wine-wine/dlls/oleaut32/variant.c

5938 lines
184 KiB
C

/*
* VARIANT
*
* Copyright 1998 Jean-Claude Cote
* Copyright 2003 Jon Griffiths
* Copyright 2005 Daniel Remenak
* Copyright 2006 Google (Benjamin Arai)
*
* The algorithm for conversion from Julian days to day/month/year is based on
* that devised by Henry Fliegel, as implemented in PostgreSQL, which is
* Copyright 1994-7 Regents of the University of California
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <string.h>
#include <stdlib.h>
#include <stdarg.h>
#define COBJMACROS
#define NONAMELESSUNION
#define NONAMELESSSTRUCT
#include "windef.h"
#include "winbase.h"
#include "winerror.h"
#include "variant.h"
#include "resource.h"
#include "wine/debug.h"
WINE_DEFAULT_DEBUG_CHANNEL(variant);
static CRITICAL_SECTION cache_cs;
static CRITICAL_SECTION_DEBUG critsect_debug =
{
0, 0, &cache_cs,
{ &critsect_debug.ProcessLocksList, &critsect_debug.ProcessLocksList },
0, 0, { (DWORD_PTR)(__FILE__ ": cache_cs") }
};
static CRITICAL_SECTION cache_cs = { &critsect_debug, -1, 0, 0, 0, 0 };
/* Convert a variant from one type to another */
static inline HRESULT VARIANT_Coerce(VARIANTARG* pd, LCID lcid, USHORT wFlags,
VARIANTARG* ps, VARTYPE vt)
{
HRESULT res = DISP_E_TYPEMISMATCH;
VARTYPE vtFrom = V_TYPE(ps);
DWORD dwFlags = 0;
TRACE("(%s,0x%08x,0x%04x,%s,%s)\n", debugstr_variant(pd), lcid, wFlags,
debugstr_variant(ps), debugstr_vt(vt));
if (vt == VT_BSTR || vtFrom == VT_BSTR)
{
/* All flags passed to low level function are only used for
* changing to or from strings. Map these here.
*/
if (wFlags & VARIANT_LOCALBOOL)
dwFlags |= VAR_LOCALBOOL;
if (wFlags & VARIANT_CALENDAR_HIJRI)
dwFlags |= VAR_CALENDAR_HIJRI;
if (wFlags & VARIANT_CALENDAR_THAI)
dwFlags |= VAR_CALENDAR_THAI;
if (wFlags & VARIANT_CALENDAR_GREGORIAN)
dwFlags |= VAR_CALENDAR_GREGORIAN;
if (wFlags & VARIANT_NOUSEROVERRIDE)
dwFlags |= LOCALE_NOUSEROVERRIDE;
if (wFlags & VARIANT_USE_NLS)
dwFlags |= LOCALE_USE_NLS;
}
/* Map int/uint to i4/ui4 */
if (vt == VT_INT)
vt = VT_I4;
else if (vt == VT_UINT)
vt = VT_UI4;
if (vtFrom == VT_INT)
vtFrom = VT_I4;
else if (vtFrom == VT_UINT)
vtFrom = VT_UI4;
if (vt == vtFrom)
return VariantCopy(pd, ps);
if (wFlags & VARIANT_NOVALUEPROP && vtFrom == VT_DISPATCH && vt != VT_UNKNOWN)
{
/* VARIANT_NOVALUEPROP prevents IDispatch objects from being coerced by
* accessing the default object property.
*/
return DISP_E_TYPEMISMATCH;
}
switch (vt)
{
case VT_EMPTY:
if (vtFrom == VT_NULL)
return DISP_E_TYPEMISMATCH;
/* ... Fall through */
case VT_NULL:
if (vtFrom <= VT_UINT && vtFrom != (VARTYPE)15 && vtFrom != VT_ERROR)
{
res = VariantClear( pd );
if (vt == VT_NULL && SUCCEEDED(res))
V_VT(pd) = VT_NULL;
}
return res;
case VT_I1:
switch (vtFrom)
{
case VT_EMPTY: V_I1(pd) = 0; return S_OK;
case VT_I2: return VarI1FromI2(V_I2(ps), &V_I1(pd));
case VT_I4: return VarI1FromI4(V_I4(ps), &V_I1(pd));
case VT_UI1: V_I1(pd) = V_UI1(ps); return S_OK;
case VT_UI2: return VarI1FromUI2(V_UI2(ps), &V_I1(pd));
case VT_UI4: return VarI1FromUI4(V_UI4(ps), &V_I1(pd));
case VT_I8: return VarI1FromI8(V_I8(ps), &V_I1(pd));
case VT_UI8: return VarI1FromUI8(V_UI8(ps), &V_I1(pd));
case VT_R4: return VarI1FromR4(V_R4(ps), &V_I1(pd));
case VT_R8: return VarI1FromR8(V_R8(ps), &V_I1(pd));
case VT_DATE: return VarI1FromDate(V_DATE(ps), &V_I1(pd));
case VT_BOOL: return VarI1FromBool(V_BOOL(ps), &V_I1(pd));
case VT_CY: return VarI1FromCy(V_CY(ps), &V_I1(pd));
case VT_DECIMAL: return VarI1FromDec(&V_DECIMAL(ps), &V_I1(pd) );
case VT_DISPATCH: return VarI1FromDisp(V_DISPATCH(ps), lcid, &V_I1(pd) );
case VT_BSTR: return VarI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_I1(pd) );
}
break;
case VT_I2:
switch (vtFrom)
{
case VT_EMPTY: V_I2(pd) = 0; return S_OK;
case VT_I1: return VarI2FromI1(V_I1(ps), &V_I2(pd));
case VT_I4: return VarI2FromI4(V_I4(ps), &V_I2(pd));
case VT_UI1: return VarI2FromUI1(V_UI1(ps), &V_I2(pd));
case VT_UI2: V_I2(pd) = V_UI2(ps); return S_OK;
case VT_UI4: return VarI2FromUI4(V_UI4(ps), &V_I2(pd));
case VT_I8: return VarI2FromI8(V_I8(ps), &V_I2(pd));
case VT_UI8: return VarI2FromUI8(V_UI8(ps), &V_I2(pd));
case VT_R4: return VarI2FromR4(V_R4(ps), &V_I2(pd));
case VT_R8: return VarI2FromR8(V_R8(ps), &V_I2(pd));
case VT_DATE: return VarI2FromDate(V_DATE(ps), &V_I2(pd));
case VT_BOOL: return VarI2FromBool(V_BOOL(ps), &V_I2(pd));
case VT_CY: return VarI2FromCy(V_CY(ps), &V_I2(pd));
case VT_DECIMAL: return VarI2FromDec(&V_DECIMAL(ps), &V_I2(pd));
case VT_DISPATCH: return VarI2FromDisp(V_DISPATCH(ps), lcid, &V_I2(pd));
case VT_BSTR: return VarI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_I2(pd));
}
break;
case VT_I4:
switch (vtFrom)
{
case VT_EMPTY: V_I4(pd) = 0; return S_OK;
case VT_I1: return VarI4FromI1(V_I1(ps), &V_I4(pd));
case VT_I2: return VarI4FromI2(V_I2(ps), &V_I4(pd));
case VT_UI1: return VarI4FromUI1(V_UI1(ps), &V_I4(pd));
case VT_UI2: return VarI4FromUI2(V_UI2(ps), &V_I4(pd));
case VT_UI4: V_I4(pd) = V_UI4(ps); return S_OK;
case VT_I8: return VarI4FromI8(V_I8(ps), &V_I4(pd));
case VT_UI8: return VarI4FromUI8(V_UI8(ps), &V_I4(pd));
case VT_R4: return VarI4FromR4(V_R4(ps), &V_I4(pd));
case VT_R8: return VarI4FromR8(V_R8(ps), &V_I4(pd));
case VT_DATE: return VarI4FromDate(V_DATE(ps), &V_I4(pd));
case VT_BOOL: return VarI4FromBool(V_BOOL(ps), &V_I4(pd));
case VT_CY: return VarI4FromCy(V_CY(ps), &V_I4(pd));
case VT_DECIMAL: return VarI4FromDec(&V_DECIMAL(ps), &V_I4(pd));
case VT_DISPATCH: return VarI4FromDisp(V_DISPATCH(ps), lcid, &V_I4(pd));
case VT_BSTR: return VarI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_I4(pd));
}
break;
case VT_UI1:
switch (vtFrom)
{
case VT_EMPTY: V_UI1(pd) = 0; return S_OK;
case VT_I1: V_UI1(pd) = V_I1(ps); return S_OK;
case VT_I2: return VarUI1FromI2(V_I2(ps), &V_UI1(pd));
case VT_I4: return VarUI1FromI4(V_I4(ps), &V_UI1(pd));
case VT_UI2: return VarUI1FromUI2(V_UI2(ps), &V_UI1(pd));
case VT_UI4: return VarUI1FromUI4(V_UI4(ps), &V_UI1(pd));
case VT_I8: return VarUI1FromI8(V_I8(ps), &V_UI1(pd));
case VT_UI8: return VarUI1FromUI8(V_UI8(ps), &V_UI1(pd));
case VT_R4: return VarUI1FromR4(V_R4(ps), &V_UI1(pd));
case VT_R8: return VarUI1FromR8(V_R8(ps), &V_UI1(pd));
case VT_DATE: return VarUI1FromDate(V_DATE(ps), &V_UI1(pd));
case VT_BOOL: return VarUI1FromBool(V_BOOL(ps), &V_UI1(pd));
case VT_CY: return VarUI1FromCy(V_CY(ps), &V_UI1(pd));
case VT_DECIMAL: return VarUI1FromDec(&V_DECIMAL(ps), &V_UI1(pd));
case VT_DISPATCH: return VarUI1FromDisp(V_DISPATCH(ps), lcid, &V_UI1(pd));
case VT_BSTR: return VarUI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI1(pd));
}
break;
case VT_UI2:
switch (vtFrom)
{
case VT_EMPTY: V_UI2(pd) = 0; return S_OK;
case VT_I1: return VarUI2FromI1(V_I1(ps), &V_UI2(pd));
case VT_I2: V_UI2(pd) = V_I2(ps); return S_OK;
case VT_I4: return VarUI2FromI4(V_I4(ps), &V_UI2(pd));
case VT_UI1: return VarUI2FromUI1(V_UI1(ps), &V_UI2(pd));
case VT_UI4: return VarUI2FromUI4(V_UI4(ps), &V_UI2(pd));
case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
case VT_R4: return VarUI2FromR4(V_R4(ps), &V_UI2(pd));
case VT_R8: return VarUI2FromR8(V_R8(ps), &V_UI2(pd));
case VT_DATE: return VarUI2FromDate(V_DATE(ps), &V_UI2(pd));
case VT_BOOL: return VarUI2FromBool(V_BOOL(ps), &V_UI2(pd));
case VT_CY: return VarUI2FromCy(V_CY(ps), &V_UI2(pd));
case VT_DECIMAL: return VarUI2FromDec(&V_DECIMAL(ps), &V_UI2(pd));
case VT_DISPATCH: return VarUI2FromDisp(V_DISPATCH(ps), lcid, &V_UI2(pd));
case VT_BSTR: return VarUI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI2(pd));
}
break;
case VT_UI4:
switch (vtFrom)
{
case VT_EMPTY: V_UI4(pd) = 0; return S_OK;
case VT_I1: return VarUI4FromI1(V_I1(ps), &V_UI4(pd));
case VT_I2: return VarUI4FromI2(V_I2(ps), &V_UI4(pd));
case VT_I4: V_UI4(pd) = V_I4(ps); return S_OK;
case VT_UI1: return VarUI4FromUI1(V_UI1(ps), &V_UI4(pd));
case VT_UI2: return VarUI4FromUI2(V_UI2(ps), &V_UI4(pd));
case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
case VT_R4: return VarUI4FromR4(V_R4(ps), &V_UI4(pd));
case VT_R8: return VarUI4FromR8(V_R8(ps), &V_UI4(pd));
case VT_DATE: return VarUI4FromDate(V_DATE(ps), &V_UI4(pd));
case VT_BOOL: return VarUI4FromBool(V_BOOL(ps), &V_UI4(pd));
case VT_CY: return VarUI4FromCy(V_CY(ps), &V_UI4(pd));
case VT_DECIMAL: return VarUI4FromDec(&V_DECIMAL(ps), &V_UI4(pd));
case VT_DISPATCH: return VarUI4FromDisp(V_DISPATCH(ps), lcid, &V_UI4(pd));
case VT_BSTR: return VarUI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI4(pd));
}
break;
case VT_UI8:
switch (vtFrom)
{
