are normal\n");
return 0;
/* After a AcceptEx call succeeds, the socket can't be used with half of the
* normal winsock functions on windows. We don't have that problem. */
case WS_SO_UPDATE_ACCEPT_CONTEXT:
TRACE("Ignoring SO_UPDATE_ACCEPT_CONTEXT, since our sockets are normal\n");
return 0;
/* SO_OPENTYPE does not require a valid socket handle. */
case WS_SO_OPENTYPE:
if (!optlen || optlen < sizeof(int) || !optval)
{
SetLastError(WSAEFAULT);
return SOCKET_ERROR;
}
get_per_thread_data()->opentype = *(const int *)optval;
TRACE("setting global SO_OPENTYPE = 0x%x\n", *((const int*)optval) );
return 0;
#ifdef SO_RCVTIMEO
case WS_SO_RCVTIMEO:
#endif
#ifdef SO_SNDTIMEO
case WS_SO_SNDTIMEO:
#endif
#if defined(SO_RCVTIMEO) || defined(SO_SNDTIMEO)
if (optval && optlen == sizeof(UINT32)) {
/* WinSock passes milliseconds instead of struct timeval */
tval.tv_usec = (*(const UINT32*)optval % 1000) * 1000;
tval.tv_sec = *(const UINT32*)optval / 1000;
/* min of 500 milliseconds */
if (tval.tv_sec == 0 && tval.tv_usec && tval.tv_usec < 500000)
tval.tv_usec = 500000;
optlen = sizeof(struct timeval);
optval = (char*)&tval;
} else if (optlen == sizeof(struct timeval)) {
WARN("SO_SND/RCVTIMEO for %d bytes: assuming unixism\n", optlen);
} else {
WARN("SO_SND/RCVTIMEO for %d bytes is weird: ignored\n", optlen);
return 0;
}
convert_sockopt(&level, &optname);
break;
#endif
case WS_SO_RANDOMIZE_PORT:
FIXME("Ignoring WS_SO_RANDOMIZE_PORT\n");
return 0;
case WS_SO_PORT_SCALABILITY:
FIXME("Ignoring WS_SO_PORT_SCALABILITY\n");
return 0;
case WS_SO_REUSE_UNICASTPORT:
FIXME("Ignoring WS_SO_REUSE_UNICASTPORT\n");
return 0;
case WS_SO_REUSE_MULTICASTPORT:
FIXME("Ignoring WS_SO_REUSE_MULTICASTPORT\n");
return 0;
default:
TRACE("Unknown SOL_SOCKET optname: 0x%08x\n", optname);
SetLastError(WSAENOPROTOOPT);
return SOCKET_ERROR;
}
break; /* case WS_SOL_SOCKET */
#ifdef HAS_IPX
case WS_NSPROTO_IPX:
switch(optname)
{
case WS_IPX_PTYPE:
return set_ipx_packettype(s, *(int*)optval);
case WS_IPX_FILTERPTYPE:
/* Sets the receive filter packet type, at the moment we don't support it */
FIXME("IPX_FILTERPTYPE: %x\n", *optval);
/* Returning 0 is better for now than returning a SOCKET_ERROR */
return 0;
default:
FIXME("opt_name:%x\n", optname);
return SOCKET_ERROR;
}
break; /* case WS_NSPROTO_IPX */
#endif
/* Levels WS_IPPROTO_TCP and WS_IPPROTO_IP convert directly */
case WS_IPPROTO_TCP:
switch(optname)
{
case WS_TCP_NODELAY:
convert_sockopt(&level, &optname);
break;
default:
FIXME("Unknown IPPROTO_TCP optname 0x%08x\n", optname);
return SOCKET_ERROR;
}
break;
case WS_IPPROTO_IP:
switch(optname)
{
case WS_IP_ADD_SOURCE_MEMBERSHIP:
case WS_IP_DROP_SOURCE_MEMBERSHIP:
case WS_IP_BLOCK_SOURCE:
case WS_IP_UNBLOCK_SOURCE:
{
WS_IP_MREQ_SOURCE* val = (void*)optval;
mreq_source.imr_interface.s_addr = val->imr_interface.S_un.S_addr;
mreq_source.imr_multiaddr.s_addr = val->imr_multiaddr.S_un.S_addr;
mreq_source.imr_sourceaddr.s_addr = val->imr_sourceaddr.S_un.S_addr;
optval = (char*)&mreq_source;
optlen = sizeof(mreq_source);
convert_sockopt(&level, &optname);
break;
}
case WS_IP_ADD_MEMBERSHIP:
case WS_IP_DROP_MEMBERSHIP:
#ifdef IP_HDRINCL
case WS_IP_HDRINCL:
#endif
case WS_IP_MULTICAST_IF:
case WS_IP_MULTICAST_LOOP:
case WS_IP_MULTICAST_TTL:
case WS_IP_OPTIONS:
#if defined(IP_PKTINFO) || defined(IP_RECVDSTADDR)
case WS_IP_PKTINFO:
#endif
case WS_IP_TOS:
case WS_IP_TTL:
#ifdef IP_UNICAST_IF
case WS_IP_UNICAST_IF:
#endif
convert_sockopt(&level, &optname);
break;
case WS_IP_DONTFRAGMENT:
return set_dont_fragment(s, IPPROTO_IP, *(BOOL *)optval) ? 0 : SOCKET_ERROR;
default:
FIXME("Unknown IPPROTO_IP optname 0x%08x\n", optname);
return SOCKET_ERROR;
}
break;
case WS_IPPROTO_IPV6:
switch(optname)
{
#ifdef IPV6_ADD_MEMBERSHIP
case WS_IPV6_ADD_MEMBERSHIP:
#endif
#ifdef IPV6_DROP_MEMBERSHIP
case WS_IPV6_DROP_MEMBERSHIP:
#endif
case WS_IPV6_MULTICAST_IF:
case WS_IPV6_MULTICAST_HOPS:
case WS_IPV6_MULTICAST_LOOP:
case WS_IPV6_UNICAST_HOPS:
#ifdef IPV6_UNICAST_IF
case WS_IPV6_UNICAST_IF:
#endif
convert_sockopt(&level, &optname);
break;
case WS_IPV6_DONTFRAG:
return set_dont_fragment(s, IPPROTO_IPV6, *(BOOL *)optval) ? 0 : SOCKET_ERROR;
case WS_IPV6_PROTECTION_LEVEL:
FIXME("IPV6_PROTECTION_LEVEL is ignored!\n");
return 0;
case WS_IPV6_V6ONLY:
{
union generic_unix_sockaddr uaddr;
socklen_t uaddrlen;
int bound;
fd = get_sock_fd( s, 0, NULL );
if (fd == -1) return SOCKET_ERROR;
bound = is_fd_bound(fd, &uaddr, &uaddrlen);
release_sock_fd( s, fd );
if (bound == 0 && uaddr.addr.sa_family == AF_INET)
{
/* Changing IPV6_V6ONLY succeeds on AF_INET (IPv4) socket
* on Windows (with IPv6 support) if the socket is unbound.
* It is essentially a noop, though Windows does store the value
*/
WARN("Silently ignoring IPPROTO_IPV6+IPV6_V6ONLY on AF_INET socket\n");
return 0;
}
level = IPPROTO_IPV6;
optname = IPV6_V6ONLY;
break;
}
default:
FIXME("Unknown IPPROTO_IPV6 optname 0x%08x\n", optname);
return SOCKET_ERROR;
}
break;
default:
WARN("Unknown level: 0x%08x\n", level);
SetLastError(WSAEINVAL);
return SOCKET_ERROR;
} /* end switch(level) */
/* avoid endianness issues if argument is a 16-bit int */
if (optval && optlen < sizeof(int))
{
woptval= *((const INT16 *) optval);
optval= (char*) &woptval;
woptval&= (1 << optlen * 8) - 1;
optlen=sizeof(int);
}
fd = get_sock_fd( s, 0, NULL );
if (fd == -1) return SOCKET_ERROR;
if (setsockopt(fd, level, optname, optval, optlen) == 0)
{
#ifdef __APPLE__
if (level == SOL_SOCKET && optname == SO_REUSEADDR &&
setsockopt(fd, level, SO_REUSEPORT, optval, optlen) != 0)
{
SetLastError(wsaErrno());
release_sock_fd( s, fd );
return SOCKET_ERROR;
}
#endif
release_sock_fd( s, fd );
return 0;
}
TRACE("Setting socket error, %d\n", wsaErrno());
SetLastError(wsaErrno());
release_sock_fd( s, fd );
return SOCKET_ERROR;
}
/***********************************************************************
* shutdown (WS2_32.22)
*/
int WINAPI WS_shutdown(SOCKET s, int how)
{
int fd, err = WSAENOTSOCK;
unsigned int options = 0, clear_flags = 0;
fd = get_sock_fd( s, 0, &options );
TRACE("socket %04lx, how 0x%x, options 0x%x\n", s, how, options );
if (fd == -1)
return SOCKET_ERROR;
switch( how )
{
case SD_RECEIVE: /* drop receives */
clear_flags |= FD_READ;
break;
case SD_SEND: /* drop sends */
clear_flags |= FD_WRITE;
break;
case SD_BOTH: /* drop all */
clear_flags |= FD_READ|FD_WRITE;
/*fall through */
default:
clear_flags |= FD_WINE_LISTENING;
}
if (!(options & (FILE_SYNCHRONOUS_IO_ALERT | FILE_SYNCHRONOUS_IO_NONALERT)))
{
switch ( how )
{
case SD_RECEIVE:
err = WS2_register_async_shutdown( s, ASYNC_TYPE_READ );
break;
case SD_SEND:
err = WS2_register_async_shutdown( s, ASYNC_TYPE_WRITE );
break;
case SD_BOTH:
default:
err = WS2_register_async_shutdown( s, ASYNC_TYPE_READ );
if (!err) err = WS2_register_async_shutdown( s, ASYNC_TYPE_WRITE );
break;
}
if (err) goto error;
}
else /* non-overlapped mode */
{
if ( shutdown( fd, how ) )
{
err = wsaErrno();
goto error;
}
}
release_sock_fd( s, fd );
_enable_event( SOCKET2HANDLE(s), 0, 0, clear_flags );
if ( how > 1) WSAAsyncSelect( s, 0, 0, 0 );
return 0;
error:
release_sock_fd( s, fd );
_enable_event( SOCKET2HANDLE(s), 0, 0, clear_flags );
SetLastError( err );
return SOCKET_ERROR;
}
/***********************************************************************
* socket (WS2_32.23)
*/
SOCKET WINAPI WS_socket(int af, int type, int protocol)
{
TRACE("af=%d type=%d protocol=%d\n", af, type, protocol);
return WSASocketW( af, type, protocol, NULL, 0,
get_per_thread_data()->opentype ? 0 : WSA_FLAG_OVERLAPPED );
}
/***********************************************************************
* gethostbyaddr (WS2_32.51)
*/
struct WS_hostent* WINAPI WS_gethostbyaddr(const char *addr, int len, int type)
{
struct WS_hostent *retval = NULL;
struct hostent* host;
int unixtype = convert_af_w2u(type);
const char *paddr = addr;
unsigned long loopback;
#ifdef HAVE_LINUX_GETHOSTBYNAME_R_6
char *extrabuf;
int ebufsize = 1024;
struct hostent hostentry;
int locerr = ENOBUFS;
#endif
/* convert back the magic loopback address if necessary */
if (unixtype == AF_INET && len == 4 && !memcmp(addr, magic_loopback_addr, 4))
{
loopback = htonl(INADDR_LOOPBACK);
paddr = (char*) &loopback;
}
#ifdef HAVE_LINUX_GETHOSTBYNAME_R_6
host = NULL;
extrabuf=HeapAlloc(GetProcessHeap(),0,ebufsize) ;
while(extrabuf) {
int res = gethostbyaddr_r(paddr, len, unixtype,
&hostentry, extrabuf, ebufsize, &host, &locerr);
if (res != ERANGE) break;
ebufsize *=2;
extrabuf=HeapReAlloc(GetProcessHeap(),0,extrabuf,ebufsize) ;
}
if (host) retval = WS_dup_he(host);
else SetLastError((locerr < 0) ? wsaErrno() : wsaHerrno(locerr));
HeapFree(GetProcessHeap(),0,extrabuf);
#else
EnterCriticalSection( &csWSgetXXXbyYYY );
host = gethostbyaddr(paddr, len, unixtype);
if (host) retval = WS_dup_he(host);
else SetLastError((h_errno < 0) ? wsaErrno() : wsaHerrno(h_errno));
LeaveCriticalSection( &csWSgetXXXbyYYY );
#endif
TRACE("ptr %p, len %d, type %d ret %p\n", addr, len, type, retval);
return retval;
}
/***********************************************************************
* WS_compare_routes_by_metric_asc (INTERNAL)
*
* Comparison function for qsort(), for sorting two routes (struct route)
* by metric in ascending order.
*/
static int WS_compare_routes_by_metric_asc(const void *left, const void *right)
{
const struct route *a = left, *b = right;
if (a->default_route && b->default_route)
return a->default_route - b->default_route;
if (a->default_route && !b->default_route)
return -1;
if (b->default_route && !a->default_route)
return 1;
return a->metric - b->metric;
}
/***********************************************************************
* WS_get_local_ips (INTERNAL)
*
* Returns the list of local IP addresses by going through the network
* adapters and using the local routing table to sort the addresses
* from highest routing priority to lowest routing priority. This
* functionality is inferred from the description for obtaining local
* IP addresses given in the Knowledge Base Article Q160215.
*
* Please note that the returned hostent is only freed when the thread
* closes and is replaced if another hostent is requested.