case VT_EMPTY: V_UI8(pd) = 0; return S_OK;
case VT_I4: if (V_I4(ps) < 0) return DISP_E_OVERFLOW; V_UI8(pd) = V_I4(ps); return S_OK;
case VT_I1: return VarUI8FromI1(V_I1(ps), &V_UI8(pd));
case VT_I2: return VarUI8FromI2(V_I2(ps), &V_UI8(pd));
case VT_UI1: return VarUI8FromUI1(V_UI1(ps), &V_UI8(pd));
case VT_UI2: return VarUI8FromUI2(V_UI2(ps), &V_UI8(pd));
case VT_UI4: return VarUI8FromUI4(V_UI4(ps), &V_UI8(pd));
case VT_I8: V_UI8(pd) = V_I8(ps); return S_OK;
case VT_R4: return VarUI8FromR4(V_R4(ps), &V_UI8(pd));
case VT_R8: return VarUI8FromR8(V_R8(ps), &V_UI8(pd));
case VT_DATE: return VarUI8FromDate(V_DATE(ps), &V_UI8(pd));
case VT_BOOL: return VarUI8FromBool(V_BOOL(ps), &V_UI8(pd));
case VT_CY: return VarUI8FromCy(V_CY(ps), &V_UI8(pd));
case VT_DECIMAL: return VarUI8FromDec(&V_DECIMAL(ps), &V_UI8(pd));
case VT_DISPATCH: return VarUI8FromDisp(V_DISPATCH(ps), lcid, &V_UI8(pd));
case VT_BSTR: return VarUI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI8(pd));
}
break;
case VT_I8:
switch (vtFrom)
{
case VT_EMPTY: V_I8(pd) = 0; return S_OK;
case VT_I4: V_I8(pd) = V_I4(ps); return S_OK;
case VT_I1: return VarI8FromI1(V_I1(ps), &V_I8(pd));
case VT_I2: return VarI8FromI2(V_I2(ps), &V_I8(pd));
case VT_UI1: return VarI8FromUI1(V_UI1(ps), &V_I8(pd));
case VT_UI2: return VarI8FromUI2(V_UI2(ps), &V_I8(pd));
case VT_UI4: return VarI8FromUI4(V_UI4(ps), &V_I8(pd));
case VT_UI8: V_I8(pd) = V_UI8(ps); return S_OK;
case VT_R4: return VarI8FromR4(V_R4(ps), &V_I8(pd));
case VT_R8: return VarI8FromR8(V_R8(ps), &V_I8(pd));
case VT_DATE: return VarI8FromDate(V_DATE(ps), &V_I8(pd));
case VT_BOOL: return VarI8FromBool(V_BOOL(ps), &V_I8(pd));
case VT_CY: return VarI8FromCy(V_CY(ps), &V_I8(pd));
case VT_DECIMAL: return VarI8FromDec(&V_DECIMAL(ps), &V_I8(pd));
case VT_DISPATCH: return VarI8FromDisp(V_DISPATCH(ps), lcid, &V_I8(pd));
case VT_BSTR: return VarI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_I8(pd));
}
break;
case VT_R4:
switch (vtFrom)
{
case VT_EMPTY: V_R4(pd) = 0.0f; return S_OK;
case VT_I1: return VarR4FromI1(V_I1(ps), &V_R4(pd));
case VT_I2: return VarR4FromI2(V_I2(ps), &V_R4(pd));
case VT_I4: return VarR4FromI4(V_I4(ps), &V_R4(pd));
case VT_UI1: return VarR4FromUI1(V_UI1(ps), &V_R4(pd));
case VT_UI2: return VarR4FromUI2(V_UI2(ps), &V_R4(pd));
case VT_UI4: return VarR4FromUI4(V_UI4(ps), &V_R4(pd));
case VT_I8: return VarR4FromI8(V_I8(ps), &V_R4(pd));
case VT_UI8: return VarR4FromUI8(V_UI8(ps), &V_R4(pd));
case VT_R8: return VarR4FromR8(V_R8(ps), &V_R4(pd));
case VT_DATE: return VarR4FromDate(V_DATE(ps), &V_R4(pd));
case VT_BOOL: return VarR4FromBool(V_BOOL(ps), &V_R4(pd));
case VT_CY: return VarR4FromCy(V_CY(ps), &V_R4(pd));
case VT_DECIMAL: return VarR4FromDec(&V_DECIMAL(ps), &V_R4(pd));
case VT_DISPATCH: return VarR4FromDisp(V_DISPATCH(ps), lcid, &V_R4(pd));
case VT_BSTR: return VarR4FromStr(V_BSTR(ps), lcid, dwFlags, &V_R4(pd));
}
break;
case VT_R8:
switch (vtFrom)
{
case VT_EMPTY: V_R8(pd) = 0.0; return S_OK;
case VT_I1: return VarR8FromI1(V_I1(ps), &V_R8(pd));
case VT_I2: return VarR8FromI2(V_I2(ps), &V_R8(pd));
case VT_I4: return VarR8FromI4(V_I4(ps), &V_R8(pd));
case VT_UI1: return VarR8FromUI1(V_UI1(ps), &V_R8(pd));
case VT_UI2: return VarR8FromUI2(V_UI2(ps), &V_R8(pd));
case VT_UI4: return VarR8FromUI4(V_UI4(ps), &V_R8(pd));
case VT_I8: return VarR8FromI8(V_I8(ps), &V_R8(pd));
case VT_UI8: return VarR8FromUI8(V_UI8(ps), &V_R8(pd));
case VT_R4: return VarR8FromR4(V_R4(ps), &V_R8(pd));
case VT_DATE: return VarR8FromDate(V_DATE(ps), &V_R8(pd));
case VT_BOOL: return VarR8FromBool(V_BOOL(ps), &V_R8(pd));
case VT_CY: return VarR8FromCy(V_CY(ps), &V_R8(pd));
case VT_DECIMAL: return VarR8FromDec(&V_DECIMAL(ps), &V_R8(pd));
case VT_DISPATCH: return VarR8FromDisp(V_DISPATCH(ps), lcid, &V_R8(pd));
case VT_BSTR: return VarR8FromStr(V_BSTR(ps), lcid, dwFlags, &V_R8(pd));
}
break;
case VT_DATE:
switch (vtFrom)
{
case VT_EMPTY: V_DATE(pd) = 0.0; return S_OK;
case VT_I1: return VarDateFromI1(V_I1(ps), &V_DATE(pd));
case VT_I2: return VarDateFromI2(V_I2(ps), &V_DATE(pd));
case VT_I4: return VarDateFromI4(V_I4(ps), &V_DATE(pd));
case VT_UI1: return VarDateFromUI1(V_UI1(ps), &V_DATE(pd));
case VT_UI2: return VarDateFromUI2(V_UI2(ps), &V_DATE(pd));
case VT_UI4: return VarDateFromUI4(V_UI4(ps), &V_DATE(pd));
case VT_I8: return VarDateFromI8(V_I8(ps), &V_DATE(pd));
case VT_UI8: return VarDateFromUI8(V_UI8(ps), &V_DATE(pd));
case VT_R4: return VarDateFromR4(V_R4(ps), &V_DATE(pd));
case VT_R8: return VarDateFromR8(V_R8(ps), &V_DATE(pd));
case VT_BOOL: return VarDateFromBool(V_BOOL(ps), &V_DATE(pd));
case VT_CY: return VarDateFromCy(V_CY(ps), &V_DATE(pd));
case VT_DECIMAL: return VarDateFromDec(&V_DECIMAL(ps), &V_DATE(pd));
case VT_DISPATCH: return VarDateFromDisp(V_DISPATCH(ps), lcid, &V_DATE(pd));
case VT_BSTR: return VarDateFromStr(V_BSTR(ps), lcid, dwFlags, &V_DATE(pd));
}
break;
case VT_BOOL:
switch (vtFrom)
{
case VT_EMPTY: V_BOOL(pd) = 0; return S_OK;
case VT_I1: return VarBoolFromI1(V_I1(ps), &V_BOOL(pd));
case VT_I2: return VarBoolFromI2(V_I2(ps), &V_BOOL(pd));
case VT_I4: return VarBoolFromI4(V_I4(ps), &V_BOOL(pd));
case VT_UI1: return VarBoolFromUI1(V_UI1(ps), &V_BOOL(pd));
case VT_UI2: return VarBoolFromUI2(V_UI2(ps), &V_BOOL(pd));
case VT_UI4: return VarBoolFromUI4(V_UI4(ps), &V_BOOL(pd));
case VT_I8: return VarBoolFromI8(V_I8(ps), &V_BOOL(pd));
case VT_UI8: return VarBoolFromUI8(V_UI8(ps), &V_BOOL(pd));
case VT_R4: return VarBoolFromR4(V_R4(ps), &V_BOOL(pd));
case VT_R8: return VarBoolFromR8(V_R8(ps), &V_BOOL(pd));
case VT_DATE: return VarBoolFromDate(V_DATE(ps), &V_BOOL(pd));
case VT_CY: return VarBoolFromCy(V_CY(ps), &V_BOOL(pd));
case VT_DECIMAL: return VarBoolFromDec(&V_DECIMAL(ps), &V_BOOL(pd));
case VT_DISPATCH: return VarBoolFromDisp(V_DISPATCH(ps), lcid, &V_BOOL(pd));
case VT_BSTR: return VarBoolFromStr(V_BSTR(ps), lcid, dwFlags, &V_BOOL(pd));
}
break;
case VT_BSTR:
switch (vtFrom)
{
case VT_EMPTY:
V_BSTR(pd) = SysAllocStringLen(NULL, 0);
return V_BSTR(pd) ? S_OK : E_OUTOFMEMORY;
case VT_BOOL:
if (wFlags & (VARIANT_ALPHABOOL|VARIANT_LOCALBOOL))
return VarBstrFromBool(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
return VarBstrFromI2(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
case VT_I1: return VarBstrFromI1(V_I1(ps), lcid, dwFlags, &V_BSTR(pd));
case VT_I2: return VarBstrFromI2(V_I2(ps), lcid, dwFlags, &V_BSTR(pd));
case VT_I4: return VarBstrFromI4(V_I4(ps), lcid, dwFlags, &V_BSTR(pd));
case VT_UI1: return VarBstrFromUI1(V_UI1(ps), lcid, dwFlags, &V_BSTR(pd));
case VT_UI2: return VarBstrFromUI2(V_UI2(ps), lcid, dwFlags, &V_BSTR(pd));
case VT_UI4: return VarBstrFromUI4(V_UI4(ps), lcid, dwFlags, &V_BSTR(pd));
case VT_I8: return VarBstrFromI8(V_I8(ps), lcid, dwFlags, &V_BSTR(pd));
case VT_UI8: return VarBstrFromUI8(V_UI8(ps), lcid, dwFlags, &V_BSTR(pd));
case VT_R4: return VarBstrFromR4(V_R4(ps), lcid, dwFlags, &V_BSTR(pd));
case VT_R8: return VarBstrFromR8(V_R8(ps), lcid, dwFlags, &V_BSTR(pd));
case VT_DATE: return VarBstrFromDate(V_DATE(ps), lcid, dwFlags, &V_BSTR(pd));
case VT_CY: return VarBstrFromCy(V_CY(ps), lcid, dwFlags, &V_BSTR(pd));
case VT_DECIMAL: return VarBstrFromDec(&V_DECIMAL(ps), lcid, dwFlags, &V_BSTR(pd));
case VT_DISPATCH: return VarBstrFromDisp(V_DISPATCH(ps), lcid, dwFlags, &V_BSTR(pd));
}
break;
case VT_CY:
switch (vtFrom)
{
case VT_EMPTY: V_CY(pd).int64 = 0; return S_OK;
case VT_I1: return VarCyFromI1(V_I1(ps), &V_CY(pd));
case VT_I2: return VarCyFromI2(V_I2(ps), &V_CY(pd));
case VT_I4: return VarCyFromI4(V_I4(ps), &V_CY(pd));
case VT_UI1: return VarCyFromUI1(V_UI1(ps), &V_CY(pd));
case VT_UI2: return VarCyFromUI2(V_UI2(ps), &V_CY(pd));
case VT_UI4: return VarCyFromUI4(V_UI4(ps), &V_CY(pd));
case VT_I8: return VarCyFromI8(V_I8(ps), &V_CY(pd));
case VT_UI8: return VarCyFromUI8(V_UI8(ps), &V_CY(pd));
case VT_R4: return VarCyFromR4(V_R4(ps), &V_CY(pd));
case VT_R8: return VarCyFromR8(V_R8(ps), &V_CY(pd));
case VT_DATE: return VarCyFromDate(V_DATE(ps), &V_CY(pd));
case VT_BOOL: return VarCyFromBool(V_BOOL(ps), &V_CY(pd));
case VT_DECIMAL: return VarCyFromDec(&V_DECIMAL(ps), &V_CY(pd));
case VT_DISPATCH: return VarCyFromDisp(V_DISPATCH(ps), lcid, &V_CY(pd));
case VT_BSTR: return VarCyFromStr(V_BSTR(ps), lcid, dwFlags, &V_CY(pd));
}
break;
case VT_DECIMAL:
switch (vtFrom)
{
case VT_EMPTY:
case VT_BOOL:
DEC_SIGNSCALE(&V_DECIMAL(pd)) = SIGNSCALE(DECIMAL_POS,0);
DEC_HI32(&V_DECIMAL(pd)) = 0;
DEC_MID32(&V_DECIMAL(pd)) = 0;
/* VarDecFromBool() coerces to -1/0, ChangeTypeEx() coerces to 1/0.
* VT_NULL and VT_EMPTY always give a 0 value.
*/
DEC_LO32(&V_DECIMAL(pd)) = vtFrom == VT_BOOL && V_BOOL(ps) ? 1 : 0;
return S_OK;
case VT_I1: return VarDecFromI1(V_I1(ps), &V_DECIMAL(pd));
case VT_I2: return VarDecFromI2(V_I2(ps), &V_DECIMAL(pd));
case VT_I4: return VarDecFromI4(V_I4(ps), &V_DECIMAL(pd));
case VT_UI1: return VarDecFromUI1(V_UI1(ps), &V_DECIMAL(pd));
case VT_UI2: return VarDecFromUI2(V_UI2(ps), &V_DECIMAL(pd));
case VT_UI4: return VarDecFromUI4(V_UI4(ps), &V_DECIMAL(pd));
case VT_I8: return VarDecFromI8(V_I8(ps), &V_DECIMAL(pd));
case VT_UI8: return VarDecFromUI8(V_UI8(ps), &V_DECIMAL(pd));
case VT_R4: return VarDecFromR4(V_R4(ps), &V_DECIMAL(pd));
case VT_R8: return VarDecFromR8(V_R8(ps), &V_DECIMAL(pd));
case VT_DATE: return VarDecFromDate(V_DATE(ps), &V_DECIMAL(pd));
case VT_CY: return VarDecFromCy(V_CY(ps), &V_DECIMAL(pd));
case VT_DISPATCH: return VarDecFromDisp(V_DISPATCH(ps), lcid, &V_DECIMAL(pd));
case VT_BSTR: return VarDecFromStr(V_BSTR(ps), lcid, dwFlags, &V_DECIMAL(pd));
}
break;
case VT_UNKNOWN:
switch (vtFrom)
{
case VT_DISPATCH:
if (V_DISPATCH(ps) == NULL)
{
V_UNKNOWN(pd) = NULL;
res = S_OK;
}
else
res = IDispatch_QueryInterface(V_DISPATCH(ps), &IID_IUnknown, (LPVOID*)&V_UNKNOWN(pd));
break;
}
break;
case VT_DISPATCH:
switch (vtFrom)
{
case VT_UNKNOWN:
if (V_UNKNOWN(ps) == NULL)
{
V_DISPATCH(pd) = NULL;
res = S_OK;
}
else
res = IUnknown_QueryInterface(V_UNKNOWN(ps), &IID_IDispatch, (LPVOID*)&V_DISPATCH(pd));
break;
}
break;
case VT_RECORD:
break;
}
return res;
}
/* Coerce to/from an array */
static inline HRESULT VARIANT_CoerceArray(VARIANTARG* pd, VARIANTARG* ps, VARTYPE vt)
{
if (vt == VT_BSTR && V_VT(ps) == (VT_ARRAY|VT_UI1))
return BstrFromVector(V_ARRAY(ps), &V_BSTR(pd));
if (V_VT(ps) == VT_BSTR && vt == (VT_ARRAY|VT_UI1))
return VectorFromBstr(V_BSTR(ps), &V_ARRAY(pd));
if (V_VT(ps) == vt)
return SafeArrayCopy(V_ARRAY(ps), &V_ARRAY(pd));
return DISP_E_TYPEMISMATCH;
}
static HRESULT VARIANT_FetchDispatchValue(LPVARIANT pvDispatch, LPVARIANT pValue)
{
HRESULT hres;
static DISPPARAMS emptyParams = { NULL, NULL, 0, 0 };
if ((V_VT(pvDispatch) & VT_TYPEMASK) == VT_DISPATCH) {
if (NULL == V_DISPATCH(pvDispatch)) return DISP_E_TYPEMISMATCH;
hres = IDispatch_Invoke(V_DISPATCH(pvDispatch), DISPID_VALUE, &IID_NULL,
LOCALE_USER_DEFAULT, DISPATCH_PROPERTYGET, &emptyParams, pValue,
NULL, NULL);
} else {
hres = DISP_E_TYPEMISMATCH;
}
return hres;
}
/******************************************************************************
* Check if a variants type is valid.
*/
static inline HRESULT VARIANT_ValidateType(VARTYPE vt)
{
VARTYPE vtExtra = vt & VT_EXTRA_TYPE;
vt &= VT_TYPEMASK;
if (!(vtExtra & (VT_VECTOR|VT_RESERVED)))
{
if (vt < VT_VOID || vt == VT_RECORD || vt == VT_CLSID)
{
if ((vtExtra & (VT_BYREF|VT_ARRAY)) && vt <= VT_NULL)
return DISP_E_BADVARTYPE;
if (vt != (VARTYPE)15)
return S_OK;
}
}
return DISP_E_BADVARTYPE;
}
/******************************************************************************
* VariantInit [OLEAUT32.8]
*
* Initialise a variant.
*
* PARAMS
* pVarg [O] Variant to initialise
*
* RETURNS
* Nothing.
*
* NOTES
* This function simply sets the type of the variant to VT_EMPTY. It does not
* free any existing value, use VariantClear() for that.
*/
void WINAPI VariantInit(VARIANTARG* pVarg)
{
TRACE("(%p)\n", pVarg);
/* Win8.1 zeroes whole struct. Previous implementations don't set any other fields. */
V_VT(pVarg) = VT_EMPTY;
}
HRESULT VARIANT_ClearInd(VARIANTARG *pVarg)
{
HRESULT hres;
TRACE("(%s)\n", debugstr_variant(pVarg));
hres = VARIANT_ValidateType(V_VT(pVarg));
if (FAILED(hres))
return hres;
switch (V_VT(pVarg))
{
case VT_DISPATCH:
case VT_UNKNOWN:
if (V_UNKNOWN(pVarg))
IUnknown_Release(V_UNKNOWN(pVarg));
break;
case VT_UNKNOWN | VT_BYREF:
case VT_DISPATCH | VT_BYREF:
if(*V_UNKNOWNREF(pVarg))
IUnknown_Release(*V_UNKNOWNREF(pVarg));
break;
case VT_BSTR:
SysFreeString(V_BSTR(pVarg));
break;
case VT_BSTR | VT_BYREF:
SysFreeString(*V_BSTRREF(pVarg));
break;
case VT_VARIANT | VT_BYREF:
VariantClear(V_VARIANTREF(pVarg));
break;
case VT_RECORD:
case VT_RECORD | VT_BYREF:
{
struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
if (pBr->pRecInfo)
{
IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
IRecordInfo_Release(pBr->pRecInfo);
}
break;
}
default:
if (V_ISARRAY(pVarg) || (V_VT(pVarg) & ~VT_BYREF) == VT_SAFEARRAY)
{
if (V_ISBYREF(pVarg))
{
if (*V_ARRAYREF(pVarg))
hres = SafeArrayDestroy(*V_ARRAYREF(pVarg));
}
else if (V_ARRAY(pVarg))
hres = SafeArrayDestroy(V_ARRAY(pVarg));
}
break;
}
V_VT(pVarg) = VT_EMPTY;
return hres;
}
/******************************************************************************
* VariantClear [OLEAUT32.9]
*
* Clear a variant.
*
* PARAMS
* pVarg [I/O] Variant to clear
*
* RETURNS
* Success: S_OK. Any previous value in pVarg is freed and its type is set to VT_EMPTY.
* Failure: DISP_E_BADVARTYPE, if the variant is not a valid variant type.
*/
HRESULT WINAPI DECLSPEC_HOTPATCH VariantClear(VARIANTARG* pVarg)
{
HRESULT hres;
TRACE("(%s)\n", debugstr_variant(pVarg));
hres = VARIANT_ValidateType(V_VT(pVarg));
if (SUCCEEDED(hres))
{
if (!V_ISBYREF(pVarg))
{
if (V_ISARRAY(pVarg) || V_VT(pVarg) == VT_SAFEARRAY)
{
hres = SafeArrayDestroy(V_ARRAY(pVarg));
}
else if (V_VT(pVarg) == VT_BSTR)
{
SysFreeString(V_BSTR(pVarg));
}
else if (V_VT(pVarg) == VT_RECORD)
{
struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
if (pBr->pRecInfo)
{
IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
IRecordInfo_Release(pBr->pRecInfo);
}
}
else if (V_VT(pVarg) == VT_DISPATCH ||
V_VT(pVarg) == VT_UNKNOWN)
{
if (V_UNKNOWN(pVarg))
IUnknown_Release(V_UNKNOWN(pVarg));
}
}
V_VT(pVarg) = VT_EMPTY;
}
return hres;
}
/******************************************************************************
* Copy an IRecordInfo object contained in a variant.
*/
static HRESULT VARIANT_CopyIRecordInfo(VARIANT *dest, VARIANT *src)
{
struct __tagBRECORD *dest_rec = &V_UNION(dest, brecVal);
struct __tagBRECORD *src_rec = &V_UNION(src, brecVal);
HRESULT hr = S_OK;
ULONG size;
if (!src_rec->pRecInfo)
{
if (src_rec->pvRecord) return E_INVALIDARG;
return S_OK;
}
hr = IRecordInfo_GetSize(src_rec->pRecInfo, &size);
if (FAILED(hr)) return hr;
/* This could look cleaner if only RecordCreate() was used, but native doesn't use it.