*/
static struct WS_hostent* WS_get_local_ips( char *hostname )
{
int numroutes = 0, i, j, default_routes = 0;
DWORD n;
PIP_ADAPTER_INFO adapters = NULL, k;
struct WS_hostent *hostlist = NULL;
PMIB_IPFORWARDTABLE routes = NULL;
struct route *route_addrs = NULL;
DWORD adap_size, route_size;
/* Obtain the size of the adapter list and routing table, also allocate memory */
if (GetAdaptersInfo(NULL, &adap_size) != ERROR_BUFFER_OVERFLOW)
return NULL;
if (GetIpForwardTable(NULL, &route_size, FALSE) != ERROR_INSUFFICIENT_BUFFER)
return NULL;
adapters = HeapAlloc(GetProcessHeap(), 0, adap_size);
routes = HeapAlloc(GetProcessHeap(), 0, route_size);
if (adapters == NULL || routes == NULL)
goto cleanup;
/* Obtain the adapter list and the full routing table */
if (GetAdaptersInfo(adapters, &adap_size) != NO_ERROR)
goto cleanup;
if (GetIpForwardTable(routes, &route_size, FALSE) != NO_ERROR)
goto cleanup;
/* Store the interface associated with each route */
for (n = 0; n < routes->dwNumEntries; n++)
{
IF_INDEX ifindex;
DWORD ifmetric, ifdefault = 0;
BOOL exists = FALSE;
/* Check if this is a default route (there may be more than one) */
if (!routes->table[n].dwForwardDest)
ifdefault = ++default_routes;
else if (routes->table[n].u1.ForwardType != MIB_IPROUTE_TYPE_DIRECT)
continue;
ifindex = routes->table[n].dwForwardIfIndex;
ifmetric = routes->table[n].dwForwardMetric1;
/* Only store the lowest valued metric for an interface */
for (j = 0; j < numroutes; j++)
{
if (route_addrs[j].interface == ifindex)
{
if (route_addrs[j].metric > ifmetric)
route_addrs[j].metric = ifmetric;
exists = TRUE;
}
}
if (exists)
continue;
route_addrs = heap_realloc(route_addrs, (numroutes+1)*sizeof(struct route));
if (route_addrs == NULL)
goto cleanup; /* Memory allocation error, fail gracefully */
route_addrs[numroutes].interface = ifindex;
route_addrs[numroutes].metric = ifmetric;
route_addrs[numroutes].default_route = ifdefault;
/* If no IP is found in the next step (for whatever reason)
* then fall back to the magic loopback address.
*/
memcpy(&(route_addrs[numroutes].addr.s_addr), magic_loopback_addr, 4);
numroutes++;
}
if (numroutes == 0)
goto cleanup; /* No routes, fall back to the Magic IP */
/* Find the IP address associated with each found interface */
for (i = 0; i < numroutes; i++)
{
for (k = adapters; k != NULL; k = k->Next)
{
char *ip = k->IpAddressList.IpAddress.String;
if (route_addrs[i].interface == k->Index)
route_addrs[i].addr.s_addr = (in_addr_t) inet_addr(ip);
}
}
/* Allocate a hostent and enough memory for all the IPs,
* including the NULL at the end of the list.
*/
hostlist = WS_create_he(hostname, 1, 0, numroutes+1, sizeof(struct in_addr));
if (hostlist == NULL)
goto cleanup; /* Failed to allocate a hostent for the list of IPs */
hostlist->h_addr_list[numroutes] = NULL; /* NULL-terminate the address list */
hostlist->h_aliases[0] = NULL; /* NULL-terminate the alias list */
hostlist->h_addrtype = AF_INET;
hostlist->h_length = sizeof(struct in_addr); /* = 4 */
/* Reorder the entries before placing them in the host list. Windows expects
* the IP list in order from highest priority to lowest (the critical thing
* is that most applications expect the first IP to be the default route).
*/
if (numroutes > 1)
qsort(route_addrs, numroutes, sizeof(struct route), WS_compare_routes_by_metric_asc);
for (i = 0; i < numroutes; i++)
(*(struct in_addr *) hostlist->h_addr_list[i]) = route_addrs[i].addr;
/* Cleanup all allocated memory except the address list,
* the address list is used by the calling app.
*/
cleanup:
HeapFree(GetProcessHeap(), 0, route_addrs);
HeapFree(GetProcessHeap(), 0, adapters);
HeapFree(GetProcessHeap(), 0, routes);
return hostlist;
}
/***********************************************************************
* gethostbyname (WS2_32.52)
*/
struct WS_hostent* WINAPI WS_gethostbyname(const char* name)
{
struct WS_hostent *retval = NULL;
struct hostent* host;
#ifdef HAVE_LINUX_GETHOSTBYNAME_R_6
char *extrabuf;
int ebufsize=1024;
struct hostent hostentry;
int locerr = ENOBUFS;
#endif
char hostname[100];
if(!num_startup) {
SetLastError(WSANOTINITIALISED);
return NULL;
}
if( gethostname( hostname, 100) == -1) {
SetLastError(WSAENOBUFS); /* appropriate ? */
return retval;
}
if( !name || !name[0]) {
name = hostname;
}
/* If the hostname of the local machine is requested then return the
* complete list of local IP addresses */
if(strcmp(name, hostname) == 0)
retval = WS_get_local_ips(hostname);
/* If any other hostname was requested (or the routing table lookup failed)
* then return the IP found by the host OS */
if(retval == NULL)
{
#ifdef HAVE_LINUX_GETHOSTBYNAME_R_6
host = NULL;
extrabuf=HeapAlloc(GetProcessHeap(),0,ebufsize) ;
while(extrabuf) {
int res = gethostbyname_r(name, &hostentry, extrabuf, ebufsize, &host, &locerr);
if( res != ERANGE) break;
ebufsize *=2;
extrabuf=HeapReAlloc(GetProcessHeap(),0,extrabuf,ebufsize) ;
}
if (!host) SetLastError((locerr < 0) ? wsaErrno() : wsaHerrno(locerr));
#else
EnterCriticalSection( &csWSgetXXXbyYYY );
host = gethostbyname(name);
if (!host) SetLastError((h_errno < 0) ? wsaErrno() : wsaHerrno(h_errno));
#endif
if (host) retval = WS_dup_he(host);
#ifdef HAVE_LINUX_GETHOSTBYNAME_R_6
HeapFree(GetProcessHeap(),0,extrabuf);
#else
LeaveCriticalSection( &csWSgetXXXbyYYY );
#endif
}
if (retval && retval->h_addr_list[0][0] == 127 &&
strcmp(name, "localhost") != 0)
{
/* hostname != "localhost" but has loopback address. replace by our
* special address.*/
memcpy(retval->h_addr_list[0], magic_loopback_addr, 4);
}
TRACE( "%s ret %p\n", debugstr_a(name), retval );
return retval;
}
static const struct { int prot; const char *names[3]; } protocols[] =
{
{ 0, { "ip", "IP" }},
{ 1, { "icmp", "ICMP" }},
{ 2, { "igmp", "IGMP" }},
{ 3, { "ggp", "GGP" }},
{ 6, { "tcp", "TCP" }},
{ 8, { "egp", "EGP" }},
{ 9, { "igp", "IGP" }},
{ 12, { "pup", "PUP" }},
{ 17, { "udp", "UDP" }},
{ 20, { "hmp", "HMP" }},
{ 22, { "xns-idp", "XNS-IDP" }},
{ 27, { "rdp", "RDP" }},
{ 29, { "iso-tp4", "ISO-TP4" }},
{ 33, { "dccp", "DCCP" }},
{ 36, { "xtp", "XTP" }},
{ 37, { "ddp", "DDP" }},
{ 38, { "idpr-cmtp", "IDPR-CMTP" }},
{ 41, { "ipv6", "IPv6" }},
{ 43, { "ipv6-route", "IPv6-Route" }},
{ 44, { "ipv6-frag", "IPv6-Frag" }},
{ 45, { "idrp", "IDRP" }},
{ 46, { "rsvp", "RSVP" }},
{ 47, { "gre", "GRE" }},
{ 50, { "esp", "ESP" }},
{ 51, { "ah", "AH" }},
{ 57, { "skip", "SKIP" }},
{ 58, { "ipv6-icmp", "IPv6-ICMP" }},
{ 59, { "ipv6-nonxt", "IPv6-NoNxt" }},
{ 60, { "ipv6-opts", "IPv6-Opts" }},
{ 66, { "rvd", "RVD" }},
{ 73, { "rspf", "RSPF" }},
{ 81, { "vmtp", "VMTP" }},
{ 88, { "eigrp", "EIGRP" }},
{ 89, { "ospf", "OSPFIGP" }},
{ 93, { "ax.25", "AX.25" }},
{ 94, { "ipip", "IPIP" }},
{ 97, { "etherip", "ETHERIP" }},
{ 98, { "encap", "ENCAP" }},
{ 103, { "pim", "PIM" }},
{ 108, { "ipcomp", "IPCOMP" }},
{ 112, { "vrrp", "VRRP" }},
{ 115, { "l2tp", "L2TP" }},
{ 124, { "isis", "ISIS" }},
{ 132, { "sctp", "SCTP" }},
{ 133, { "fc", "FC" }},
{ 135, { "mobility-header", "Mobility-Header" }},
{ 136, { "udplite", "UDPLite" }},
{ 137, { "mpls-in-ip", "MPLS-in-IP" }},
{ 139, { "hip", "HIP" }},
{ 140, { "shim6", "Shim6" }},
{ 141, { "wesp", "WESP" }},
{ 142, { "rohc", "ROHC" }},
};
/***********************************************************************
* getprotobyname (WS2_32.53)
*/
struct WS_protoent* WINAPI WS_getprotobyname(const char* name)
{
struct WS_protoent* retval = NULL;
#ifdef HAVE_GETPROTOBYNAME
struct protoent* proto;
EnterCriticalSection( &csWSgetXXXbyYYY );
if( (proto = getprotobyname(name)) != NULL )
retval = WS_create_pe( proto->p_name, proto->p_aliases, proto->p_proto );
LeaveCriticalSection( &csWSgetXXXbyYYY );
#endif
if (!retval)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(protocols); i++)
{
if (_strnicmp( protocols[i].names[0], name, -1 )) continue;
retval = WS_create_pe( protocols[i].names[0], (char **)protocols[i].names + 1,
protocols[i].prot );
break;
}
}
if (!retval)
{
WARN( "protocol %s not found\n", debugstr_a(name) );
SetLastError(WSANO_DATA);
}
TRACE( "%s ret %p\n", debugstr_a(name), retval );
return retval;
}
/***********************************************************************
* getprotobynumber (WS2_32.54)
*/
struct WS_protoent* WINAPI WS_getprotobynumber(int number)
{
struct WS_protoent* retval = NULL;
#ifdef HAVE_GETPROTOBYNUMBER
struct protoent* proto;
EnterCriticalSection( &csWSgetXXXbyYYY );
if( (proto = getprotobynumber(number)) != NULL )
retval = WS_create_pe( proto->p_name, proto->p_aliases, proto->p_proto );
LeaveCriticalSection( &csWSgetXXXbyYYY );
#endif
if (!retval)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(protocols); i++)
{
if (protocols[i].prot != number) continue;
retval = WS_create_pe( protocols[i].names[0], (char **)protocols[i].names + 1,
protocols[i].prot );
break;
}
}
if (!retval)
{
WARN( "protocol %d not found\n", number );
SetLastError(WSANO_DATA);
}
TRACE("%i ret %p\n", number, retval);
return retval;
}
/***********************************************************************
* getservbyname (WS2_32.55)
*/
struct WS_servent* WINAPI WS_getservbyname(const char *name, const char *proto)
{
struct WS_servent* retval = NULL;
struct servent* serv;
char *name_str;
char *proto_str = NULL;
if (!(name_str = strdup_lower(name))) return NULL;
if (proto && *proto)
{
if (!(proto_str = strdup_lower(proto)))
{
HeapFree( GetProcessHeap(), 0, name_str );
return NULL;
}
}
EnterCriticalSection( &csWSgetXXXbyYYY );
serv = getservbyname(name_str, proto_str);
if( serv != NULL )
{
retval = WS_dup_se(serv);
}
else SetLastError(WSANO_DATA);
LeaveCriticalSection( &csWSgetXXXbyYYY );
HeapFree( GetProcessHeap(), 0, proto_str );
HeapFree( GetProcessHeap(), 0, name_str );
TRACE( "%s, %s ret %p\n", debugstr_a(name), debugstr_a(proto), retval );
return retval;
}
/***********************************************************************
* freeaddrinfo (WS2_32.@)
*/
void WINAPI WS_freeaddrinfo(struct WS_addrinfo *res)
{
while (res) {
struct WS_addrinfo *next;
HeapFree(GetProcessHeap(),0,res->ai_canonname);
HeapFree(GetProcessHeap(),0,res->ai_addr);
next = res->ai_next;
HeapFree(GetProcessHeap(),0,res);
res = next;
}
}
/* helper functions for getaddrinfo()/getnameinfo() */
static int convert_aiflag_w2u(int winflags) {
unsigned int i;
int unixflags = 0;
for (i = 0; i < ARRAY_SIZE(ws_aiflag_map); i++)
if (ws_aiflag_map[i][0] & winflags) {
unixflags |= ws_aiflag_map[i][1];
winflags &= ~ws_aiflag_map[i][0];
}
if (winflags)
FIXME("Unhandled windows AI_xxx flags 0x%x\n", winflags);
return unixflags;
}
static int convert_niflag_w2u(int winflags) {
unsigned int i;
int unixflags = 0;
for (i = 0; i < ARRAY_SIZE(ws_niflag_map); i++)
if (ws_niflag_map[i][0] & winflags) {
unixflags |= ws_niflag_map[i][1];
winflags &= ~ws_niflag_map[i][0];
}
if (winflags)
FIXME("Unhandled windows NI_xxx flags 0x%x\n", winflags);
return unixflags;
}
static int convert_aiflag_u2w(int unixflags) {
unsigned int i;
int winflags = 0;
for (i = 0; i < ARRAY_SIZE(ws_aiflag_map); i++)
if (ws_aiflag_map[i][1] & unixflags) {
winflags |= ws_aiflag_map[i][0];
unixflags &= ~ws_aiflag_map[i][1];
}
if (unixflags)
WARN("Unhandled UNIX AI_xxx flags 0x%x\n", unixflags);
return winflags;
}
static int convert_eai_u2w(int unixret) {
int i;
if (!unixret) return 0;
for (i=0;ws_eai_map[i][0];i++)
if (ws_eai_map[i][1] == unixret)
return ws_eai_map[i][0];
if (unixret == EAI_SYSTEM)
/* There are broken versions of glibc which return EAI_SYSTEM
* and set errno to 0 instead of returning EAI_NONAME.