Memory should be allocated in a same way as RecordCreate() does, so RecordDestroy()
could free it later. */
dest_rec->pvRecord = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, size);
if (!dest_rec->pvRecord) return E_OUTOFMEMORY;
dest_rec->pRecInfo = src_rec->pRecInfo;
IRecordInfo_AddRef(src_rec->pRecInfo);
return IRecordInfo_RecordCopy(src_rec->pRecInfo, src_rec->pvRecord, dest_rec->pvRecord);
}
/******************************************************************************
* VariantCopy [OLEAUT32.10]
*
* Copy a variant.
*
* PARAMS
* pvargDest [O] Destination for copy
* pvargSrc [I] Source variant to copy
*
* RETURNS
* Success: S_OK. pvargDest contains a copy of pvargSrc.
* Failure: DISP_E_BADVARTYPE, if either variant has an invalid type.
* E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
* HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
* or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
*
* NOTES
* - If pvargSrc == pvargDest, this function does nothing, and succeeds if
* pvargSrc is valid. Otherwise, pvargDest is always cleared using
* VariantClear() before pvargSrc is copied to it. If clearing pvargDest
* fails, so does this function.
* - VT_CLSID is a valid type type for pvargSrc, but not for pvargDest.
* - For by-value non-intrinsic types, a deep copy is made, i.e. The whole value
* is copied rather than just any pointers to it.
* - For by-value object types the object pointer is copied and the objects
* reference count increased using IUnknown_AddRef().
* - For all by-reference types, only the referencing pointer is copied.
*/
HRESULT WINAPI VariantCopy(VARIANTARG* pvargDest, VARIANTARG* pvargSrc)
{
HRESULT hres = S_OK;
TRACE("(%s,%s)\n", debugstr_variant(pvargDest), debugstr_variant(pvargSrc));
if (V_TYPE(pvargSrc) == VT_CLSID || /* VT_CLSID is a special case */
FAILED(VARIANT_ValidateType(V_VT(pvargSrc))))
return DISP_E_BADVARTYPE;
if (pvargSrc != pvargDest &&
SUCCEEDED(hres = VariantClear(pvargDest)))
{
*pvargDest = *pvargSrc; /* Shallow copy the value */
if (!V_ISBYREF(pvargSrc))
{
switch (V_VT(pvargSrc))
{
case VT_BSTR:
V_BSTR(pvargDest) = SysAllocStringByteLen((char*)V_BSTR(pvargSrc), SysStringByteLen(V_BSTR(pvargSrc)));
if (!V_BSTR(pvargDest))
hres = E_OUTOFMEMORY;
break;
case VT_RECORD:
hres = VARIANT_CopyIRecordInfo(pvargDest, pvargSrc);
break;
case VT_DISPATCH:
case VT_UNKNOWN:
V_UNKNOWN(pvargDest) = V_UNKNOWN(pvargSrc);
if (V_UNKNOWN(pvargSrc))
IUnknown_AddRef(V_UNKNOWN(pvargSrc));
break;
default:
if (V_ISARRAY(pvargSrc))
hres = SafeArrayCopy(V_ARRAY(pvargSrc), &V_ARRAY(pvargDest));
}
}
}
return hres;
}
/* Return the byte size of a variants data */
static inline size_t VARIANT_DataSize(const VARIANT* pv)
{
switch (V_TYPE(pv))
{
case VT_I1:
case VT_UI1: return sizeof(BYTE);
case VT_I2:
case VT_UI2: return sizeof(SHORT);
case VT_INT:
case VT_UINT:
case VT_I4:
case VT_UI4: return sizeof(LONG);
case VT_I8:
case VT_UI8: return sizeof(LONGLONG);
case VT_R4: return sizeof(float);
case VT_R8: return sizeof(double);
case VT_DATE: return sizeof(DATE);
case VT_BOOL: return sizeof(VARIANT_BOOL);
case VT_DISPATCH:
case VT_UNKNOWN:
case VT_BSTR: return sizeof(void*);
case VT_CY: return sizeof(CY);
case VT_ERROR: return sizeof(SCODE);
}
TRACE("Shouldn't be called for variant %s!\n", debugstr_variant(pv));
return 0;
}
/******************************************************************************
* VariantCopyInd [OLEAUT32.11]
*
* Copy a variant, dereferencing it if it is by-reference.
*
* PARAMS
* pvargDest [O] Destination for copy
* pvargSrc [I] Source variant to copy
*
* RETURNS
* Success: S_OK. pvargDest contains a copy of pvargSrc.
* Failure: An HRESULT error code indicating the error.
*
* NOTES
* Failure: DISP_E_BADVARTYPE, if either variant has an invalid by-value type.
* E_INVALIDARG, if pvargSrc is an invalid by-reference type.
* E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
* HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
* or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
*
* NOTES
* - If pvargSrc is by-value, this function behaves exactly as VariantCopy().
* - If pvargSrc is by-reference, the value copied to pvargDest is the pointed-to
* value.
* - if pvargSrc == pvargDest, this function dereferences in place. Otherwise,
* pvargDest is always cleared using VariantClear() before pvargSrc is copied
* to it. If clearing pvargDest fails, so does this function.
*/
HRESULT WINAPI VariantCopyInd(VARIANT* pvargDest, VARIANTARG* pvargSrc)
{
VARIANTARG vTmp, *pSrc = pvargSrc;
VARTYPE vt;
HRESULT hres = S_OK;
TRACE("(%s,%s)\n", debugstr_variant(pvargDest), debugstr_variant(pvargSrc));
if (!V_ISBYREF(pvargSrc))
return VariantCopy(pvargDest, pvargSrc);
/* Argument checking is more lax than VariantCopy()... */
vt = V_TYPE(pvargSrc);
if (V_ISARRAY(pvargSrc) || (V_VT(pvargSrc) == (VT_RECORD|VT_BYREF)) ||
(vt > VT_NULL && vt != (VARTYPE)15 && vt < VT_VOID &&
!(V_VT(pvargSrc) & (VT_VECTOR|VT_RESERVED))))
{
/* OK */
}
else
return E_INVALIDARG; /* ...And the return value for invalid types differs too */
if (pvargSrc == pvargDest)
{
/* In place copy. Use a shallow copy of pvargSrc & init pvargDest.
* This avoids an expensive VariantCopy() call - e.g. SafeArrayCopy().
*/
vTmp = *pvargSrc;
pSrc = &vTmp;
V_VT(pvargDest) = VT_EMPTY;
}
else
{
/* Copy into another variant. Free the variant in pvargDest */
if (FAILED(hres = VariantClear(pvargDest)))
{
TRACE("VariantClear() of destination failed\n");
return hres;
}
}
if (V_ISARRAY(pSrc))
{
/* Native doesn't check that *V_ARRAYREF(pSrc) is valid */
hres = SafeArrayCopy(*V_ARRAYREF(pSrc), &V_ARRAY(pvargDest));
}
else if (V_VT(pSrc) == (VT_BSTR|VT_BYREF))
{
/* Native doesn't check that *V_BSTRREF(pSrc) is valid */
V_BSTR(pvargDest) = SysAllocStringByteLen((char*)*V_BSTRREF(pSrc), SysStringByteLen(*V_BSTRREF(pSrc)));
}
else if (V_VT(pSrc) == (VT_RECORD|VT_BYREF))
{
hres = VARIANT_CopyIRecordInfo(pvargDest, pvargSrc);
}
else if (V_VT(pSrc) == (VT_DISPATCH|VT_BYREF) ||
V_VT(pSrc) == (VT_UNKNOWN|VT_BYREF))
{
/* Native doesn't check that *V_UNKNOWNREF(pSrc) is valid */
V_UNKNOWN(pvargDest) = *V_UNKNOWNREF(pSrc);
if (*V_UNKNOWNREF(pSrc))
IUnknown_AddRef(*V_UNKNOWNREF(pSrc));
}
else if (V_VT(pSrc) == (VT_VARIANT|VT_BYREF))
{
/* Native doesn't check that *V_VARIANTREF(pSrc) is valid */
if (V_VT(V_VARIANTREF(pSrc)) == (VT_VARIANT|VT_BYREF))
hres = E_INVALIDARG; /* Don't dereference more than one level */
else
hres = VariantCopyInd(pvargDest, V_VARIANTREF(pSrc));
/* Use the dereferenced variants type value, not VT_VARIANT */
goto VariantCopyInd_Return;
}
else if (V_VT(pSrc) == (VT_DECIMAL|VT_BYREF))
{
memcpy(&DEC_SCALE(&V_DECIMAL(pvargDest)), &DEC_SCALE(V_DECIMALREF(pSrc)),
sizeof(DECIMAL) - sizeof(USHORT));
}
else
{
/* Copy the pointed to data into this variant */
memcpy(&V_BYREF(pvargDest), V_BYREF(pSrc), VARIANT_DataSize(pSrc));
}
V_VT(pvargDest) = V_VT(pSrc) & ~VT_BYREF;
VariantCopyInd_Return:
if (pSrc != pvargSrc)
VariantClear(pSrc);
TRACE("returning 0x%08x, %s\n", hres, debugstr_variant(pvargDest));
return hres;
}
/******************************************************************************
* VariantChangeType [OLEAUT32.12]
*
* Change the type of a variant.
*
* PARAMS
* pvargDest [O] Destination for the converted variant
* pvargSrc [O] Source variant to change the type of
* wFlags [I] VARIANT_ flags from "oleauto.h"
* vt [I] Variant type to change pvargSrc into
*
* RETURNS
* Success: S_OK. pvargDest contains the converted value.
* Failure: An HRESULT error code describing the failure.
*
* NOTES
* The LCID used for the conversion is LOCALE_USER_DEFAULT.
* See VariantChangeTypeEx.
*/
HRESULT WINAPI DECLSPEC_HOTPATCH VariantChangeType(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
USHORT wFlags, VARTYPE vt)
{
return VariantChangeTypeEx( pvargDest, pvargSrc, LOCALE_USER_DEFAULT, wFlags, vt );
}
/******************************************************************************
* VariantChangeTypeEx [OLEAUT32.147]
*
* Change the type of a variant.
*
* PARAMS
* pvargDest [O] Destination for the converted variant
* pvargSrc [O] Source variant to change the type of
* lcid [I] LCID for the conversion
* wFlags [I] VARIANT_ flags from "oleauto.h"
* vt [I] Variant type to change pvargSrc into
*
* RETURNS
* Success: S_OK. pvargDest contains the converted value.
* Failure: An HRESULT error code describing the failure.
*
* NOTES
* pvargDest and pvargSrc can point to the same variant to perform an in-place
* conversion. If the conversion is successful, pvargSrc will be freed.
*/
HRESULT WINAPI VariantChangeTypeEx(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
LCID lcid, USHORT wFlags, VARTYPE vt)
{
HRESULT res = S_OK;
TRACE("(%s,%s,0x%08x,0x%04x,%s)\n", debugstr_variant(pvargDest),
debugstr_variant(pvargSrc), lcid, wFlags, debugstr_vt(vt));
if (vt == VT_CLSID)
res = DISP_E_BADVARTYPE;
else
{
res = VARIANT_ValidateType(V_VT(pvargSrc));
if (SUCCEEDED(res))
{
res = VARIANT_ValidateType(vt);
if (SUCCEEDED(res))
{
VARIANTARG vTmp, vSrcDeref;
if(V_ISBYREF(pvargSrc) && !V_BYREF(pvargSrc))
res = DISP_E_TYPEMISMATCH;
else
{
V_VT(&vTmp) = VT_EMPTY;
V_VT(&vSrcDeref) = VT_EMPTY;
VariantClear(&vTmp);
VariantClear(&vSrcDeref);
}
if (SUCCEEDED(res))
{
res = VariantCopyInd(&vSrcDeref, pvargSrc);
if (SUCCEEDED(res))
{
if (V_ISARRAY(&vSrcDeref) || (vt & VT_ARRAY))
res = VARIANT_CoerceArray(&vTmp, &vSrcDeref, vt);
else
res = VARIANT_Coerce(&vTmp, lcid, wFlags, &vSrcDeref, vt);
if (SUCCEEDED(res)) {
V_VT(&vTmp) = vt;
res = VariantCopy(pvargDest, &vTmp);
}
VariantClear(&vTmp);
VariantClear(&vSrcDeref);
}
}
}
}
}
TRACE("returning 0x%08x, %s\n", res, debugstr_variant(pvargDest));
return res;
}
/* Date Conversions */
#define IsLeapYear(y) (((y % 4) == 0) && (((y % 100) != 0) || ((y % 400) == 0)))
/* Convert a VT_DATE value to a Julian Date */
static inline int VARIANT_JulianFromDate(int dateIn)
{
int julianDays = dateIn;
julianDays -= DATE_MIN; /* Convert to + days from 1 Jan 100 AD */
julianDays += 1757585; /* Convert to + days from 23 Nov 4713 BC (Julian) */
return julianDays;
}
/* Convert a Julian Date to a VT_DATE value */
static inline int VARIANT_DateFromJulian(int dateIn)
{
int julianDays = dateIn;
julianDays -= 1757585; /* Convert to + days from 1 Jan 100 AD */
julianDays += DATE_MIN; /* Convert to +/- days from 1 Jan 1899 AD */
return julianDays;
}
/* Convert a Julian date to Day/Month/Year - from PostgreSQL */
static inline void VARIANT_DMYFromJulian(int jd, USHORT *year, USHORT *month, USHORT *day)
{
int j, i, l, n;
l = jd + 68569;
n = l * 4 / 146097;
l -= (n * 146097 + 3) / 4;
i = (4000 * (l + 1)) / 1461001;
l += 31 - (i * 1461) / 4;
j = (l * 80) / 2447;
*day = l - (j * 2447) / 80;
l = j / 11;
*month = (j + 2) - (12 * l);
*year = 100 * (n - 49) + i + l;
}
/* Convert Day/Month/Year to a Julian date - from PostgreSQL */
static inline double VARIANT_JulianFromDMY(USHORT year, USHORT month, USHORT day)
{
int m12 = (month - 14) / 12;
return ((1461 * (year + 4800 + m12)) / 4 + (367 * (month - 2 - 12 * m12)) / 12 -
(3 * ((year + 4900 + m12) / 100)) / 4 + day - 32075);
}
/* Macros for accessing DOS format date/time fields */
#define DOS_YEAR(x) (1980 + (x >> 9))
#define DOS_MONTH(x) ((x >> 5) & 0xf)
#define DOS_DAY(x) (x & 0x1f)
#define DOS_HOUR(x) (x >> 11)
#define DOS_MINUTE(x) ((x >> 5) & 0x3f)
#define DOS_SECOND(x) ((x & 0x1f) << 1)
/* Create a DOS format date/time */
#define DOS_DATE(d,m,y) (d | (m << 5) | ((y-1980) << 9))
#define DOS_TIME(h,m,s) ((s >> 1) | (m << 5) | (h << 11))
/* Roll a date forwards or backwards to correct it */
static HRESULT VARIANT_RollUdate(UDATE *lpUd)
{
static const BYTE days[] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
short iYear, iMonth, iDay, iHour, iMinute, iSecond;
/* interpret values signed */
iYear = lpUd->st.wYear;
iMonth = lpUd->st.wMonth;
iDay = lpUd->st.wDay;
iHour = lpUd->st.wHour;
iMinute = lpUd->st.wMinute;
iSecond = lpUd->st.wSecond;
TRACE("Raw date: %d/%d/%d %d:%d:%d\n", iDay, iMonth,
iYear, iHour, iMinute, iSecond);
if (iYear > 9999 || iYear < -9999)
return E_INVALIDARG; /* Invalid value */
/* Year 0 to 29 are treated as 2000 + year */
if (iYear >= 0 && iYear < 30)
iYear += 2000;
/* Remaining years < 100 are treated as 1900 + year */
else if (iYear >= 30 && iYear < 100)
iYear += 1900;
iMinute += iSecond / 60;
iSecond = iSecond % 60;
iHour += iMinute / 60;
iMinute = iMinute % 60;
iDay += iHour / 24;
iHour = iHour % 24;
iYear += iMonth / 12;
iMonth = iMonth % 12;
if (iMonth<=0) {iMonth+=12; iYear--;}
while (iDay > days[iMonth])
{
if (iMonth == 2 && IsLeapYear(iYear))
iDay -= 29;
else
iDay -= days[iMonth];
iMonth++;
iYear += iMonth / 12;
iMonth = iMonth % 12;
}
while (iDay <= 0)
{
iMonth--;
if (iMonth<=0) {iMonth+=12; iYear--;}
if (iMonth == 2 && IsLeapYear(iYear))
iDay += 29;
else
iDay += days[iMonth];
}
if (iSecond<0){iSecond+=60; iMinute--;}
if (iMinute<0){iMinute+=60; iHour--;}
if (iHour<0) {iHour+=24; iDay--;}
if (iYear<=0) iYear+=2000;
lpUd->st.wYear = iYear;
lpUd->st.wMonth = iMonth;
lpUd->st.wDay = iDay;
lpUd->st.wHour = iHour;
lpUd->st.wMinute = iMinute;
lpUd->st.wSecond = iSecond;
TRACE("Rolled date: %d/%d/%d %d:%d:%d\n", lpUd->st.wDay, lpUd->st.wMonth,
lpUd->st.wYear, lpUd->st.wHour, lpUd->st.wMinute, lpUd->st.wSecond);
return S_OK;
}
/**********************************************************************
* DosDateTimeToVariantTime [OLEAUT32.14]
*
* Convert a Dos format date and time into variant VT_DATE format.
*
* PARAMS
* wDosDate [I] Dos format date
* wDosTime [I] Dos format time
* pDateOut [O] Destination for VT_DATE format
*
* RETURNS
* Success: TRUE. pDateOut contains the converted time.
* Failure: FALSE, if wDosDate or wDosTime are invalid (see notes).
*
* NOTES
* - Dos format dates can only hold dates from 1-Jan-1980 to 31-Dec-2099.
* - Dos format times are accurate to only 2 second precision.
* - The format of a Dos Date is:
*| Bits Values Meaning
*| ---- ------ -------
*| 0-4 1-31 Day of the week. 0 rolls back one day. A value greater than
*| the days in the month rolls forward the extra days.
*| 5-8 1-12 Month of the year. 0 rolls back to December of the previous
*| year. 13-15 are invalid.
*| 9-15 0-119 Year based from 1980 (Max 2099). 120-127 are invalid.
* - The format of a Dos Time is:
*| Bits Values Meaning
*| ---- ------ -------
*| 0-4 0-29 Seconds/2. 30 and 31 are invalid.
*| 5-10 0-59 Minutes. 60-63 are invalid.
*| 11-15 0-23 Hours (24 hour clock). 24-32 are invalid.
*/
INT WINAPI DosDateTimeToVariantTime(USHORT wDosDate, USHORT wDosTime,
double *pDateOut)
{
UDATE ud;
TRACE("(0x%x(%d/%d/%d),0x%x(%d:%d:%d),%p)\n",
wDosDate, DOS_YEAR(wDosDate), DOS_MONTH(wDosDate), DOS_DAY(wDosDate),
wDosTime, DOS_HOUR(wDosTime), DOS_MINUTE(wDosTime), DOS_SECOND(wDosTime),
pDateOut);
ud.st.wYear = DOS_YEAR(wDosDate);
ud.st.wMonth = DOS_MONTH(wDosDate);
if (ud.st.wYear > 2099 || ud.st.wMonth > 12)
return FALSE;
ud.st.wDay = DOS_DAY(wDosDate);
ud.st.wHour = DOS_HOUR(wDosTime);
ud.st.wMinute = DOS_MINUTE(wDosTime);
ud.st.wSecond = DOS_SECOND(wDosTime);
ud.st.wDayOfWeek = ud.st.wMilliseconds = 0;
if (ud.st.wHour > 23 || ud.st.wMinute > 59 || ud.st.wSecond > 59)
return FALSE; /* Invalid values in Dos*/
return VarDateFromUdate(&ud, 0, pDateOut) == S_OK;
}
/**********************************************************************
* VariantTimeToDosDateTime [OLEAUT32.13]
*
* Convert a variant format date into a Dos format date and time.
*
* dateIn [I] VT_DATE time format
* pwDosDate [O] Destination for Dos format date
* pwDosTime [O] Destination for Dos format time
*
* RETURNS
* Success: TRUE. pwDosDate and pwDosTime contains the converted values.
* Failure: FALSE, if dateIn cannot be represented in Dos format.
*
* NOTES
* See DosDateTimeToVariantTime() for Dos format details and bugs.
*/
INT WINAPI VariantTimeToDosDateTime(double dateIn, USHORT *pwDosDate, USHORT *pwDosTime)
{
UDATE ud;
TRACE("(%g,%p,%p)\n", dateIn, pwDosDate, pwDosTime);
if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
return FALSE;
if (ud.st.wYear < 1980 || ud.st.wYear > 2099)
return FALSE;
*pwDosDate = DOS_DATE(ud.st.wDay, ud.st.wMonth, ud.st.wYear);
*pwDosTime = DOS_TIME(ud.st.wHour, ud.st.wMinute, ud.st.wSecond);
TRACE("Returning 0x%x(%d/%d/%d), 0x%x(%d:%d:%d)\n",
*pwDosDate, DOS_YEAR(*pwDosDate), DOS_MONTH(*pwDosDate), DOS_DAY(*pwDosDate),
*pwDosTime, DOS_HOUR(*pwDosTime), DOS_MINUTE(*pwDosTime), DOS_SECOND(*pwDosTime));
return TRUE;
}
/***********************************************************************
* SystemTimeToVariantTime [OLEAUT32.184]
*
* Convert a System format date and time into variant VT_DATE format.
*
* PARAMS
* lpSt [I] System format date and time
* pDateOut [O] Destination for VT_DATE format date
*
* RETURNS
* Success: TRUE. *pDateOut contains the converted value.
* Failure: FALSE, if lpSt cannot be represented in VT_DATE format.
*/
INT WINAPI SystemTimeToVariantTime(LPSYSTEMTIME lpSt, double *pDateOut)
{
UDATE ud;
TRACE("(%p->%d/%d/%d %d:%d:%d,%p)\n", lpSt, lpSt->wDay, lpSt->wMonth,
lpSt->wYear, lpSt->wHour, lpSt->wMinute, lpSt->wSecond, pDateOut);
if (lpSt->wMonth > 12)
return FALSE;
if (lpSt->wDay > 31)
return FALSE;
if ((short)lpSt->wYear < 0)
return FALSE;
ud.st = *lpSt;
return VarDateFromUdate(&ud, 0, pDateOut) == S_OK;
}
/***********************************************************************
* VariantTimeToSystemTime [OLEAUT32.185]
*
* Convert a variant VT_DATE into a System format date and time.
*
* PARAMS
* datein [I] Variant VT_DATE format date
* lpSt [O] Destination for System format date and time
*
* RETURNS
* Success: TRUE. *lpSt contains the converted value.
* Failure: FALSE, if dateIn is too large or small.
*/
INT WINAPI VariantTimeToSystemTime(double dateIn, LPSYSTEMTIME lpSt)
{
UDATE ud;
TRACE("(%g,%p)\n", dateIn, lpSt);
if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
return FALSE;
*lpSt = ud.st;
return TRUE;
}
/***********************************************************************
* VarDateFromUdateEx [OLEAUT32.319]
*
* Convert an unpacked format date and time to a variant VT_DATE.