*/
return errno ? sock_get_error( errno ) : WS_EAI_NONAME;
FIXME("Unhandled unix EAI_xxx ret %d\n", unixret);
return unixret;
}
static char *get_fqdn(void)
{
char *ret;
DWORD size = 0;
GetComputerNameExA( ComputerNamePhysicalDnsFullyQualified, NULL, &size );
if (GetLastError() != ERROR_MORE_DATA) return NULL;
if (!(ret = HeapAlloc( GetProcessHeap(), 0, size ))) return NULL;
if (!GetComputerNameExA( ComputerNamePhysicalDnsFullyQualified, ret, &size ))
{
HeapFree( GetProcessHeap(), 0, ret );
return NULL;
}
return ret;
}
/***********************************************************************
* getaddrinfo (WS2_32.@)
*/
int WINAPI WS_getaddrinfo(LPCSTR nodename, LPCSTR servname, const struct WS_addrinfo *hints, struct WS_addrinfo **res)
{
#ifdef HAVE_GETADDRINFO
struct addrinfo *unixaires = NULL;
int result;
struct addrinfo unixhints, *punixhints = NULL;
char *dot, *nodeV6 = NULL, *fqdn;
const char *node;
size_t hostname_len = 0;
*res = NULL;
if (!nodename && !servname)
{
SetLastError(WSAHOST_NOT_FOUND);
return WSAHOST_NOT_FOUND;
}
fqdn = get_fqdn();
if (!fqdn) return WSA_NOT_ENOUGH_MEMORY;
dot = strchr(fqdn, '.');
if (dot)
hostname_len = dot - fqdn;
if (!nodename)
node = NULL;
else if (!nodename[0])
node = fqdn;
else
{
node = nodename;
/* Check for [ipv6] or [ipv6]:portnumber, which are supported by Windows */
if (!hints || hints->ai_family == WS_AF_UNSPEC || hints->ai_family == WS_AF_INET6)
{
char *close_bracket;
if (node[0] == '[' && (close_bracket = strchr(node + 1, ']')))
{
nodeV6 = HeapAlloc(GetProcessHeap(), 0, close_bracket - node);
if (!nodeV6)
{
HeapFree(GetProcessHeap(), 0, fqdn);
return WSA_NOT_ENOUGH_MEMORY;
}
lstrcpynA(nodeV6, node + 1, close_bracket - node);
node = nodeV6;
}
}
}
/* servname tweak required by OSX and BSD kernels */
if (servname && !servname[0]) servname = "0";
if (hints) {
punixhints = &unixhints;
memset(&unixhints, 0, sizeof(unixhints));
punixhints->ai_flags = convert_aiflag_w2u(hints->ai_flags);
/* zero is a wildcard, no need to convert */
if (hints->ai_family)
punixhints->ai_family = convert_af_w2u(hints->ai_family);
if (hints->ai_socktype)
punixhints->ai_socktype = convert_socktype_w2u(hints->ai_socktype);
if (hints->ai_protocol)
punixhints->ai_protocol = max(convert_proto_w2u(hints->ai_protocol), 0);
if (punixhints->ai_socktype < 0)
{
SetLastError(WSAESOCKTNOSUPPORT);
HeapFree(GetProcessHeap(), 0, fqdn);
HeapFree(GetProcessHeap(), 0, nodeV6);
return SOCKET_ERROR;
}
/* windows allows invalid combinations of socket type and protocol, unix does not.
* fix the parameters here to make getaddrinfo call always work */
if (punixhints->ai_protocol == IPPROTO_TCP &&
punixhints->ai_socktype != SOCK_STREAM && punixhints->ai_socktype != SOCK_SEQPACKET)
punixhints->ai_socktype = 0;
else if (punixhints->ai_protocol == IPPROTO_UDP && punixhints->ai_socktype != SOCK_DGRAM)
punixhints->ai_socktype = 0;
else if (IS_IPX_PROTO(punixhints->ai_protocol) && punixhints->ai_socktype != SOCK_DGRAM)
punixhints->ai_socktype = 0;
else if (punixhints->ai_protocol == IPPROTO_IPV6)
punixhints->ai_protocol = 0;
}
/* getaddrinfo(3) is thread safe, no need to wrap in CS */
result = getaddrinfo(node, servname, punixhints, &unixaires);
if (result && (!hints || !(hints->ai_flags & WS_AI_NUMERICHOST))
&& (!strcmp(fqdn, node) || (!strncmp(fqdn, node, hostname_len) && !node[hostname_len])))
{
/* If it didn't work it means the host name IP is not in /etc/hosts, try again
* by sending a NULL host and avoid sending a NULL servname too because that
* is invalid */
ERR_(winediag)("Failed to resolve your host name IP\n");
result = getaddrinfo(NULL, servname ? servname : "0", punixhints, &unixaires);
}
TRACE("%s, %s %p -> %p %d\n", debugstr_a(nodename), debugstr_a(servname), hints, res, result);
HeapFree(GetProcessHeap(), 0, fqdn);
HeapFree(GetProcessHeap(), 0, nodeV6);
if (!result) {
struct addrinfo *xuai = unixaires;
struct WS_addrinfo **xai = res;
*xai = NULL;
while (xuai) {
struct WS_addrinfo *ai = HeapAlloc(GetProcessHeap(),HEAP_ZERO_MEMORY, sizeof(struct WS_addrinfo));
SIZE_T len;
if (!ai)
goto outofmem;
*xai = ai;xai = &ai->ai_next;
ai->ai_flags = convert_aiflag_u2w(xuai->ai_flags);
ai->ai_family = convert_af_u2w(xuai->ai_family);
/* copy whatever was sent in the hints */
if(hints) {
ai->ai_socktype = hints->ai_socktype;
ai->ai_protocol = hints->ai_protocol;
} else {
ai->ai_socktype = convert_socktype_u2w(xuai->ai_socktype);
ai->ai_protocol = convert_proto_u2w(xuai->ai_protocol);
}
if (xuai->ai_canonname) {
TRACE("canon name - %s\n",debugstr_a(xuai->ai_canonname));
ai->ai_canonname = HeapAlloc(GetProcessHeap(),0,strlen(xuai->ai_canonname)+1);
if (!ai->ai_canonname)
goto outofmem;
strcpy(ai->ai_canonname,xuai->ai_canonname);
}
len = xuai->ai_addrlen;
ai->ai_addr = HeapAlloc(GetProcessHeap(),0,len);
if (!ai->ai_addr)
goto outofmem;
ai->ai_addrlen = len;
do {
int winlen = ai->ai_addrlen;
if (!ws_sockaddr_u2ws(xuai->ai_addr, ai->ai_addr, &winlen)) {
ai->ai_addrlen = winlen;
break;
}
len = 2*len;
ai->ai_addr = HeapReAlloc(GetProcessHeap(),0,ai->ai_addr,len);
if (!ai->ai_addr)
goto outofmem;
ai->ai_addrlen = len;
} while (1);
xuai = xuai->ai_next;
}
freeaddrinfo(unixaires);
if (TRACE_ON(winsock))
{
struct WS_addrinfo *ai = *res;
while (ai)
{
TRACE("=> %p, flags %#x, family %d, type %d, protocol %d, len %ld, name %s, addr %s\n",
ai, ai->ai_flags, ai->ai_family, ai->ai_socktype, ai->ai_protocol, ai->ai_addrlen,
ai->ai_canonname, debugstr_sockaddr(ai->ai_addr));
ai = ai->ai_next;
}
}
} else
result = convert_eai_u2w(result);
SetLastError(result);
return result;
outofmem:
if (*res) WS_freeaddrinfo(*res);
if (unixaires) freeaddrinfo(unixaires);
return WSA_NOT_ENOUGH_MEMORY;
#else
FIXME("getaddrinfo() failed, not found during buildtime.\n");
return EAI_FAIL;
#endif
}
static ADDRINFOEXW *addrinfo_AtoW(const struct WS_addrinfo *ai)
{
ADDRINFOEXW *ret;
if (!(ret = HeapAlloc(GetProcessHeap(), 0, sizeof(ADDRINFOEXW)))) return NULL;
ret->ai_flags = ai->ai_flags;
ret->ai_family = ai->ai_family;
ret->ai_socktype = ai->ai_socktype;
ret->ai_protocol = ai->ai_protocol;
ret->ai_addrlen = ai->ai_addrlen;
ret->ai_canonname = NULL;
ret->ai_addr = NULL;
ret->ai_blob = NULL;
ret->ai_bloblen = 0;
ret->ai_provider = NULL;
ret->ai_next = NULL;
if (ai->ai_canonname)
{
int len = MultiByteToWideChar(CP_ACP, 0, ai->ai_canonname, -1, NULL, 0);
if (!(ret->ai_canonname = HeapAlloc(GetProcessHeap(), 0, len*sizeof(WCHAR))))
{
HeapFree(GetProcessHeap(), 0, ret);
return NULL;
}
MultiByteToWideChar(CP_ACP, 0, ai->ai_canonname, -1, ret->ai_canonname, len);
}
if (ai->ai_addr)
{
if (!(ret->ai_addr = HeapAlloc(GetProcessHeap(), 0, ai->ai_addrlen)))
{
HeapFree(GetProcessHeap(), 0, ret->ai_canonname);
HeapFree(GetProcessHeap(), 0, ret);
return NULL;
}
memcpy(ret->ai_addr, ai->ai_addr, ai->ai_addrlen);
}
return ret;
}
static ADDRINFOEXW *addrinfo_list_AtoW(const struct WS_addrinfo *info)
{
ADDRINFOEXW *ret, *infoW;
if (!(ret = infoW = addrinfo_AtoW(info))) return NULL;
while (info->ai_next)
{
if (!(infoW->ai_next = addrinfo_AtoW(info->ai_next)))
{
FreeAddrInfoExW(ret);
return NULL;
}
infoW = infoW->ai_next;
info = info->ai_next;
}
return ret;
}
static struct WS_addrinfo *addrinfo_WtoA(const struct WS_addrinfoW *ai)
{
struct WS_addrinfo *ret;
if (!(ret = HeapAlloc(GetProcessHeap(), 0, sizeof(struct WS_addrinfo)))) return NULL;
ret->ai_flags = ai->ai_flags;
ret->ai_family = ai->ai_family;
ret->ai_socktype = ai->ai_socktype;
ret->ai_protocol = ai->ai_protocol;
ret->ai_addrlen = ai->ai_addrlen;
ret->ai_canonname = NULL;
ret->ai_addr = NULL;
ret->ai_next = NULL;
if (ai->ai_canonname)
{
int len = WideCharToMultiByte(CP_ACP, 0, ai->ai_canonname, -1, NULL, 0, NULL, NULL);
if (!(ret->ai_canonname = HeapAlloc(GetProcessHeap(), 0, len)))
{
HeapFree(GetProcessHeap(), 0, ret);
return NULL;
}
WideCharToMultiByte(CP_ACP, 0, ai->ai_canonname, -1, ret->ai_canonname, len, NULL, NULL);
}
if (ai->ai_addr)
{
if (!(ret->ai_addr = HeapAlloc(GetProcessHeap(), 0, sizeof(struct WS_sockaddr))))
{
HeapFree(GetProcessHeap(), 0, ret->ai_canonname);
HeapFree(GetProcessHeap(), 0, ret);
return NULL;
}
memcpy(ret->ai_addr, ai->ai_addr, sizeof(struct WS_sockaddr));
}
return ret;
}
struct getaddrinfo_args
{
OVERLAPPED *overlapped;
LPLOOKUPSERVICE_COMPLETION_ROUTINE completion_routine;
ADDRINFOEXW **result;
char *nodename;
char *servname;
};
static void WINAPI getaddrinfo_callback(TP_CALLBACK_INSTANCE *instance, void *context)
{
struct getaddrinfo_args *args = context;
OVERLAPPED *overlapped = args->overlapped;
HANDLE event = overlapped->hEvent;
LPLOOKUPSERVICE_COMPLETION_ROUTINE completion_routine = args->completion_routine;
struct WS_addrinfo *res;
int ret;
ret = WS_getaddrinfo(args->nodename, args->servname, NULL, &res);
if (res)
{
*args->result = addrinfo_list_AtoW(res);
overlapped->u.Pointer = args->result;
WS_freeaddrinfo(res);
}
HeapFree(GetProcessHeap(), 0, args->nodename);
HeapFree(GetProcessHeap(), 0, args->servname);
HeapFree(GetProcessHeap(), 0, args);
overlapped->Internal = ret;
if (completion_routine) completion_routine(ret, 0, overlapped);
if (event) SetEvent(event);
}
static int WS_getaddrinfoW(const WCHAR *nodename, const WCHAR *servname, const struct WS_addrinfo *hints, ADDRINFOEXW **res,
OVERLAPPED *overlapped, LPLOOKUPSERVICE_COMPLETION_ROUTINE completion_routine)
{
int ret = EAI_MEMORY, len, i;
char *nodenameA = NULL, *servnameA = NULL;
struct WS_addrinfo *resA;
WCHAR *local_nodenameW = (WCHAR *)nodename;
*res = NULL;
if (nodename)
{
/* Is this an IDN? Most likely if any char is above the Ascii table, this
* is the simplest validation possible, further validation will be done by
* the native getaddrinfo() */
for (i = 0; nodename[i]; i++)
{
if (nodename[i] > 'z')
break;
}
if (nodename[i])
{
if (hints && (hints->ai_flags & WS_AI_DISABLE_IDN_ENCODING))
{
/* Name requires conversion but it was disabled */
ret = WSAHOST_NOT_FOUND;
WSASetLastError(ret);
goto end;
}
len = IdnToAscii(0, nodename, -1, NULL, 0);
if (!len)
{
ERR("Failed to convert %s to punycode\n", debugstr_w(nodename));
ret = EAI_FAIL;
goto end;
}
if (!(local_nodenameW = HeapAlloc(GetProcessHeap(), 0, len * sizeof(WCHAR)))) goto end;
IdnToAscii(0, nodename, -1, local_nodenameW, len);
}
}
if (local_nodenameW)
{
len = WideCharToMultiByte(CP_ACP, 0, local_nodenameW, -1, NULL, 0, NULL, NULL);
if (!(nodenameA = HeapAlloc(GetProcessHeap(), 0, len))) goto end;
WideCharToMultiByte(CP_ACP, 0, local_nodenameW, -1, nodenameA, len, NULL, NULL);
}
if (servname)
{
len = WideCharToMultiByte(CP_ACP, 0, servname, -1, NULL, 0, NULL, NULL);
if (!(servnameA = HeapAlloc(GetProcessHeap(), 0, len))) goto end;
WideCharToMultiByte(CP_ACP, 0, servname, -1, servnameA, len, NULL, NULL);
}
if (overlapped)
{
struct getaddrinfo_args *args;
if (overlapped->hEvent && completion_routine)
{
ret = WSAEINVAL;
goto end;
}
if (!(args = HeapAlloc(GetProcessHeap(), 0, sizeof(*args)))) goto end;
args->overlapped = overlapped;
args->completion_routine = completion_routine;
args->result = res;
args->nodename = nodenameA;
args->servname = servnameA;
overlapped->Internal = WSAEINPROGRESS;
if (!TrySubmitThreadpoolCallback(getaddrinfo_callback, args, NULL))
{
HeapFree(GetProcessHeap(), 0, args);
ret = GetLastError();
goto end;
}
if (local_nodenameW != nodename)
HeapFree(GetProcessHeap(), 0, local_nodenameW);
WSASetLastError(ERROR_IO_PENDING);
return ERROR_IO_PENDING;
}
ret = WS_getaddrinfo(nodenameA, servnameA, hints, &resA);
if (!ret)
{
*res = addrinfo_list_AtoW(resA);
WS_freeaddrinfo(resA);
}
end:
if (local_nodenameW != nodename)
HeapFree(GetProcessHeap(), 0, local_nodenameW);
HeapFree(GetProcessHeap(), 0, nodenameA);
HeapFree(GetProcessHeap(), 0, servnameA);
return ret;
}
/***********************************************************************
* GetAddrInfoExW (WS2_32.@)
*/
int WINAPI GetAddrInfoExW(const WCHAR *name, const WCHAR *servname, DWORD namespace, GUID *namespace_id,
const ADDRINFOEXW *hints, ADDRINFOEXW **result, struct WS_timeval *timeout, OVERLAPPED *overlapped,
LPLOOKUPSERVICE_COMPLETION_ROUTINE completion_routine, HANDLE *handle)
{
int ret;
TRACE("(%s %s %x %s %p %p %p %p %p %p)\n", debugstr_w(name), debugstr_w(servname), namespace,
debugstr_guid(namespace_id), hints, result, timeout, overlapped, completion_routine, handle);
if (namespace != NS_DNS)
FIXME("Unsupported namespace %u\n", namespace);
if (namespace_id)
FIXME("Unsupported naemspace_id %s\n", debugstr_guid(namespace_id));
if (hints)
FIXME("Unsupported hints\n");
if (timeout)
FIXME("Unsupported timeout\n");
if (handle)
FIXME("Unsupported cancel handle\n");
ret = WS_getaddrinfoW(name, servname, NULL, result, overlapped, completion_routine);
if (ret) return ret;
if (handle) *handle = (HANDLE)0xdeadbeef;
return 0;
}
/***********************************************************************
* GetAddrInfoExOverlappedResult (WS2_32.@)
*/
int WINAPI GetAddrInfoExOverlappedResult(OVERLAPPED *overlapped)
{
TRACE("(%p)\n", overlapped);
return overlapped->Internal;
}
/***********************************************************************
* GetAddrInfoExCancel (WS2_32.@)
*/
int WINAPI GetAddrInfoExCancel(HANDLE *handle)
{
FIXME("(%p)\n", handle);
return WSA_INVALID_HANDLE;
}
/***********************************************************************
* GetAddrInfoW (WS2_32.@)
*/
int WINAPI GetAddrInfoW(LPCWSTR nodename, LPCWSTR servname, const ADDRINFOW *hints, PADDRINFOW *res)
{
struct WS_addrinfo *hintsA = NULL;
ADDRINFOEXW *resex;
int ret = EAI_MEMORY;
TRACE("nodename %s, servname %s, hints %p, result %p\n",
debugstr_w(nodename), debugstr_w(servname), hints, res);
*res = NULL;
if (hints) hintsA = addrinfo_WtoA(hints);
ret = WS_getaddrinfoW(nodename, servname, hintsA, &resex, NULL, NULL);
WS_freeaddrinfo(hintsA);
if (ret) return ret;
if (resex)
{
/* ADDRINFOEXW has layout compatible with ADDRINFOW except for ai_next field,
* so we may convert it in place */
*res = (ADDRINFOW*)resex;
do {
((ADDRINFOW*)resex)->ai_next = (ADDRINFOW*)resex->ai_next;
resex = resex->ai_next;
} while (resex);
}
return 0;
}
/***********************************************************************
* FreeAddrInfoW (WS2_32.@)
*/
void WINAPI FreeAddrInfoW(PADDRINFOW ai)
{
while (ai)
{
ADDRINFOW *next;
HeapFree(GetProcessHeap(), 0, ai->ai_canonname);
HeapFree(GetProcessHeap(), 0, ai->ai_addr);
next = ai->ai_next;
HeapFree(GetProcessHeap(), 0, ai);
ai = next;
}
}
/***********************************************************************
* FreeAddrInfoEx (WS2_32.@)
*/
void WINAPI FreeAddrInfoEx(ADDRINFOEXA *ai)
{
TRACE("(%p)\n", ai);
while (ai)
{
ADDRINFOEXA *next;
HeapFree(GetProcessHeap(), 0, ai->ai_canonname);
HeapFree(GetProcessHeap(), 0, ai->ai_addr);
next = ai->ai_next;
HeapFree(GetProcessHeap(), 0, ai);
ai = next;
}
}
/***********************************************************************
* FreeAddrInfoExW (WS2_32.@)
*/
void WINAPI FreeAddrInfoExW(ADDRINFOEXW *ai)
{
TRACE("(%p)\n", ai);
while (ai)
{
ADDRINFOEXW *next;
HeapFree(GetProcessHeap(), 0, ai->ai_canonname);
HeapFree(GetProcessHeap(), 0, ai->ai_addr);
next = ai->ai_next;
HeapFree(GetProcessHeap(), 0, ai);
ai = next;
}
}
int WINAPI WS_getnameinfo(const SOCKADDR *sa, WS_socklen_t salen, PCHAR host,
DWORD hostlen, PCHAR serv, DWORD servlen, INT flags)
{
#ifdef HAVE_GETNAMEINFO
int ret;
union generic_unix_sockaddr sa_u;
unsigned int size;
TRACE("%s %d %p %d %p %d %d\n", debugstr_sockaddr(sa), salen, host, hostlen,
serv, servlen, flags);
size = ws_sockaddr_ws2u(sa, salen, &sa_u);
if (!size)
{
SetLastError(WSAEFAULT);
return WSA_NOT_ENOUGH_MEMORY;
}
ret = getnameinfo(&sa_u.addr, size, host, hostlen, serv, servlen, convert_niflag_w2u(flags));
return convert_eai_u2w(ret);
#else
FIXME("getnameinfo() failed, not found during buildtime.\n");
return EAI_FAIL;
#endif
}
int WINAPI GetNameInfoW(const SOCKADDR *sa, WS_socklen_t salen, PWCHAR host,
DWORD hostlen, PWCHAR serv, DWORD servlen, INT flags)
{
int ret;
char *hostA = NULL, *servA = NULL;
if (host && (!(hostA = HeapAlloc(GetProcessHeap(), 0, hostlen)))) return EAI_MEMORY;
if (serv && (!(servA = HeapAlloc(GetProcessHeap(), 0, servlen))))
{
HeapFree(GetProcessHeap(), 0, hostA);
return EAI_MEMORY;
}
ret = WS_getnameinfo(sa, salen, hostA, hostlen, servA, servlen, flags);
if (!ret)
{
if (host) MultiByteToWideChar(CP_ACP, 0, hostA, -1, host, hostlen);
if (serv) MultiByteToWideChar(CP_ACP, 0, servA, -1, serv, servlen);
}
HeapFree(GetProcessHeap(), 0, hostA);
HeapFree(GetProcessHeap(), 0, servA);
return ret;
}
/***********************************************************************
* getservbyport (WS2_32.56)
*/
struct WS_servent* WINAPI WS_getservbyport(int port, const char *proto)
{
struct WS_servent* retval = NULL;
#ifdef HAVE_GETSERVBYPORT
struct servent* serv;
char *proto_str = NULL;
if (proto && *proto)
{
if (!(proto_str = strdup_lower(proto))) return NULL;
}
EnterCriticalSection( &csWSgetXXXbyYYY );
if( (serv = getservbyport(port, proto_str)) != NULL ) {
retval = WS_dup_se(serv);
}
else SetLastError(WSANO_DATA);
LeaveCriticalSection( &csWSgetXXXbyYYY );
HeapFree( GetProcessHeap(), 0, proto_str );
#endif
TRACE("%d (i.e. port %d), %s ret %p\n", port, (int)ntohl(port), debugstr_a(proto), retval);
return retval;
}
/***********************************************************************
* gethostname (WS2_32.57)
*/
int WINAPI WS_gethostname(char *name, int namelen)
{
char buf[256];
int len;
TRACE("name %p, len %d\n", name, namelen);
if (!name)
{
SetLastError(WSAEFAULT);
return SOCKET_ERROR;
}
if (gethostname(buf, sizeof(buf)) != 0)
{
SetLastError(wsaErrno());
return SOCKET_ERROR;
}
TRACE("<- '%s'\n", buf);
len = strlen(buf);
if (len > 15)
WARN("Windows supports NetBIOS name length up to 15 bytes!\n");
if (namelen <= len)
{
SetLastError(WSAEFAULT);
WARN("<- not enough space for hostname, required %d, got %d!\n", len + 1, namelen);
return SOCKET_ERROR;
}
strcpy(name, buf);
return 0;
}
/* ------------------------------------- Windows sockets extensions -- *
* *
* ------------------------------------------------------------------- */
/***********************************************************************
* WSAEnumNetworkEvents (WS2_32.36)
*/
int WINAPI WSAEnumNetworkEvents(SOCKET s, WSAEVENT hEvent, LPWSANETWORKEVENTS lpEvent)
{
int ret;
int i;
int errors[FD_MAX_EVENTS];
TRACE("%04lx, hEvent %p, lpEvent %p\n", s, hEvent, lpEvent );
SERVER_START_REQ( get_socket_event )
{
req->handle = wine_server_obj_handle( SOCKET2HANDLE(s) );
req->service = TRUE;
req->c_event = wine_server_obj_handle( hEvent );
wine_server_set_reply( req, errors, sizeof(errors) );
if (!(ret = wine_server_call(req))) lpEvent->lNetworkEvents = reply->pmask & reply->mask;
}
SERVER_END_REQ;
if (!ret)
{
for (i = 0; i < FD_MAX_EVENTS; i++)
{
if (lpEvent->lNetworkEvents & (1 << i))
lpEvent->iErrorCode[i] = errors[i];
}
return 0;
}
SetLastError(WSAEINVAL);
return SOCKET_ERROR;
}
/***********************************************************************
* WSAEventSelect (WS2_32.39)
*/
int WINAPI WSAEventSelect(SOCKET s, WSAEVENT hEvent, LONG lEvent)
{
int ret;
TRACE("%04lx, hEvent %p, event %08x\n", s, hEvent, lEvent);
SERVER_START_REQ( set_socket_event )
{
req->handle = wine_server_obj_handle( SOCKET2HANDLE(s) );
req->mask = lEvent;
req->event = wine_server_obj_handle( hEvent );
req->window = 0;
req->msg = 0;
ret = wine_server_call( req );
}
SERVER_END_REQ;
if (!ret) return 0;
SetLastError(WSAEINVAL);
return SOCKET_ERROR;
}
/**********************************************************************
* WSAGetOverlappedResult (WS2_32.40)
*/
BOOL WINAPI WSAGetOverlappedResult( SOCKET s, LPWSAOVERLAPPED lpOverlapped,
LPDWORD lpcbTransfer, BOOL fWait,
LPDWORD lpdwFlags )
{
NTSTATUS status;
TRACE( "socket %04lx ovl %p trans %p, wait %d flags %p\n",
s, lpOverlapped, lpcbTransfer, fWait, lpdwFlags );
if ( lpOverlapped == NULL )
{
ERR( "Invalid pointer\n" );
SetLastError(WSA_INVALID_PARAMETER);
return FALSE;
}
status = lpOverlapped->Internal;
if (status == STATUS_PENDING)
{
if (!fWait)
{
SetLastError( WSA_IO_INCOMPLETE );
return FALSE;
}
if (WaitForSingleObject( lpOverlapped->hEvent ? lpOverlapped->hEvent : SOCKET2HANDLE(s),
INFINITE ) == WAIT_FAILED)
return FALSE;
status = lpOverlapped->Internal;
}
if ( lpcbTransfer )
*lpcbTransfer = lpOverlapped->InternalHigh;
if ( lpdwFlags )
*lpdwFlags = lpOverlapped->u.s.Offset;
if (status) SetLastError( RtlNtStatusToDosError(status) );
return !status;
}
/***********************************************************************
* WSAAsyncSelect (WS2_32.101)
*/
INT WINAPI WSAAsyncSelect(SOCKET s, HWND hWnd, UINT uMsg, LONG lEvent)
{
int ret;
TRACE("%04lx, hWnd %p, uMsg %08x, event %08x\n", s, hWnd, uMsg, lEvent);
SERVER_START_REQ( set_socket_event )
{
req->handle = wine_server_obj_handle( SOCKET2HANDLE(s) );
req->mask = lEvent;
req->event = 0;
req->window = wine_server_user_handle( hWnd );
req->msg = uMsg;
ret = wine_server_call( req );
}
SERVER_END_REQ;
if (!ret) return 0;
SetLastError(WSAEINVAL);
return SOCKET_ERROR;
}
/***********************************************************************
* WSACreateEvent (WS2_32.31)
*
*/
WSAEVENT WINAPI WSACreateEvent(void)
{
/* Create a manual-reset event, with initial state: unsignaled */
TRACE("\n");
return CreateEventW(NULL, TRUE, FALSE, NULL);
}
/***********************************************************************
* WSACloseEvent (WS2_32.29)
*
*/
BOOL WINAPI WSACloseEvent(WSAEVENT event)
{
TRACE ("event=%p\n", event);
return CloseHandle(event);
}
/***********************************************************************
* WSASocketA (WS2_32.78)
*
*/
SOCKET WINAPI WSASocketA(int af, int type, int protocol,
LPWSAPROTOCOL_INFOA lpProtocolInfo,
GROUP g, DWORD dwFlags)
{
INT len;
WSAPROTOCOL_INFOW info;
TRACE("af=%d type=%d protocol=%d protocol_info=%p group=%d flags=0x%x\n",
af, type, protocol, lpProtocolInfo, g, dwFlags);
if (!lpProtocolInfo) return WSASocketW(af, type, protocol, NULL, g, dwFlags);
memcpy(&info, lpProtocolInfo, FIELD_OFFSET(WSAPROTOCOL_INFOW, szProtocol));
len = MultiByteToWideChar(CP_ACP, 0, lpProtocolInfo->szProtocol, -1,
info.szProtocol, WSAPROTOCOL_LEN + 1);
if (!len)
{
SetLastError(WSAEINVAL);
return SOCKET_ERROR;
}
return WSASocketW(af, type, protocol, &info, g, dwFlags);
}
/***********************************************************************
* WSASocketW (WS2_32.79)
*
*/
SOCKET WINAPI WSASocketW(int af, int type, int protocol,
LPWSAPROTOCOL_INFOW lpProtocolInfo,
GROUP g, DWORD dwFlags)
{
SOCKET ret;
DWORD err;
int unixaf, unixtype, ipxptype = -1;
/*
FIXME: The "advanced" parameters of WSASocketW (lpProtocolInfo,
g, dwFlags except WSA_FLAG_OVERLAPPED) are ignored.