*
* PARAMS
* pUdateIn [I] Unpacked format date and time to convert
* lcid [I] Locale identifier for the conversion
* dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
* pDateOut [O] Destination for variant VT_DATE.
*
* RETURNS
* Success: S_OK. *pDateOut contains the converted value.
* Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
*/
HRESULT WINAPI VarDateFromUdateEx(UDATE *pUdateIn, LCID lcid, ULONG dwFlags, DATE *pDateOut)
{
UDATE ud;
double dateVal = 0;
TRACE("(%p->%d/%d/%d %d:%d:%d:%d %d %d,0x%08x,0x%08x,%p)\n", pUdateIn,
pUdateIn->st.wMonth, pUdateIn->st.wDay, pUdateIn->st.wYear,
pUdateIn->st.wHour, pUdateIn->st.wMinute, pUdateIn->st.wSecond,
pUdateIn->st.wMilliseconds, pUdateIn->st.wDayOfWeek,
pUdateIn->wDayOfYear, lcid, dwFlags, pDateOut);
if (lcid != MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT))
FIXME("lcid possibly not handled, treating as en-us\n");
if (dwFlags & ~(VAR_TIMEVALUEONLY|VAR_DATEVALUEONLY))
FIXME("unsupported flags: %x\n", dwFlags);
ud = *pUdateIn;
if (dwFlags & VAR_VALIDDATE)
WARN("Ignoring VAR_VALIDDATE\n");
if (FAILED(VARIANT_RollUdate(&ud)))
return E_INVALIDARG;
/* Date */
if (!(dwFlags & VAR_TIMEVALUEONLY))
dateVal = VARIANT_DateFromJulian(VARIANT_JulianFromDMY(ud.st.wYear, ud.st.wMonth, ud.st.wDay));
if ((dwFlags & VAR_TIMEVALUEONLY) || !(dwFlags & VAR_DATEVALUEONLY))
{
double dateSign = (dateVal < 0.0) ? -1.0 : 1.0;
/* Time */
dateVal += ud.st.wHour / 24.0 * dateSign;
dateVal += ud.st.wMinute / 1440.0 * dateSign;
dateVal += ud.st.wSecond / 86400.0 * dateSign;
}
TRACE("Returning %g\n", dateVal);
*pDateOut = dateVal;
return S_OK;
}
/***********************************************************************
* VarDateFromUdate [OLEAUT32.330]
*
* Convert an unpacked format date and time to a variant VT_DATE.
*
* PARAMS
* pUdateIn [I] Unpacked format date and time to convert
* dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
* pDateOut [O] Destination for variant VT_DATE.
*
* RETURNS
* Success: S_OK. *pDateOut contains the converted value.
* Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
*
* NOTES
* This function uses the United States English locale for the conversion. Use
* VarDateFromUdateEx() for alternate locales.
*/
HRESULT WINAPI VarDateFromUdate(UDATE *pUdateIn, ULONG dwFlags, DATE *pDateOut)
{
LCID lcid = MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT);
return VarDateFromUdateEx(pUdateIn, lcid, dwFlags, pDateOut);
}
/***********************************************************************
* VarUdateFromDate [OLEAUT32.331]
*
* Convert a variant VT_DATE into an unpacked format date and time.
*
* PARAMS
* datein [I] Variant VT_DATE format date
* dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
* lpUdate [O] Destination for unpacked format date and time
*
* RETURNS
* Success: S_OK. *lpUdate contains the converted value.
* Failure: E_INVALIDARG, if dateIn is too large or small.
*/
HRESULT WINAPI VarUdateFromDate(DATE dateIn, ULONG dwFlags, UDATE *lpUdate)
{
/* Cumulative totals of days per month */
static const USHORT cumulativeDays[] =
{
0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
};
double datePart, timePart;
int julianDays;
TRACE("(%g,0x%08x,%p)\n", dateIn, dwFlags, lpUdate);
if (dateIn <= (DATE_MIN - 1.0) || dateIn >= (DATE_MAX + 1.0))
return E_INVALIDARG;
datePart = dateIn < 0.0 ? ceil(dateIn) : floor(dateIn);
/* Compensate for int truncation (always downwards) */
timePart = fabs(dateIn - datePart) + 0.00000000001;
if (timePart >= 1.0)
timePart -= 0.00000000001;
/* Date */
julianDays = VARIANT_JulianFromDate(dateIn);
VARIANT_DMYFromJulian(julianDays, &lpUdate->st.wYear, &lpUdate->st.wMonth,
&lpUdate->st.wDay);
datePart = (datePart + 1.5) / 7.0;
lpUdate->st.wDayOfWeek = (datePart - floor(datePart)) * 7;
if (lpUdate->st.wDayOfWeek == 0)
lpUdate->st.wDayOfWeek = 5;
else if (lpUdate->st.wDayOfWeek == 1)
lpUdate->st.wDayOfWeek = 6;
else
lpUdate->st.wDayOfWeek -= 2;
if (lpUdate->st.wMonth > 2 && IsLeapYear(lpUdate->st.wYear))
lpUdate->wDayOfYear = 1; /* After February, in a leap year */
else
lpUdate->wDayOfYear = 0;
lpUdate->wDayOfYear += cumulativeDays[lpUdate->st.wMonth];
lpUdate->wDayOfYear += lpUdate->st.wDay;
/* Time */
timePart *= 24.0;
lpUdate->st.wHour = timePart;
timePart -= lpUdate->st.wHour;
timePart *= 60.0;
lpUdate->st.wMinute = timePart;
timePart -= lpUdate->st.wMinute;
timePart *= 60.0;
lpUdate->st.wSecond = timePart;
timePart -= lpUdate->st.wSecond;
lpUdate->st.wMilliseconds = 0;
if (timePart > 0.5)
{
/* Round the milliseconds, adjusting the time/date forward if needed */
if (lpUdate->st.wSecond < 59)
lpUdate->st.wSecond++;
else
{
lpUdate->st.wSecond = 0;
if (lpUdate->st.wMinute < 59)
lpUdate->st.wMinute++;
else
{
lpUdate->st.wMinute = 0;
if (lpUdate->st.wHour < 23)
lpUdate->st.wHour++;
else
{
lpUdate->st.wHour = 0;
/* Roll over a whole day */
if (++lpUdate->st.wDay > 28)
VARIANT_RollUdate(lpUdate);
}
}
}
}
return S_OK;
}
#define GET_NUMBER_TEXT(fld,name) \
buff[0] = 0; \
if (!GetLocaleInfoW(lcid, lctype|fld, buff, 2)) \
WARN("buffer too small for " #fld "\n"); \
else \
if (buff[0]) lpChars->name = buff[0]; \
TRACE("lcid 0x%x, " #name "=%d '%c'\n", lcid, lpChars->name, lpChars->name)
/* Get the valid number characters for an lcid */
static void VARIANT_GetLocalisedNumberChars(VARIANT_NUMBER_CHARS *lpChars, LCID lcid, DWORD dwFlags)
{
static const VARIANT_NUMBER_CHARS defaultChars = { '-','+','.',',','$',0,'.',',' };
static VARIANT_NUMBER_CHARS lastChars;
static LCID lastLcid = -1;
static DWORD lastFlags = 0;
LCTYPE lctype = dwFlags & LOCALE_NOUSEROVERRIDE;
WCHAR buff[4];
/* To make caching thread-safe, a critical section is needed */
EnterCriticalSection(&cache_cs);
/* Asking for default locale entries is very expensive: It is a registry
server call. So cache one locally, as Microsoft does it too */
if(lcid == lastLcid && dwFlags == lastFlags)
{
memcpy(lpChars, &lastChars, sizeof(defaultChars));
LeaveCriticalSection(&cache_cs);
return;
}
memcpy(lpChars, &defaultChars, sizeof(defaultChars));
GET_NUMBER_TEXT(LOCALE_SNEGATIVESIGN, cNegativeSymbol);
GET_NUMBER_TEXT(LOCALE_SPOSITIVESIGN, cPositiveSymbol);
GET_NUMBER_TEXT(LOCALE_SDECIMAL, cDecimalPoint);
GET_NUMBER_TEXT(LOCALE_STHOUSAND, cDigitSeparator);
GET_NUMBER_TEXT(LOCALE_SMONDECIMALSEP, cCurrencyDecimalPoint);
GET_NUMBER_TEXT(LOCALE_SMONTHOUSANDSEP, cCurrencyDigitSeparator);
/* Local currency symbols are often 2 characters */
lpChars->cCurrencyLocal2 = '\0';
switch(GetLocaleInfoW(lcid, lctype|LOCALE_SCURRENCY, buff, ARRAY_SIZE(buff)))
{
case 3: lpChars->cCurrencyLocal2 = buff[1]; /* Fall through */
case 2: lpChars->cCurrencyLocal = buff[0];
break;
default: WARN("buffer too small for LOCALE_SCURRENCY\n");
}
TRACE("lcid 0x%x, cCurrencyLocal =%d,%d '%c','%c'\n", lcid, lpChars->cCurrencyLocal,
lpChars->cCurrencyLocal2, lpChars->cCurrencyLocal, lpChars->cCurrencyLocal2);
memcpy(&lastChars, lpChars, sizeof(defaultChars));
lastLcid = lcid;
lastFlags = dwFlags;
LeaveCriticalSection(&cache_cs);
}
/* Number Parsing States */
#define B_PROCESSING_EXPONENT 0x1
#define B_NEGATIVE_EXPONENT 0x2
#define B_EXPONENT_START 0x4
#define B_INEXACT_ZEROS 0x8
#define B_LEADING_ZERO 0x10
#define B_PROCESSING_HEX 0x20
#define B_PROCESSING_OCT 0x40
static inline BOOL is_digit(WCHAR c)
{
return '0' <= c && c <= '9';
}
/**********************************************************************
* VarParseNumFromStr [OLEAUT32.46]
*
* Parse a string containing a number into a NUMPARSE structure.
*
* PARAMS
* lpszStr [I] String to parse number from
* lcid [I] Locale Id for the conversion
* dwFlags [I] 0, or LOCALE_NOUSEROVERRIDE to use system default number chars
* pNumprs [I/O] Destination for parsed number
* rgbDig [O] Destination for digits read in
*
* RETURNS
* Success: S_OK. pNumprs and rgbDig contain the parsed representation of
* the number.
* Failure: E_INVALIDARG, if any parameter is invalid.
* DISP_E_TYPEMISMATCH, if the string is not a number or is formatted
* incorrectly.
* DISP_E_OVERFLOW, if rgbDig is too small to hold the number.
*
* NOTES
* pNumprs must have the following fields set:
* cDig: Set to the size of rgbDig.
* dwInFlags: Set to the allowable syntax of the number using NUMPRS_ flags
* from "oleauto.h".
*
* FIXME
* - I am unsure if this function should parse non-Arabic (e.g. Thai)
* numerals, so this has not been implemented.