*/
TRACE("af=%d type=%d protocol=%d protocol_info=%p group=%d flags=0x%x\n",
af, type, protocol, lpProtocolInfo, g, dwFlags );
if (!num_startup)
{
err = WSANOTINITIALISED;
goto done;
}
/* hack for WSADuplicateSocket */
if (lpProtocolInfo && lpProtocolInfo->dwServiceFlags4 == 0xff00ff00) {
ret = lpProtocolInfo->dwServiceFlags3;
TRACE("\tgot duplicate %04lx\n", ret);
return ret;
}
if (lpProtocolInfo)
{
if (af == FROM_PROTOCOL_INFO || !af)
af = lpProtocolInfo->iAddressFamily;
if (type == FROM_PROTOCOL_INFO || !type)
type = lpProtocolInfo->iSocketType;
if (protocol == FROM_PROTOCOL_INFO || !protocol)
protocol = lpProtocolInfo->iProtocol;
}
if (!type && (af || protocol))
{
int autoproto = protocol;
WSAPROTOCOL_INFOW infow;
/* default to the first valid protocol */
if (!autoproto)
autoproto = valid_protocols[0];
else if(IS_IPX_PROTO(autoproto))
autoproto = WS_NSPROTO_IPX;
if (WS_EnterSingleProtocolW(autoproto, &infow))
{
type = infow.iSocketType;
/* after win2003 it's no longer possible to pass AF_UNSPEC
using the protocol info struct */
if (!lpProtocolInfo && af == WS_AF_UNSPEC)
af = infow.iAddressFamily;
}
}
/*
Windows has an extension to the IPX protocol that allows one to create sockets
and set the IPX packet type at the same time, to do that a caller will use
a protocol like NSPROTO_IPX + <PACKET TYPE>
*/
if (IS_IPX_PROTO(protocol))
ipxptype = protocol - WS_NSPROTO_IPX;
/* convert the socket family, type and protocol */
unixaf = convert_af_w2u(af);
unixtype = convert_socktype_w2u(type);
protocol = convert_proto_w2u(protocol);
if (unixaf == AF_UNSPEC) unixaf = -1;
/* filter invalid parameters */
if (protocol < 0)
{
/* the type could not be converted */
if (type && unixtype < 0)
{
err = WSAESOCKTNOSUPPORT;
goto done;
}
err = WSAEPROTONOSUPPORT;
goto done;
}
if (unixaf < 0)
{
/* both family and protocol can't be invalid */
if (protocol <= 0)
{
err = WSAEINVAL;
goto done;
}
/* family could not be converted and neither socket type */
if (unixtype < 0 && af >= 0)
{
err = WSAESOCKTNOSUPPORT;
goto done;
}
err = WSAEAFNOSUPPORT;
goto done;
}
SERVER_START_REQ( create_socket )
{
req->family = unixaf;
req->type = unixtype;
req->protocol = protocol;
req->access = GENERIC_READ|GENERIC_WRITE|SYNCHRONIZE;
req->attributes = (dwFlags & WSA_FLAG_NO_HANDLE_INHERIT) ? 0 : OBJ_INHERIT;
req->flags = dwFlags & ~WSA_FLAG_NO_HANDLE_INHERIT;
err = NtStatusToWSAError( wine_server_call( req ) );
ret = HANDLE2SOCKET( wine_server_ptr_handle( reply->handle ));
}
SERVER_END_REQ;
if (ret)
{
TRACE("\tcreated %04lx\n", ret );
if (ipxptype > 0)
set_ipx_packettype(ret, ipxptype);
if (unixaf == AF_INET || unixaf == AF_INET6)
{
/* ensure IP_DONTFRAGMENT is disabled for SOCK_DGRAM and SOCK_RAW, enabled for SOCK_STREAM */
if (unixtype == SOCK_DGRAM || unixtype == SOCK_RAW) /* in Linux the global default can be enabled */
set_dont_fragment(ret, unixaf == AF_INET6 ? IPPROTO_IPV6 : IPPROTO_IP, FALSE);
else if (unixtype == SOCK_STREAM)
set_dont_fragment(ret, unixaf == AF_INET6 ? IPPROTO_IPV6 : IPPROTO_IP, TRUE);
}
#ifdef IPV6_V6ONLY
if (unixaf == AF_INET6)
{
int fd = get_sock_fd(ret, 0, NULL);
if (fd != -1)
{
/* IPV6_V6ONLY is set by default on Windows */
int enable = 1;
if (setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, &enable, sizeof(enable)))
WARN("\tsetting IPV6_V6ONLY failed - errno = %i\n", errno);
release_sock_fd(ret, fd);
}
}
#endif
return ret;
}
if (err == WSAEACCES) /* raw socket denied */
{
if (type == SOCK_RAW)
ERR_(winediag)("Failed to create a socket of type SOCK_RAW, this requires special permissions.\n");
else
ERR_(winediag)("Failed to create socket, this requires special permissions.\n");
}
done:
WARN("\t\tfailed, error %d!\n", err);
SetLastError(err);
return INVALID_SOCKET;
}
/***********************************************************************
* WSAJoinLeaf (WS2_32.58)
*
*/
SOCKET WINAPI WSAJoinLeaf(
SOCKET s,
const struct WS_sockaddr *addr,
int addrlen,
LPWSABUF lpCallerData,
LPWSABUF lpCalleeData,
LPQOS lpSQOS,
LPQOS lpGQOS,
DWORD dwFlags)
{
FIXME("stub.\n");
return INVALID_SOCKET;
}
/***********************************************************************
* __WSAFDIsSet (WS2_32.151)
*/
int WINAPI __WSAFDIsSet(SOCKET s, WS_fd_set *set)
{
int i = set->fd_count, ret = 0;
while (i--)
if (set->fd_array[i] == s)
{
ret = 1;
break;
}
TRACE("(socket %04lx, fd_set %p, count %i) <- %d\n", s, set, set->fd_count, ret);
return ret;
}
/***********************************************************************
* WSAIsBlocking (WS2_32.114)
*/
BOOL WINAPI WSAIsBlocking(void)
{
/* By default WinSock should set all its sockets to non-blocking mode
* and poll in PeekMessage loop when processing "blocking" ones. This
* function is supposed to tell if the program is in this loop. Our
* blocking calls are truly blocking so we always return FALSE.
*
* Note: It is allowed to call this function without prior WSAStartup().
*/
TRACE("\n");
return FALSE;
}
/***********************************************************************
* WSACancelBlockingCall (WS2_32.113)
*/
INT WINAPI WSACancelBlockingCall(void)
{
TRACE("\n");
return 0;
}
static INT WINAPI WSA_DefaultBlockingHook( FARPROC x )
{
FIXME("How was this called?\n");
return x();
}
/***********************************************************************
* WSASetBlockingHook (WS2_32.109)
*/
FARPROC WINAPI WSASetBlockingHook(FARPROC lpBlockFunc)
{
FARPROC prev = blocking_hook;
blocking_hook = lpBlockFunc;
TRACE("hook %p\n", lpBlockFunc);
return prev;
}
/***********************************************************************
* WSAUnhookBlockingHook (WS2_32.110)
*/
INT WINAPI WSAUnhookBlockingHook(void)
{
blocking_hook = (FARPROC)WSA_DefaultBlockingHook;
return 0;
}
/* ----------------------------------- end of API stuff */
/* ----------------------------------- helper functions -
*
* TODO: Merge WS_dup_..() stuff into one function that
* would operate with a generic structure containing internal
* pointers (via a template of some kind).
*/
static int list_size(char** l, int item_size)
{
int i,j = 0;
if(l)
{ for(i=0;l[i];i++)
j += (item_size) ? item_size : strlen(l[i]) + 1;
j += (i + 1) * sizeof(char*); }
return j;
}
static int list_dup(char** l_src, char** l_to, int item_size)
{
char *p;
int i;
for (i = 0; l_src[i]; i++) ;
p = (char *)(l_to + i + 1);
for (i = 0; l_src[i]; i++)
{
int count = ( item_size ) ? item_size : strlen(l_src[i]) + 1;
memcpy(p, l_src[i], count);
l_to[i] = p;
p += count;
}
l_to[i] = NULL;
return p - (char *)l_to;
}
/* ----- hostent */
/* create a hostent entry
*
* Creates the entry with enough memory for the name, aliases
* addresses, and the address pointers. Also copies the name
* and sets up all the pointers.
*
* NOTE: The alias and address lists must be allocated with room
* for the NULL item terminating the list. This is true even if
* the list has no items ("aliases" and "addresses" must be
* at least "1", a truly empty list is invalid).
*/
static struct WS_hostent *WS_create_he(char *name, int aliases, int aliases_size, int addresses, int address_length)
{
struct WS_hostent *p_to;
char *p;
int size = (sizeof(struct WS_hostent) +
strlen(name) + 1 +
sizeof(char *) * aliases +
aliases_size +
sizeof(char *) * addresses +
address_length * (addresses - 1)), i;
if (!(p_to = check_buffer_he(size))) return NULL;
memset(p_to, 0, size);
/* Use the memory in the same way winsock does.
* First set the pointer for aliases, second set the pointers for addresses.
* Third fill the addresses indexes, fourth jump aliases names size.
* Fifth fill the hostname.
* NOTE: This method is valid for OS version's >= XP.
*/
p = (char *)(p_to + 1);
p_to->h_aliases = (char **)p;
p += sizeof(char *)*aliases;
p_to->h_addr_list = (char **)p;
p += sizeof(char *)*addresses;
for (i = 0, addresses--; i < addresses; i++, p += address_length)
p_to->h_addr_list[i] = p;
/* NOTE: h_aliases must be filled in manually because we don't know each string
* size, leave these pointers NULL (already set to NULL by memset earlier).
*/
p += aliases_size;
p_to->h_name = p;
strcpy(p, name);
return p_to;
}
/* duplicate hostent entry
* and handle all Win16/Win32 dependent things (struct size, ...) *correctly*.
* Ditto for protoent and servent.
*/
static struct WS_hostent *WS_dup_he(const struct hostent* p_he)
{
int i, addresses = 0, alias_size = 0;
struct WS_hostent *p_to;
char *p;
for( i = 0; p_he->h_aliases[i]; i++) alias_size += strlen(p_he->h_aliases[i]) + 1;
while (p_he->h_addr_list[addresses]) addresses++;
p_to = WS_create_he(p_he->h_name, i + 1, alias_size, addresses + 1, p_he->h_length);
if (!p_to) return NULL;
p_to->h_addrtype = convert_af_u2w(p_he->h_addrtype);
p_to->h_length = p_he->h_length;
for(i = 0, p = p_to->h_addr_list[0]; p_he->h_addr_list[i]; i++, p += p_to->h_length)
memcpy(p, p_he->h_addr_list[i], p_to->h_length);
/* Fill the aliases after the IP data */
for(i = 0; p_he->h_aliases[i]; i++)
{
p_to->h_aliases[i] = p;
strcpy(p, p_he->h_aliases[i]);
p += strlen(p) + 1;
}
return p_to;
}
/* ----- protoent */
static struct WS_protoent *WS_create_pe( const char *name, char **aliases, int prot )
{
struct WS_protoent *ret;
unsigned int size = sizeof(*ret) + strlen(name) + sizeof(char *) + list_size(aliases, 0);
if (!(ret = check_buffer_pe( size ))) return NULL;
ret->p_proto = prot;
ret->p_name = (char *)(ret + 1);
strcpy( ret->p_name, name );
ret->p_aliases = (char **)ret->p_name + strlen(name) / sizeof(char *) + 1;
list_dup( aliases, ret->p_aliases, 0 );
return ret;
}
/* ----- servent */
static struct WS_servent *WS_dup_se(const struct servent* p_se)
{
char *p;
struct WS_servent *p_to;
int size = (sizeof(*p_se) +
strlen(p_se->s_proto) + 1 +
strlen(p_se->s_name) + 1 +
list_size(p_se->s_aliases, 0));
if (!(p_to = check_buffer_se(size))) return NULL;
p_to->s_port = p_se->s_port;
p = (char *)(p_to + 1);
p_to->s_name = p;
strcpy(p, p_se->s_name);
p += strlen(p) + 1;
p_to->s_proto = p;
strcpy(p, p_se->s_proto);
p += strlen(p) + 1;
p_to->s_aliases = (char **)p;
list_dup(p_se->s_aliases, p_to->s_aliases, 0);
return p_to;
}
/***********************************************************************
* WSARecv (WS2_32.67)
*/
int WINAPI WSARecv(SOCKET s, LPWSABUF lpBuffers, DWORD dwBufferCount,
LPDWORD NumberOfBytesReceived, LPDWORD lpFlags,
LPWSAOVERLAPPED lpOverlapped,
LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine)
{
return WS2_recv_base(s, lpBuffers, dwBufferCount, NumberOfBytesReceived, lpFlags,
NULL, NULL, lpOverlapped, lpCompletionRoutine, NULL);
}
static int WS2_recv_base( SOCKET s, LPWSABUF lpBuffers, DWORD dwBufferCount,
LPDWORD lpNumberOfBytesRecvd, LPDWORD lpFlags,
struct WS_sockaddr *lpFrom,
LPINT lpFromlen, LPWSAOVERLAPPED lpOverlapped,
LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine,
LPWSABUF lpControlBuffer )
{
unsigned int i, options;
int n, fd, err, overlapped, flags;
struct ws2_async *wsa = NULL, localwsa;
BOOL is_blocking;
DWORD timeout_start = GetTickCount();
ULONG_PTR cvalue = (lpOverlapped && ((ULONG_PTR)lpOverlapped->hEvent & 1) == 0) ? (ULONG_PTR)lpOverlapped : 0;
TRACE("socket %04lx, wsabuf %p, nbufs %d, flags %d, from %p, fromlen %d, ovl %p, func %p\n",
s, lpBuffers, dwBufferCount, *lpFlags, lpFrom,
(lpFromlen ? *lpFromlen : -1),
lpOverlapped, lpCompletionRoutine);
fd = get_sock_fd( s, FILE_READ_DATA, &options );
TRACE( "fd=%d, options=%x\n", fd, options );
if (fd == -1) return SOCKET_ERROR;
if (*lpFlags & WS_MSG_OOB)
{
/* It's invalid to receive OOB data from an OOBINLINED socket
* as OOB data is turned into normal data. */
socklen_t len = sizeof(n);
if (!getsockopt(fd, SOL_SOCKET, SO_OOBINLINE, (char*) &n, &len) && n)
{
err = WSAEINVAL;
goto error;
}
}
overlapped = (lpOverlapped || lpCompletionRoutine) &&
!(options & (FILE_SYNCHRONOUS_IO_ALERT | FILE_SYNCHRONOUS_IO_NONALERT));
if (overlapped || dwBufferCount > 1)
{
if (!(wsa = (struct ws2_async *)alloc_async_io( offsetof(struct ws2_async, iovec[dwBufferCount]),
WS2_async_recv )))
{
err = WSAEFAULT;
goto error;
}
}
else
wsa = &localwsa;
wsa->hSocket = SOCKET2HANDLE(s);
wsa->flags = *lpFlags;
wsa->lpFlags = lpFlags;
wsa->addr = lpFrom;
wsa->addrlen.ptr = lpFromlen;
wsa->control = lpControlBuffer;
wsa->n_iovecs = dwBufferCount;
wsa->first_iovec = 0;
for (i = 0; i < dwBufferCount; i++)
{
/* check buffer first to trigger write watches */
if (IsBadWritePtr( lpBuffers[i].buf, lpBuffers[i].len ))
{
err = WSAEFAULT;
goto error;
}
wsa->iovec[i].iov_base = lpBuffers[i].buf;
wsa->iovec[i].iov_len = lpBuffers[i].len;
}
flags = convert_flags(wsa->flags);
for (;;)
{
n = WS2_recv( fd, wsa, flags );
if (n == -1)
{
/* Unix-like systems return EINVAL when attempting to read OOB data from
* an empty socket buffer, convert that to a Windows expected return. */
if ((flags & MSG_OOB) && errno == EINVAL)
errno = EWOULDBLOCK;
if (errno != EAGAIN)
{
err = wsaErrno();
goto error;
}
}
else if (lpNumberOfBytesRecvd) *lpNumberOfBytesRecvd = n;
if (overlapped)
{
IO_STATUS_BLOCK *iosb = lpOverlapped ? (IO_STATUS_BLOCK *)lpOverlapped : &wsa->local_iosb;
wsa->user_overlapped = lpOverlapped;
wsa->completion_func = lpCompletionRoutine;
release_sock_fd( s, fd );
if (n == -1)
{
iosb->u.Status = STATUS_PENDING;
iosb->Information = 0;
if (wsa->completion_func)
err = register_async( ASYNC_TYPE_READ, wsa->hSocket, &wsa->io, NULL,
ws2_async_apc, wsa, iosb );
else
err = register_async( ASYNC_TYPE_READ, wsa->hSocket, &wsa->io, lpOverlapped->hEvent,
NULL, (void *)cvalue, iosb );
if (err != STATUS_PENDING) HeapFree( GetProcessHeap(), 0, wsa );
SetLastError(NtStatusToWSAError( err ));
return SOCKET_ERROR;
}
iosb->u.Status = STATUS_SUCCESS;
iosb->Information = n;
if (!wsa->completion_func)
{
if (cvalue) WS_AddCompletion( s, cvalue, STATUS_SUCCESS, n, FALSE );
if (lpOverlapped->hEvent) SetEvent( lpOverlapped->hEvent );
HeapFree( GetProcessHeap(), 0, wsa );
}
else NtQueueApcThread( GetCurrentThread(), (PNTAPCFUNC)ws2_async_apc,
(ULONG_PTR)wsa, (ULONG_PTR)iosb, 0 );
_enable_event(SOCKET2HANDLE(s), FD_READ, 0, 0);
return 0;
}
if (n != -1) break;
if ((err = sock_is_blocking( s, &is_blocking ))) goto error;
if ( is_blocking )
{
struct pollfd pfd;
int poll_timeout = -1;
INT64 timeout = get_rcvsnd_timeo(fd, TRUE);
if (timeout)
{
timeout -= GetTickCount() - timeout_start;
if (timeout < 0) poll_timeout = 0;
else poll_timeout = timeout <= INT_MAX ? timeout : INT_MAX;
}
pfd.fd = fd;
pfd.events = POLLIN;
if (*lpFlags & WS_MSG_OOB) pfd.events |= POLLPRI;
if (!poll_timeout || !poll( &pfd, 1, poll_timeout ))
{
err = WSAETIMEDOUT;
/* a timeout is not fatal */
_enable_event(SOCKET2HANDLE(s), FD_READ, 0, 0);
goto error;
}
}
else
{
_enable_event(SOCKET2HANDLE(s), FD_READ, 0, 0);
err = WSAEWOULDBLOCK;
goto error;
}
}
TRACE(" -> %i bytes\n", n);
if (wsa != &localwsa) HeapFree( GetProcessHeap(), 0, wsa );
release_sock_fd( s, fd );
_enable_event(SOCKET2HANDLE(s), FD_READ, 0, 0);
SetLastError(ERROR_SUCCESS);
return 0;
error:
if (wsa != &localwsa) HeapFree( GetProcessHeap(), 0, wsa );
release_sock_fd( s, fd );
WARN(" -> ERROR %d\n", err);
SetLastError( err );
return SOCKET_ERROR;
}
/***********************************************************************
* WSARecvFrom (WS2_32.69)
*/
INT WINAPI WSARecvFrom( SOCKET s, LPWSABUF lpBuffers, DWORD dwBufferCount,
LPDWORD lpNumberOfBytesRecvd, LPDWORD lpFlags, struct WS_sockaddr *lpFrom,
LPINT lpFromlen, LPWSAOVERLAPPED lpOverlapped,
LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine )
{
return WS2_recv_base( s, lpBuffers, dwBufferCount,
lpNumberOfBytesRecvd, lpFlags,
lpFrom, lpFromlen,
lpOverlapped, lpCompletionRoutine, NULL );
}
/***********************************************************************
* WSCInstallProvider (WS2_32.88)
*/
INT WINAPI WSCInstallProvider( const LPGUID lpProviderId,
LPCWSTR lpszProviderDllPath,
const LPWSAPROTOCOL_INFOW lpProtocolInfoList,
DWORD dwNumberOfEntries,
LPINT lpErrno )
{
FIXME("(%s, %s, %p, %d, %p): stub !\n", debugstr_guid(lpProviderId),
debugstr_w(lpszProviderDllPath), lpProtocolInfoList,
dwNumberOfEntries, lpErrno);
*lpErrno = 0;
return 0;
}
/***********************************************************************
* WSCDeinstallProvider (WS2_32.83)
*/
INT WINAPI WSCDeinstallProvider(LPGUID lpProviderId, LPINT lpErrno)
{
FIXME("(%s, %p): stub !\n", debugstr_guid(lpProviderId), lpErrno);
*lpErrno = 0;
return 0;
}
/***********************************************************************
* WSAAccept (WS2_32.26)
*/
SOCKET WINAPI WSAAccept( SOCKET s, struct WS_sockaddr *addr, LPINT addrlen,
LPCONDITIONPROC lpfnCondition, DWORD_PTR dwCallbackData)
{
int ret = 0, size;
WSABUF CallerId, CallerData, CalleeId, CalleeData;
/* QOS SQOS, GQOS; */
GROUP g;
SOCKET cs;
SOCKADDR src_addr, dst_addr;
TRACE("socket %04lx, sockaddr %p, addrlen %p, fnCondition %p, dwCallbackData %ld\n",
s, addr, addrlen, lpfnCondition, dwCallbackData);
cs = WS_accept(s, addr, addrlen);
if (cs == SOCKET_ERROR) return SOCKET_ERROR;
if (!lpfnCondition) return cs;
if (addr && addrlen)
{
CallerId.buf = (char *)addr;
CallerId.len = *addrlen;
}
else
{
size = sizeof(src_addr);
WS_getpeername(cs, &src_addr, &size);
CallerId.buf = (char *)&src_addr;
CallerId.len = size;
}
CallerData.buf = NULL;
CallerData.len = 0;
size = sizeof(dst_addr);
WS_getsockname(cs, &dst_addr, &size);
CalleeId.buf = (char *)&dst_addr;
CalleeId.len = sizeof(dst_addr);
ret = (*lpfnCondition)(&CallerId, &CallerData, NULL, NULL,
&CalleeId, &CalleeData, &g, dwCallbackData);
switch (ret)
{
case CF_ACCEPT:
return cs;
case CF_DEFER:
SERVER_START_REQ( set_socket_deferred )
{
req->handle = wine_server_obj_handle( SOCKET2HANDLE(s) );
req->deferred = wine_server_obj_handle( SOCKET2HANDLE(cs) );
if ( !wine_server_call_err ( req ) )
{
SetLastError( WSATRY_AGAIN );
WS_closesocket( cs );
}
}
SERVER_END_REQ;
return SOCKET_ERROR;
case CF_REJECT:
WS_closesocket(cs);
SetLastError(WSAECONNREFUSED);
return SOCKET_ERROR;
default:
FIXME("Unknown return type from Condition function\n");
SetLastError(WSAENOTSOCK);
return SOCKET_ERROR;
}
}
/***********************************************************************
* WSADuplicateSocketA (WS2_32.32)
*/
int WINAPI WSADuplicateSocketA( SOCKET s, DWORD dwProcessId, LPWSAPROTOCOL_INFOA lpProtocolInfo )
{