*/
HRESULT WINAPI VarParseNumFromStr(OLECHAR *lpszStr, LCID lcid, ULONG dwFlags,
NUMPARSE *pNumprs, BYTE *rgbDig)
{
VARIANT_NUMBER_CHARS chars;
BYTE rgbTmp[1024];
DWORD dwState = B_EXPONENT_START|B_INEXACT_ZEROS;
int iMaxDigits = ARRAY_SIZE(rgbTmp);
int cchUsed = 0;
TRACE("(%s,%d,0x%08x,%p,%p)\n", debugstr_w(lpszStr), lcid, dwFlags, pNumprs, rgbDig);
if (!pNumprs || !rgbDig)
return E_INVALIDARG;
if (pNumprs->cDig < iMaxDigits)
iMaxDigits = pNumprs->cDig;
pNumprs->cDig = 0;
pNumprs->dwOutFlags = 0;
pNumprs->cchUsed = 0;
pNumprs->nBaseShift = 0;
pNumprs->nPwr10 = 0;
if (!lpszStr)
return DISP_E_TYPEMISMATCH;
VARIANT_GetLocalisedNumberChars(&chars, lcid, dwFlags);
/* First consume all the leading symbols and space from the string */
while (1)
{
if (pNumprs->dwInFlags & NUMPRS_LEADING_WHITE && iswspace(*lpszStr))
{
pNumprs->dwOutFlags |= NUMPRS_LEADING_WHITE;
do
{
cchUsed++;
lpszStr++;
} while (iswspace(*lpszStr));
}
else if (pNumprs->dwInFlags & NUMPRS_LEADING_PLUS &&
*lpszStr == chars.cPositiveSymbol &&
!(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS))
{
pNumprs->dwOutFlags |= NUMPRS_LEADING_PLUS;
cchUsed++;
lpszStr++;
}
else if (pNumprs->dwInFlags & NUMPRS_LEADING_MINUS &&
*lpszStr == chars.cNegativeSymbol &&
!(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS))
{
pNumprs->dwOutFlags |= (NUMPRS_LEADING_MINUS|NUMPRS_NEG);
cchUsed++;
lpszStr++;
}
else if (pNumprs->dwInFlags & NUMPRS_CURRENCY &&
!(pNumprs->dwOutFlags & NUMPRS_CURRENCY) &&
*lpszStr == chars.cCurrencyLocal &&
(!chars.cCurrencyLocal2 || lpszStr[1] == chars.cCurrencyLocal2))
{
pNumprs->dwOutFlags |= NUMPRS_CURRENCY;
cchUsed++;
lpszStr++;
/* Only accept currency characters */
chars.cDecimalPoint = chars.cCurrencyDecimalPoint;
chars.cDigitSeparator = chars.cCurrencyDigitSeparator;
}
else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == '(' &&
!(pNumprs->dwOutFlags & NUMPRS_PARENS))
{
pNumprs->dwOutFlags |= NUMPRS_PARENS;
cchUsed++;
lpszStr++;
}
else
break;
}
if (!(pNumprs->dwOutFlags & NUMPRS_CURRENCY))
{
/* Only accept non-currency characters */
chars.cCurrencyDecimalPoint = chars.cDecimalPoint;
chars.cCurrencyDigitSeparator = chars.cDigitSeparator;
}
if ((*lpszStr == '&' && (*(lpszStr+1) == 'H' || *(lpszStr+1) == 'h')) &&
pNumprs->dwInFlags & NUMPRS_HEX_OCT)
{
dwState |= B_PROCESSING_HEX;
pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
cchUsed=cchUsed+2;
lpszStr=lpszStr+2;
}
else if ((*lpszStr == '&' && (*(lpszStr+1) == 'O' || *(lpszStr+1) == 'o')) &&
pNumprs->dwInFlags & NUMPRS_HEX_OCT)
{
dwState |= B_PROCESSING_OCT;
pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
cchUsed=cchUsed+2;
lpszStr=lpszStr+2;
}
/* Strip Leading zeros */
while (*lpszStr == '0')
{
dwState |= B_LEADING_ZERO;
cchUsed++;
lpszStr++;
}
while (*lpszStr)
{
if (is_digit(*lpszStr))
{
if (dwState & B_PROCESSING_EXPONENT)
{
int exponentSize = 0;
if (dwState & B_EXPONENT_START)
{
if (!is_digit(*lpszStr))
break; /* No exponent digits - invalid */
while (*lpszStr == '0')
{
/* Skip leading zero's in the exponent */
cchUsed++;
lpszStr++;
}
}
while (is_digit(*lpszStr))
{
exponentSize *= 10;
exponentSize += *lpszStr - '0';
cchUsed++;
lpszStr++;
}
if (dwState & B_NEGATIVE_EXPONENT)
exponentSize = -exponentSize;
/* Add the exponent into the powers of 10 */
pNumprs->nPwr10 += exponentSize;
dwState &= ~(B_PROCESSING_EXPONENT|B_EXPONENT_START);
lpszStr--; /* back up to allow processing of next char */
}
else
{
if ((pNumprs->cDig >= iMaxDigits) && !(dwState & B_PROCESSING_HEX)
&& !(dwState & B_PROCESSING_OCT))
{
pNumprs->dwOutFlags |= NUMPRS_INEXACT;
if (*lpszStr != '0')
dwState &= ~B_INEXACT_ZEROS; /* Inexact number with non-trailing zeros */
/* This digit can't be represented, but count it in nPwr10 */
if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
pNumprs->nPwr10--;
else
pNumprs->nPwr10++;
}
else
{
if ((dwState & B_PROCESSING_OCT) && ((*lpszStr == '8') || (*lpszStr == '9')))
break;
if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
pNumprs->nPwr10--; /* Count decimal points in nPwr10 */
rgbTmp[pNumprs->cDig] = *lpszStr - '0';
}
pNumprs->cDig++;
cchUsed++;
}
}
else if (*lpszStr == chars.cDigitSeparator && pNumprs->dwInFlags & NUMPRS_THOUSANDS)
{
pNumprs->dwOutFlags |= NUMPRS_THOUSANDS;
cchUsed++;
}
else if (*lpszStr == chars.cDecimalPoint &&
pNumprs->dwInFlags & NUMPRS_DECIMAL &&
!(pNumprs->dwOutFlags & (NUMPRS_DECIMAL|NUMPRS_EXPONENT)))
{
pNumprs->dwOutFlags |= NUMPRS_DECIMAL;
cchUsed++;
/* If we have no digits so far, skip leading zeros */
if (!pNumprs->cDig)
{
while (lpszStr[1] == '0')
{
dwState |= B_LEADING_ZERO;
cchUsed++;
lpszStr++;
pNumprs->nPwr10--;
}
}
}
else if (((*lpszStr >= 'a' && *lpszStr <= 'f') ||
(*lpszStr >= 'A' && *lpszStr <= 'F')) &&
dwState & B_PROCESSING_HEX)
{
if (pNumprs->cDig >= iMaxDigits)
{
return DISP_E_OVERFLOW;
}
else
{
if (*lpszStr >= 'a')
rgbTmp[pNumprs->cDig] = *lpszStr - 'a' + 10;
else
rgbTmp[pNumprs->cDig] = *lpszStr - 'A' + 10;
}
pNumprs->cDig++;
cchUsed++;
}
else if ((*lpszStr == 'e' || *lpszStr == 'E') &&
pNumprs->dwInFlags & NUMPRS_EXPONENT &&
!(pNumprs->dwOutFlags & NUMPRS_EXPONENT))
{
dwState |= B_PROCESSING_EXPONENT;
pNumprs->dwOutFlags |= NUMPRS_EXPONENT;
cchUsed++;
}
else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cPositiveSymbol)
{
cchUsed++; /* Ignore positive exponent */
}
else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cNegativeSymbol)
{
dwState |= B_NEGATIVE_EXPONENT;
cchUsed++;
}
else
break; /* Stop at an unrecognised character */
lpszStr++;
}
if (!pNumprs->cDig && dwState & B_LEADING_ZERO)
{
/* Ensure a 0 on its own gets stored */
pNumprs->cDig = 1;
rgbTmp[0] = 0;
}
if (pNumprs->dwOutFlags & NUMPRS_EXPONENT && dwState & B_PROCESSING_EXPONENT)
{
pNumprs->cchUsed = cchUsed;
WARN("didn't completely parse exponent\n");
return DISP_E_TYPEMISMATCH; /* Failed to completely parse the exponent */
}
if (pNumprs->dwOutFlags & NUMPRS_INEXACT)
{
if (dwState & B_INEXACT_ZEROS)
pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* All zeros doesn't set NUMPRS_INEXACT */
} else if(pNumprs->dwInFlags & NUMPRS_HEX_OCT)
{
/* copy all of the digits into the output digit buffer */
/* this is exactly what windows does although it also returns */
/* cDig of X and writes X+Y where Y>=0 number of digits to rgbDig */
memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
if (dwState & B_PROCESSING_HEX) {
/* hex numbers have always the same format */
pNumprs->nPwr10=0;
pNumprs->nBaseShift=4;
} else {
if (dwState & B_PROCESSING_OCT) {
/* oct numbers have always the same format */
pNumprs->nPwr10=0;
pNumprs->nBaseShift=3;
} else {
while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
{
pNumprs->nPwr10++;
pNumprs->cDig--;
}
}
}
} else
{
/* Remove trailing zeros from the last (whole number or decimal) part */
while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
{
pNumprs->nPwr10++;
pNumprs->cDig--;
}
}
if (pNumprs->cDig <= iMaxDigits)
pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* Ignore stripped zeros for NUMPRS_INEXACT */
else
pNumprs->cDig = iMaxDigits; /* Only return iMaxDigits worth of digits */
/* Copy the digits we processed into rgbDig */
memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
/* Consume any trailing symbols and space */
while (1)
{
if ((pNumprs->dwInFlags & NUMPRS_TRAILING_WHITE) && iswspace(*lpszStr))
{
pNumprs->dwOutFlags |= NUMPRS_TRAILING_WHITE;
do
{
cchUsed++;
lpszStr++;
} while (iswspace(*lpszStr));
}
else if (pNumprs->dwInFlags & NUMPRS_TRAILING_PLUS &&
!(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS) &&
*lpszStr == chars.cPositiveSymbol)
{
pNumprs->dwOutFlags |= NUMPRS_TRAILING_PLUS;
cchUsed++;
lpszStr++;
}
else if (pNumprs->dwInFlags & NUMPRS_TRAILING_MINUS &&
!(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS) &&
*lpszStr == chars.cNegativeSymbol)
{
pNumprs->dwOutFlags |= (NUMPRS_TRAILING_MINUS|NUMPRS_NEG);
cchUsed++;
lpszStr++;
}
else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == ')' &&
pNumprs->dwOutFlags & NUMPRS_PARENS)
{
cchUsed++;
lpszStr++;
pNumprs->dwOutFlags |= NUMPRS_NEG;
}
else
break;
}
if (pNumprs->dwOutFlags & NUMPRS_PARENS && !(pNumprs->dwOutFlags & NUMPRS_NEG))
{
pNumprs->cchUsed = cchUsed;
return DISP_E_TYPEMISMATCH; /* Opening parenthesis not matched */
}
if (pNumprs->dwInFlags & NUMPRS_USE_ALL && *lpszStr != '\0')
return DISP_E_TYPEMISMATCH; /* Not all chars were consumed */
if (!pNumprs->cDig)
return DISP_E_TYPEMISMATCH; /* No Number found */
pNumprs->cchUsed = cchUsed;
return S_OK;
}
/* VTBIT flags indicating an integer value */
#define INTEGER_VTBITS (VTBIT_I1|VTBIT_UI1|VTBIT_I2|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|VTBIT_I8|VTBIT_UI8)
/* VTBIT flags indicating a real number value */
#define REAL_VTBITS (VTBIT_R4|VTBIT_R8|VTBIT_CY)
/* Helper macros to check whether bit pattern fits in VARIANT (x is a ULONG64 ) */
#define FITS_AS_I1(x) ((x) >> 8 == 0)
#define FITS_AS_I2(x) ((x) >> 16 == 0)
#define FITS_AS_I4(x) ((x) >> 32 == 0)
/**********************************************************************
* VarNumFromParseNum [OLEAUT32.47]
*
* Convert a NUMPARSE structure into a numeric Variant type.
*
* PARAMS
* pNumprs [I] Source for parsed number. cDig must be set to the size of rgbDig
* rgbDig [I] Source for the numbers digits
* dwVtBits [I] VTBIT_ flags from "oleauto.h" indicating the acceptable dest types
* pVarDst [O] Destination for the converted Variant value.
*
* RETURNS
* Success: S_OK. pVarDst contains the converted value.
* Failure: E_INVALIDARG, if any parameter is invalid.
* DISP_E_OVERFLOW, if the number is too big for the types set in dwVtBits.