return WS_DuplicateSocket(FALSE, s, dwProcessId, (LPWSAPROTOCOL_INFOW) lpProtocolInfo);
}
/***********************************************************************
* WSADuplicateSocketW (WS2_32.33)
*/
int WINAPI WSADuplicateSocketW( SOCKET s, DWORD dwProcessId, LPWSAPROTOCOL_INFOW lpProtocolInfo )
{
return WS_DuplicateSocket(TRUE, s, dwProcessId, lpProtocolInfo);
}
/***********************************************************************
* WSAInstallServiceClassA (WS2_32.48)
*/
int WINAPI WSAInstallServiceClassA(LPWSASERVICECLASSINFOA info)
{
FIXME("Request to install service %s\n",debugstr_a(info->lpszServiceClassName));
SetLastError(WSAEACCES);
return SOCKET_ERROR;
}
/***********************************************************************
* WSAInstallServiceClassW (WS2_32.49)
*/
int WINAPI WSAInstallServiceClassW(LPWSASERVICECLASSINFOW info)
{
FIXME("Request to install service %s\n",debugstr_w(info->lpszServiceClassName));
SetLastError(WSAEACCES);
return SOCKET_ERROR;
}
/***********************************************************************
* WSARemoveServiceClass (WS2_32.70)
*/
int WINAPI WSARemoveServiceClass(LPGUID info)
{
FIXME("Request to remove service %s\n", debugstr_guid(info));
SetLastError(WSATYPE_NOT_FOUND);
return SOCKET_ERROR;
}
/***********************************************************************
* inet_ntop (WS2_32.@)
*/
PCSTR WINAPI WS_inet_ntop( INT family, PVOID addr, PSTR buffer, SIZE_T len )
{
NTSTATUS status;
ULONG size = min( len, (ULONG)-1 );
TRACE("family %d, addr (%p), buffer (%p), len %ld\n", family, addr, buffer, len);
if (!buffer)
{
SetLastError( STATUS_INVALID_PARAMETER );
return NULL;
}
switch (family)
{
case WS_AF_INET:
{
status = RtlIpv4AddressToStringExA( (IN_ADDR *)addr, 0, buffer, &size );
break;
}
case WS_AF_INET6:
{
status = RtlIpv6AddressToStringExA( (IN6_ADDR *)addr, 0, 0, buffer, &size );
break;
}
default:
SetLastError( WSAEAFNOSUPPORT );
return NULL;
}
if (status == STATUS_SUCCESS) return buffer;
SetLastError( STATUS_INVALID_PARAMETER );
return NULL;
}
/***********************************************************************
* inet_pton (WS2_32.@)
*/
INT WINAPI WS_inet_pton(INT family, const char *addr, void *buffer)
{
NTSTATUS status;
const char *terminator;
TRACE("family %d, addr %s, buffer (%p)\n", family, debugstr_a(addr), buffer);
if (!addr || !buffer)
{
SetLastError(WSAEFAULT);
return SOCKET_ERROR;
}
switch (family)
{
case WS_AF_INET:
status = RtlIpv4StringToAddressA(addr, TRUE, &terminator, buffer);
break;
case WS_AF_INET6:
status = RtlIpv6StringToAddressA(addr, &terminator, buffer);
break;
default:
SetLastError(WSAEAFNOSUPPORT);
return SOCKET_ERROR;
}
return (status == STATUS_SUCCESS && *terminator == 0);
}
/***********************************************************************
* InetPtonW (WS2_32.@)
*/
INT WINAPI InetPtonW(INT family, PCWSTR addr, PVOID buffer)
{
char *addrA;
int len;
INT ret;
TRACE("family %d, addr %s, buffer (%p)\n", family, debugstr_w(addr), buffer);
if (!addr)
{
SetLastError(WSAEFAULT);
return SOCKET_ERROR;
}
len = WideCharToMultiByte(CP_ACP, 0, addr, -1, NULL, 0, NULL, NULL);
if (!(addrA = HeapAlloc(GetProcessHeap(), 0, len)))
{
SetLastError(WSA_NOT_ENOUGH_MEMORY);
return SOCKET_ERROR;
}
WideCharToMultiByte(CP_ACP, 0, addr, -1, addrA, len, NULL, NULL);
ret = WS_inet_pton(family, addrA, buffer);
if (!ret) SetLastError(WSAEINVAL);
HeapFree(GetProcessHeap(), 0, addrA);
return ret;
}
/***********************************************************************
* InetNtopW (WS2_32.@)
*/
PCWSTR WINAPI InetNtopW(INT family, PVOID addr, PWSTR buffer, SIZE_T len)
{
char bufferA[WS_INET6_ADDRSTRLEN];
PWSTR ret = NULL;
TRACE("family %d, addr (%p), buffer (%p), len %ld\n", family, addr, buffer, len);
if (WS_inet_ntop(family, addr, bufferA, sizeof(bufferA)))
{
if (MultiByteToWideChar(CP_ACP, 0, bufferA, -1, buffer, len))
ret = buffer;
else
SetLastError(ERROR_INVALID_PARAMETER);
}
return ret;
}
/***********************************************************************
* WSAStringToAddressA (WS2_32.80)
*/
INT WINAPI WSAStringToAddressA(LPSTR AddressString,
INT AddressFamily,
LPWSAPROTOCOL_INFOA lpProtocolInfo,
LPSOCKADDR lpAddress,
LPINT lpAddressLength)
{
INT res=0;
NTSTATUS status;
TRACE( "(%s, %x, %p, %p, %p)\n", debugstr_a(AddressString), AddressFamily,
lpProtocolInfo, lpAddress, lpAddressLength );
if (!lpAddressLength || !lpAddress) return SOCKET_ERROR;
if (!AddressString)
{
SetLastError(WSAEINVAL);
return SOCKET_ERROR;
}
if (lpProtocolInfo)
FIXME("ProtocolInfo not implemented.\n");
switch(AddressFamily)
{
case WS_AF_INET:
{
SOCKADDR_IN *addr4 = (SOCKADDR_IN *)lpAddress;
/* If lpAddressLength is too small, tell caller the size we need */
if (*lpAddressLength < sizeof(SOCKADDR_IN))
{
*lpAddressLength = sizeof(SOCKADDR_IN);
res = WSAEFAULT;
break;
}
memset(lpAddress, 0, sizeof(SOCKADDR_IN));
status = RtlIpv4StringToAddressExA(AddressString, FALSE, &addr4->sin_addr, &addr4->sin_port);
if (status != STATUS_SUCCESS)
{
res = WSAEINVAL;
break;
}
addr4->sin_family = WS_AF_INET;
*lpAddressLength = sizeof(SOCKADDR_IN);
break;
}
case WS_AF_INET6:
{
SOCKADDR_IN6 *addr6 = (SOCKADDR_IN6 *)lpAddress;
/* If lpAddressLength is too small, tell caller the size we need */
if (*lpAddressLength < sizeof(SOCKADDR_IN6))
{
*lpAddressLength = sizeof(SOCKADDR_IN6);
res = WSAEFAULT;
break;
}
memset(lpAddress, 0, sizeof(SOCKADDR_IN6));
status = RtlIpv6StringToAddressExA(AddressString, &addr6->sin6_addr, &addr6->sin6_scope_id, &addr6->sin6_port);
if (status != STATUS_SUCCESS)
{
res = WSAEINVAL;
break;
}
addr6->sin6_family = WS_AF_INET6;
*lpAddressLength = sizeof(SOCKADDR_IN6);
break;
}
default:
/* According to MSDN, only AF_INET and AF_INET6 are supported. */
TRACE("Unsupported address family specified: %d.\n", AddressFamily);
res = WSAEINVAL;
}
if (!res) return 0;
SetLastError(res);
return SOCKET_ERROR;
}
/***********************************************************************
* WSAStringToAddressW (WS2_32.81)
*
* FIXME: Does anybody know if this function allows using Hebrew/Arabic/Chinese... digits?
* If this should be the case, it would be required to map these digits
* to Unicode digits (0-9) using FoldString first.
*/
INT WINAPI WSAStringToAddressW(LPWSTR AddressString,
INT AddressFamily,
LPWSAPROTOCOL_INFOW lpProtocolInfo,
LPSOCKADDR lpAddress,
LPINT lpAddressLength)
{
INT sBuffer,res=0;
LPSTR workBuffer=NULL;
WSAPROTOCOL_INFOA infoA;
LPWSAPROTOCOL_INFOA lpProtoInfoA = NULL;
TRACE( "(%s, %x, %p, %p, %p)\n", debugstr_w(AddressString), AddressFamily, lpProtocolInfo,
lpAddress, lpAddressLength );
if (!lpAddressLength || !lpAddress) return SOCKET_ERROR;
/* if ProtocolInfo is available - convert to ANSI variant */
if (lpProtocolInfo)
{
lpProtoInfoA = &infoA;
memcpy( lpProtoInfoA, lpProtocolInfo, FIELD_OFFSET( WSAPROTOCOL_INFOA, szProtocol ) );
if (!WideCharToMultiByte( CP_ACP, 0, lpProtocolInfo->szProtocol, -1,
lpProtoInfoA->szProtocol, WSAPROTOCOL_LEN+1, NULL, NULL ))
{
SetLastError(WSAEINVAL);
return SOCKET_ERROR;
}
}
if (AddressString)
{
/* Translate AddressString to ANSI code page - assumes that only
standard digits 0-9 are used with this API call */
sBuffer = WideCharToMultiByte( CP_ACP, 0, AddressString, -1, NULL, 0, NULL, NULL );
workBuffer = HeapAlloc( GetProcessHeap(), 0, sBuffer );
if (workBuffer)
{
WideCharToMultiByte( CP_ACP, 0, AddressString, -1, workBuffer, sBuffer, NULL, NULL );
res = WSAStringToAddressA(workBuffer,AddressFamily,lpProtoInfoA,
lpAddress,lpAddressLength);
HeapFree( GetProcessHeap(), 0, workBuffer );
return res;
}
else
res = WSA_NOT_ENOUGH_MEMORY;
}
else
res = WSAEINVAL;
SetLastError(res);
return SOCKET_ERROR;
}
/***********************************************************************
* WSAAddressToStringA (WS2_32.27)
*
* See WSAAddressToStringW
*/
INT WINAPI WSAAddressToStringA( LPSOCKADDR sockaddr, DWORD len,
LPWSAPROTOCOL_INFOA info, LPSTR string,
LPDWORD lenstr )
{
DWORD size;
CHAR buffer[54]; /* 32 digits + 7':' + '[' + '%" + 5 digits + ']:' + 5 digits + '\0' */
CHAR *p;
TRACE( "(%p, %d, %p, %p, %p)\n", sockaddr, len, info, string, lenstr );
if (!sockaddr) return SOCKET_ERROR;
if (!string || !lenstr) return SOCKET_ERROR;
switch(sockaddr->sa_family)
{
case WS_AF_INET:
{
unsigned int long_ip = ntohl(((SOCKADDR_IN *)sockaddr)->sin_addr.WS_s_addr);
if (len < sizeof(SOCKADDR_IN)) return SOCKET_ERROR;
sprintf( buffer, "%u.%u.%u.%u:%u",
(long_ip >> 24) & 0xff,
(long_ip >> 16) & 0xff,
(long_ip >> 8) & 0xff,
long_ip & 0xff,
ntohs( ((SOCKADDR_IN *)sockaddr)->sin_port ) );
p = strchr( buffer, ':' );
if (!((SOCKADDR_IN *)sockaddr)->sin_port) *p = 0;
break;
}
case WS_AF_INET6:
{
struct WS_sockaddr_in6 *sockaddr6 = (LPSOCKADDR_IN6) sockaddr;
size_t slen;
buffer[0] = 0;
if (len < sizeof(SOCKADDR_IN6)) return SOCKET_ERROR;
if ((sockaddr6->sin6_port))
strcpy(buffer, "[");
slen = strlen(buffer);
if (!WS_inet_ntop(WS_AF_INET6, &sockaddr6->sin6_addr, &buffer[slen], sizeof(buffer) - slen))
{
SetLastError(WSAEINVAL);
return SOCKET_ERROR;
}
if ((sockaddr6->sin6_scope_id))
sprintf(buffer+strlen(buffer), "%%%u", sockaddr6->sin6_scope_id);
if ((sockaddr6->sin6_port))
sprintf(buffer+strlen(buffer), "]:%u", ntohs(sockaddr6->sin6_port));
break;
}
default:
SetLastError(WSAEINVAL);
return SOCKET_ERROR;
}
size = strlen( buffer ) + 1;
if (*lenstr < size)
{
*lenstr = size;
SetLastError(WSAEFAULT);
return SOCKET_ERROR;
}
TRACE("=> %s,%u bytes\n", debugstr_a(buffer), size);
*lenstr = size;
strcpy( string, buffer );
return 0;
}
/***********************************************************************
* WSAAddressToStringW (WS2_32.28)
*
* Convert a sockaddr address into a readable address string.
*
* PARAMS
* sockaddr [I] Pointer to a sockaddr structure.
* len [I] Size of the sockaddr structure.
* info [I] Pointer to a WSAPROTOCOL_INFOW structure (optional).
* string [I/O] Pointer to a buffer to receive the address string.
* lenstr [I/O] Size of the receive buffer in WCHARs.
*
* RETURNS
* Success: 0
* Failure: SOCKET_ERROR
*
* NOTES
* The 'info' parameter is ignored.
*/
INT WINAPI WSAAddressToStringW( LPSOCKADDR sockaddr, DWORD len,
LPWSAPROTOCOL_INFOW info, LPWSTR string,
LPDWORD lenstr )
{
INT ret;
DWORD size;
WCHAR buffer[54]; /* 32 digits + 7':' + '[' + '%" + 5 digits + ']:' + 5 digits + '\0' */
CHAR bufAddr[54];
TRACE( "(%p, %d, %p, %p, %p)\n", sockaddr, len, info, string, lenstr );
size = *lenstr;
ret = WSAAddressToStringA(sockaddr, len, NULL, bufAddr, &size);
if (ret) return ret;
MultiByteToWideChar(CP_ACP, 0, bufAddr, size, buffer, ARRAY_SIZE(buffer));
if (*lenstr < size)
{
*lenstr = size;
SetLastError(WSAEFAULT);
return SOCKET_ERROR;
}
TRACE("=> %s,%u bytes\n", debugstr_w(buffer), size);
*lenstr = size;
lstrcpyW( string, buffer );
return 0;
}
/***********************************************************************
* WSAEnumNameSpaceProvidersA (WS2_32.34)
*/
INT WINAPI WSAEnumNameSpaceProvidersA( LPDWORD len, LPWSANAMESPACE_INFOA buffer )
{
FIXME( "(%p %p) Stub!\n", len, buffer );
return 0;
}
/***********************************************************************
* WSAEnumNameSpaceProvidersW (WS2_32.35)
*/
INT WINAPI WSAEnumNameSpaceProvidersW( LPDWORD len, LPWSANAMESPACE_INFOW buffer )
{
FIXME( "(%p %p) Stub!\n", len, buffer );
return 0;
}
/***********************************************************************
* WSAGetQOSByName (WS2_32.41)
*/
BOOL WINAPI WSAGetQOSByName( SOCKET s, LPWSABUF lpQOSName, LPQOS lpQOS )
{
FIXME( "(0x%04lx %p %p) Stub!\n", s, lpQOSName, lpQOS );
return FALSE;
}
/***********************************************************************
* WSAGetServiceClassInfoA (WS2_32.42)
*/
INT WINAPI WSAGetServiceClassInfoA( LPGUID provider, LPGUID service, LPDWORD len,
LPWSASERVICECLASSINFOA info )
{
FIXME( "(%s %s %p %p) Stub!\n", debugstr_guid(provider), debugstr_guid(service),
len, info );
SetLastError(WSA_NOT_ENOUGH_MEMORY);
return SOCKET_ERROR;
}
/***********************************************************************
* WSAGetServiceClassInfoW (WS2_32.43)
*/
INT WINAPI WSAGetServiceClassInfoW( LPGUID provider, LPGUID service, LPDWORD len,
LPWSASERVICECLASSINFOW info )
{
FIXME( "(%s %s %p %p) Stub!\n", debugstr_guid(provider), debugstr_guid(service),
len, info );
SetLastError(WSA_NOT_ENOUGH_MEMORY);
return SOCKET_ERROR;
}
/***********************************************************************
* WSAGetServiceClassNameByClassIdA (WS2_32.44)
*/
INT WINAPI WSAGetServiceClassNameByClassIdA( LPGUID class, LPSTR service, LPDWORD len )
{
FIXME( "(%s %p %p) Stub!\n", debugstr_guid(class), service, len );
SetLastError(WSA_NOT_ENOUGH_MEMORY);
return SOCKET_ERROR;
}
/***********************************************************************
* WSAGetServiceClassNameByClassIdW (WS2_32.45)
*/
INT WINAPI WSAGetServiceClassNameByClassIdW( LPGUID class, LPWSTR service, LPDWORD len )
{
FIXME( "(%s %p %p) Stub!\n", debugstr_guid(class), service, len );
SetLastError(WSA_NOT_ENOUGH_MEMORY);
return SOCKET_ERROR;
}
/***********************************************************************
* WSALookupServiceBeginA (WS2_32.59)
*/
INT WINAPI WSALookupServiceBeginA( LPWSAQUERYSETA lpqsRestrictions,
DWORD dwControlFlags,
LPHANDLE lphLookup)
{
FIXME("(%p 0x%08x %p) Stub!\n", lpqsRestrictions, dwControlFlags,
lphLookup);
SetLastError(WSA_NOT_ENOUGH_MEMORY);
return SOCKET_ERROR;
}
/***********************************************************************
* WSALookupServiceBeginW (WS2_32.60)
*/
INT WINAPI WSALookupServiceBeginW( LPWSAQUERYSETW lpqsRestrictions,
DWORD dwControlFlags,
LPHANDLE lphLookup)
{
FIXME("(%p 0x%08x %p) Stub!\n", lpqsRestrictions, dwControlFlags,
lphLookup);
SetLastError(WSA_NOT_ENOUGH_MEMORY);
return SOCKET_ERROR;
}
/***********************************************************************
* WSALookupServiceEnd (WS2_32.61)
*/
INT WINAPI WSALookupServiceEnd( HANDLE lookup )
{
FIXME("(%p) Stub!\n", lookup );
return 0;
}
/***********************************************************************
* WSALookupServiceNextA (WS2_32.62)
*/
INT WINAPI WSALookupServiceNextA( HANDLE lookup, DWORD flags, LPDWORD len, LPWSAQUERYSETA results )
{
FIXME( "(%p 0x%08x %p %p) Stub!\n", lookup, flags, len, results );
SetLastError(WSA_E_NO_MORE);
return SOCKET_ERROR;
}
/***********************************************************************
* WSALookupServiceNextW (WS2_32.63)
*/
INT WINAPI WSALookupServiceNextW( HANDLE lookup, DWORD flags, LPDWORD len, LPWSAQUERYSETW results )
{
FIXME( "(%p 0x%08x %p %p) Stub!\n", lookup, flags, len, results );
SetLastError(WSA_E_NO_MORE);
return SOCKET_ERROR;
}
/***********************************************************************
* WSANtohl (WS2_32.64)
*/
INT WINAPI WSANtohl( SOCKET s, WS_u_long netlong, WS_u_long* lphostlong )
{
TRACE( "(%04lx 0x%08x %p)\n", s, netlong, lphostlong );
if (!lphostlong) return WSAEFAULT;
*lphostlong = ntohl( netlong );
return 0;
}
/***********************************************************************
* WSANtohs (WS2_32.65)
*/
INT WINAPI WSANtohs( SOCKET s, WS_u_short netshort, WS_u_short* lphostshort )
{
TRACE( "(%04lx 0x%08x %p)\n", s, netshort, lphostshort );
if (!lphostshort) return WSAEFAULT;
*lphostshort = ntohs( netshort );
return 0;
}
/***********************************************************************
* WSAProviderConfigChange (WS2_32.66)
*/
INT WINAPI WSAProviderConfigChange( LPHANDLE handle, LPWSAOVERLAPPED overlapped,
LPWSAOVERLAPPED_COMPLETION_ROUTINE completion )
{
FIXME( "(%p %p %p) Stub!\n", handle, overlapped, completion );
return SOCKET_ERROR;
}
/***********************************************************************
* WSARecvDisconnect (WS2_32.68)
*/
INT WINAPI WSARecvDisconnect( SOCKET s, LPWSABUF disconnectdata )
{
TRACE( "(%04lx %p)\n", s, disconnectdata );
return WS_shutdown( s, SD_RECEIVE );
}
/***********************************************************************
* WSASetServiceA (WS2_32.76)
*/
INT WINAPI WSASetServiceA( LPWSAQUERYSETA query, WSAESETSERVICEOP operation, DWORD flags )
{
FIXME( "(%p 0x%08x 0x%08x) Stub!\n", query, operation, flags );
return 0;
}
/***********************************************************************
* WSASetServiceW (WS2_32.77)
*/
INT WINAPI WSASetServiceW( LPWSAQUERYSETW query, WSAESETSERVICEOP operation, DWORD flags )
{
FIXME( "(%p 0x%08x 0x%08x) Stub!\n", query, operation, flags );
return 0;
}
/***********************************************************************
* WSCEnableNSProvider (WS2_32.84)
*/
INT WINAPI WSCEnableNSProvider( LPGUID provider, BOOL enable )
{
FIXME( "(%s 0x%08x) Stub!\n", debugstr_guid(provider), enable );
return 0;
}
/***********************************************************************
* WSCGetProviderInfo
*/
INT WINAPI WSCGetProviderInfo( LPGUID provider, WSC_PROVIDER_INFO_TYPE info_type,
PBYTE info, size_t* len, DWORD flags, LPINT errcode )
{
FIXME( "(%s 0x%08x %p %p 0x%08x %p) Stub!\n",
debugstr_guid(provider), info_type, info, len, flags, errcode );
if (!errcode)
return SOCKET_ERROR;
if (!provider) {
*errcode = WSAEFAULT;
return SOCKET_ERROR;
}
*errcode = WSANO_RECOVERY;
return SOCKET_ERROR;
}
/***********************************************************************
* WSCGetProviderPath (WS2_32.86)
*/
INT WINAPI WSCGetProviderPath( LPGUID provider, LPWSTR path, LPINT len, LPINT errcode )
{
FIXME( "(%s %p %p %p) Stub!\n", debugstr_guid(provider), path, len, errcode );
if (!errcode || !provider || !len) return WSAEFAULT;
*errcode = WSAEINVAL;
return SOCKET_ERROR;
}
/***********************************************************************
* WSCInstallNameSpace (WS2_32.87)
*/
INT WINAPI WSCInstallNameSpace( LPWSTR identifier, LPWSTR path, DWORD namespace,
DWORD version, LPGUID provider )
{
FIXME( "(%s %s 0x%08x 0x%08x %s) Stub!\n", debugstr_w(identifier), debugstr_w(path),
namespace, version, debugstr_guid(provider) );
return 0;
}
/***********************************************************************
* WSCUnInstallNameSpace (WS2_32.89)
*/
INT WINAPI WSCUnInstallNameSpace( LPGUID lpProviderId )
{
FIXME("(%s) Stub!\n", debugstr_guid(lpProviderId));
return NO_ERROR;
}
/***********************************************************************
* WSCWriteProviderOrder (WS2_32.91)
*/
INT WINAPI WSCWriteProviderOrder( LPDWORD entry, DWORD number )
{
FIXME("(%p 0x%08x) Stub!\n", entry, number);
return 0;
}
/***********************************************************************
* WSCSetApplicationCategory (WS2_32.@)
*/
INT WINAPI WSCSetApplicationCategory( LPCWSTR path, DWORD len, LPCWSTR extra, DWORD extralen,
DWORD lspcat, DWORD *prev_lspcat, LPINT err )
{
FIXME("(%s %d %s %d %d %p) Stub!\n", debugstr_w(path), len, debugstr_w(extra),
extralen, lspcat, prev_lspcat);
return 0;
}
/***********************************************************************
* WSANSPIoctl (WS2_32.91)
*/
INT WINAPI WSANSPIoctl( HANDLE hLookup, DWORD dwControlCode, LPVOID lpvInBuffer,
DWORD cbInBuffer, LPVOID lpvOutBuffer, DWORD cbOutBuffer,
LPDWORD lpcbBytesReturned, LPWSACOMPLETION lpCompletion )
{
FIXME("(%p, 0x%08x, %p, 0x%08x, %p, 0x%08x, %p, %p) Stub!\n", hLookup, dwControlCode,
lpvInBuffer, cbInBuffer, lpvOutBuffer, cbOutBuffer, lpcbBytesReturned, lpCompletion);
SetLastError(WSA_NOT_ENOUGH_MEMORY);
return SOCKET_ERROR;
}
/*****************************************************************************
* WSAEnumProtocolsA [WS2_32.@]
*
* see function WSAEnumProtocolsW
*/
INT WINAPI WSAEnumProtocolsA( LPINT protocols, LPWSAPROTOCOL_INFOA buffer, LPDWORD len )
{
return WS_EnumProtocols( FALSE, protocols, (LPWSAPROTOCOL_INFOW) buffer, len);
}
/*****************************************************************************
* WSAEnumProtocolsW [WS2_32.@]
*
* Retrieves information about specified set of active network protocols.
*
* PARAMS
* protocols [I] Pointer to null-terminated array of protocol id's. NULL
* retrieves information on all available protocols.
* buffer [I] Pointer to a buffer to be filled with WSAPROTOCOL_INFO
* structures.
* len [I/O] Pointer to a variable specifying buffer size. On output
* the variable holds the number of bytes needed when the
* specified size is too small.
*
* RETURNS
* Success: number of WSAPROTOCOL_INFO structures in buffer.
* Failure: SOCKET_ERROR
*
* NOTES
* NT4SP5 does not return SPX if protocols == NULL
*
* BUGS
* - NT4SP5 returns in addition these list of NETBIOS protocols
* (address family 17), each entry two times one for socket type 2 and 5
*
* iProtocol szProtocol
* 0x80000000 \Device\NwlnkNb
* 0xfffffffa \Device\NetBT_CBENT7
* 0xfffffffb \Device\Nbf_CBENT7
* 0xfffffffc \Device\NetBT_NdisWan5
* 0xfffffffd \Device\NetBT_El9202
* 0xfffffffe \Device\Nbf_El9202
* 0xffffffff \Device\Nbf_NdisWan4
*
* - there is no check that the operating system supports the returned
* protocols
*/
INT WINAPI WSAEnumProtocolsW( LPINT protocols, LPWSAPROTOCOL_INFOW buffer, LPDWORD len )
{
return WS_EnumProtocols( TRUE, protocols, buffer, len);
}
/*****************************************************************************
* WSCEnumProtocols [WS2_32.@]
*
* PARAMS
* protocols [I] Null-terminated array of iProtocol values.
* buffer [O] Buffer of WSAPROTOCOL_INFOW structures.
* len [I/O] Size of buffer on input/output.
* errno [O] Error code.
*
* RETURNS
* Success: number of protocols to be reported on.
* Failure: SOCKET_ERROR. error is in errno.
*
* BUGS
* Doesn't supply info on layered protocols.
*
*/
INT WINAPI WSCEnumProtocols( LPINT protocols, LPWSAPROTOCOL_INFOW buffer, LPDWORD len, LPINT err )
{
INT ret = WSAEnumProtocolsW( protocols, buffer, len );
if (ret == SOCKET_ERROR) *err = WSAENOBUFS;
return ret;
}