*
* NOTES
* - The smallest favoured type present in dwVtBits that can represent the
* number in pNumprs without losing precision is used.
* - Signed types are preferred over unsigned types of the same size.
* - Preferred types in order are: integer, float, double, currency then decimal.
* - Rounding (dropping of decimal points) occurs without error. See VarI8FromR8()
* for details of the rounding method.
* - pVarDst is not cleared before the result is stored in it.
* - WinXP and Win2003 support VTBIT_I8, VTBIT_UI8 but that's buggy (by
* design?): If some other VTBIT's for integers are specified together
* with VTBIT_I8 and the number will fit only in a VT_I8 Windows will "cast"
* the number to the smallest requested integer truncating this way the
* number. Wine doesn't implement this "feature" (yet?).
*/
HRESULT WINAPI VarNumFromParseNum(NUMPARSE *pNumprs, BYTE *rgbDig,
ULONG dwVtBits, VARIANT *pVarDst)
{
/* Scale factors and limits for double arithmetic */
static const double dblMultipliers[11] = {
1.0, 10.0, 100.0, 1000.0, 10000.0, 100000.0,
1000000.0, 10000000.0, 100000000.0, 1000000000.0, 10000000000.0
};
static const double dblMinimums[11] = {
R8_MIN, R8_MIN*10.0, R8_MIN*100.0, R8_MIN*1000.0, R8_MIN*10000.0,
R8_MIN*100000.0, R8_MIN*1000000.0, R8_MIN*10000000.0,
R8_MIN*100000000.0, R8_MIN*1000000000.0, R8_MIN*10000000000.0
};
static const double dblMaximums[11] = {
R8_MAX, R8_MAX/10.0, R8_MAX/100.0, R8_MAX/1000.0, R8_MAX/10000.0,
R8_MAX/100000.0, R8_MAX/1000000.0, R8_MAX/10000000.0,
R8_MAX/100000000.0, R8_MAX/1000000000.0, R8_MAX/10000000000.0
};
int wholeNumberDigits, fractionalDigits, divisor10 = 0, multiplier10 = 0;
TRACE("(%p,%p,0x%x,%p)\n", pNumprs, rgbDig, dwVtBits, pVarDst);
if (pNumprs->nBaseShift)
{
/* nBaseShift indicates a hex or octal number */
ULONG64 ul64 = 0;
LONG64 l64;
int i;
/* Convert the hex or octal number string into a UI64 */
for (i = 0; i < pNumprs->cDig; i++)
{
if (ul64 > ((UI8_MAX>>pNumprs->nBaseShift) - rgbDig[i]))
{
TRACE("Overflow multiplying digits\n");
return DISP_E_OVERFLOW;
}
ul64 = (ul64<<pNumprs->nBaseShift) + rgbDig[i];
}
/* also make a negative representation */
l64=-ul64;
/* Try signed and unsigned types in size order */
if (dwVtBits & VTBIT_I1 && FITS_AS_I1(ul64))
{
V_VT(pVarDst) = VT_I1;
V_I1(pVarDst) = ul64;
return S_OK;
}
else if (dwVtBits & VTBIT_UI1 && FITS_AS_I1(ul64))
{
V_VT(pVarDst) = VT_UI1;
V_UI1(pVarDst) = ul64;
return S_OK;
}
else if (dwVtBits & VTBIT_I2 && FITS_AS_I2(ul64))
{
V_VT(pVarDst) = VT_I2;
V_I2(pVarDst) = ul64;
return S_OK;
}
else if (dwVtBits & VTBIT_UI2 && FITS_AS_I2(ul64))
{
V_VT(pVarDst) = VT_UI2;
V_UI2(pVarDst) = ul64;
return S_OK;
}
else if (dwVtBits & VTBIT_I4 && FITS_AS_I4(ul64))
{
V_VT(pVarDst) = VT_I4;
V_I4(pVarDst) = ul64;
return S_OK;
}
else if (dwVtBits & VTBIT_UI4 && FITS_AS_I4(ul64))
{
V_VT(pVarDst) = VT_UI4;
V_UI4(pVarDst) = ul64;
return S_OK;
}
else if (dwVtBits & VTBIT_I8 && ((ul64 <= I8_MAX)||(l64>=I8_MIN)))
{
V_VT(pVarDst) = VT_I8;
V_I8(pVarDst) = ul64;
return S_OK;
}
else if (dwVtBits & VTBIT_UI8)
{
V_VT(pVarDst) = VT_UI8;
V_UI8(pVarDst) = ul64;
return S_OK;
}
else if ((dwVtBits & VTBIT_DECIMAL) == VTBIT_DECIMAL)
{
V_VT(pVarDst) = VT_DECIMAL;
DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
return S_OK;
}
else if (dwVtBits & VTBIT_R4 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
{
V_VT(pVarDst) = VT_R4;
if (ul64 <= I4_MAX)
V_R4(pVarDst) = ul64;
else
V_R4(pVarDst) = l64;
return S_OK;
}
else if (dwVtBits & VTBIT_R8 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
{
V_VT(pVarDst) = VT_R8;
if (ul64 <= I4_MAX)
V_R8(pVarDst) = ul64;
else
V_R8(pVarDst) = l64;
return S_OK;
}
TRACE("Overflow: possible return types: 0x%x, value: %s\n", dwVtBits, wine_dbgstr_longlong(ul64));
return DISP_E_OVERFLOW;
}
/* Count the number of relevant fractional and whole digits stored,
* And compute the divisor/multiplier to scale the number by.
*/
if (pNumprs->nPwr10 < 0)
{
if (-pNumprs->nPwr10 >= pNumprs->cDig)
{
/* A real number < +/- 1.0 e.g. 0.1024 or 0.01024 */
wholeNumberDigits = 0;
fractionalDigits = pNumprs->cDig;
divisor10 = -pNumprs->nPwr10;
}
else
{
/* An exactly represented real number e.g. 1.024 */
wholeNumberDigits = pNumprs->cDig + pNumprs->nPwr10;
fractionalDigits = pNumprs->cDig - wholeNumberDigits;
divisor10 = pNumprs->cDig - wholeNumberDigits;
}
}
else if (pNumprs->nPwr10 == 0)
{
/* An exactly represented whole number e.g. 1024 */
wholeNumberDigits = pNumprs->cDig;
fractionalDigits = 0;
}
else /* pNumprs->nPwr10 > 0 */
{
/* A whole number followed by nPwr10 0's e.g. 102400 */
wholeNumberDigits = pNumprs->cDig;
fractionalDigits = 0;
multiplier10 = pNumprs->nPwr10;
}
TRACE("cDig %d; nPwr10 %d, whole %d, frac %d mult %d; div %d\n",
pNumprs->cDig, pNumprs->nPwr10, wholeNumberDigits, fractionalDigits,
multiplier10, divisor10);
if (dwVtBits & (INTEGER_VTBITS|VTBIT_DECIMAL) &&
(!fractionalDigits || !(dwVtBits & (REAL_VTBITS|VTBIT_DECIMAL))))
{
/* We have one or more integer output choices, and either:
* 1) An integer input value, or
* 2) A real number input value but no floating output choices.
* Alternately, we have a DECIMAL output available and an integer input.
*
* So, place the integer value into pVarDst, using the smallest type
* possible and preferring signed over unsigned types.
*/
BOOL bOverflow = FALSE, bNegative;
ULONG64 ul64 = 0;
int i;
/* Convert the integer part of the number into a UI8 */
for (i = 0; i < wholeNumberDigits; i++)
{
if (ul64 > UI8_MAX / 10 || (ul64 == UI8_MAX / 10 && rgbDig[i] > UI8_MAX % 10))
{
TRACE("Overflow multiplying digits\n");
bOverflow = TRUE;
break;
}
ul64 = ul64 * 10 + rgbDig[i];
}
/* Account for the scale of the number */
if (!bOverflow && multiplier10)
{
for (i = 0; i < multiplier10; i++)
{
if (ul64 > (UI8_MAX / 10))
{
TRACE("Overflow scaling number\n");
bOverflow = TRUE;
break;
}
ul64 = ul64 * 10;
}
}
/* If we have any fractional digits, round the value.
* Note we don't have to do this if divisor10 is < 1,
* because this means the fractional part must be < 0.5
*/
if (!bOverflow && fractionalDigits && divisor10 > 0)
{
const BYTE* fracDig = rgbDig + wholeNumberDigits;
BOOL bAdjust = FALSE;
TRACE("first decimal value is %d\n", *fracDig);
if (*fracDig > 5)
bAdjust = TRUE; /* > 0.5 */
else if (*fracDig == 5)
{
for (i = 1; i < fractionalDigits; i++)
{
if (fracDig[i])
{
bAdjust = TRUE; /* > 0.5 */
break;
}
}
/* If exactly 0.5, round only odd values */
if (i == fractionalDigits && (ul64 & 1))
bAdjust = TRUE;
}
if (bAdjust)
{
if (ul64 == UI8_MAX)
{
TRACE("Overflow after rounding\n");
bOverflow = TRUE;
}
ul64++;
}
}
/* Zero is not a negative number */
bNegative = pNumprs->dwOutFlags & NUMPRS_NEG && ul64;
TRACE("Integer value is 0x%s, bNeg %d\n", wine_dbgstr_longlong(ul64), bNegative);
/* For negative integers, try the signed types in size order */
if (!bOverflow && bNegative)
{
if (dwVtBits & (VTBIT_I1|VTBIT_I2|VTBIT_I4|VTBIT_I8))
{
if (dwVtBits & VTBIT_I1 && ul64 <= -I1_MIN)
{
V_VT(pVarDst) = VT_I1;
V_I1(pVarDst) = -ul64;
return S_OK;
}
else if (dwVtBits & VTBIT_I2 && ul64 <= -I2_MIN)
{
V_VT(pVarDst) = VT_I2;
V_I2(pVarDst) = -ul64;
return S_OK;
}
else if (dwVtBits & VTBIT_I4 && ul64 <= -((LONGLONG)I4_MIN))
{
V_VT(pVarDst) = VT_I4;
V_I4(pVarDst) = -ul64;
return S_OK;
}
else if (dwVtBits & VTBIT_I8 && ul64 <= (ULONGLONG)I8_MAX + 1)
{
V_VT(pVarDst) = VT_I8;
V_I8(pVarDst) = -ul64;
return S_OK;
}
else if ((dwVtBits & (REAL_VTBITS|VTBIT_DECIMAL)) == VTBIT_DECIMAL)
{
/* Decimal is only output choice left - fast path */
V_VT(pVarDst) = VT_DECIMAL;
DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_NEG,0);
DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
DEC_LO64(&V_DECIMAL(pVarDst)) = -ul64;
return S_OK;
}
}
}
else if (!bOverflow)
{
/* For positive integers, try signed then unsigned types in size order */
if (dwVtBits & VTBIT_I1 && ul64 <= I1_MAX)
{
V_VT(pVarDst) = VT_I1;
V_I1(pVarDst) = ul64;
return S_OK;
}
else if (dwVtBits & VTBIT_UI1 && ul64 <= UI1_MAX)
{
V_VT(pVarDst) = VT_UI1;
V_UI1(pVarDst) = ul64;
return S_OK;
}
else if (dwVtBits & VTBIT_I2 && ul64 <= I2_MAX)
{
V_VT(pVarDst) = VT_I2;
V_I2(pVarDst) = ul64;
return S_OK;
}
else if (dwVtBits & VTBIT_UI2 && ul64 <= UI2_MAX)
{
V_VT(pVarDst) = VT_UI2;
V_UI2(pVarDst) = ul64;
return S_OK;
}
else if (dwVtBits & VTBIT_I4 && ul64 <= I4_MAX)
{
V_VT(pVarDst) = VT_I4;
V_I4(pVarDst) = ul64;
return S_OK;
}
else if (dwVtBits & VTBIT_UI4 && ul64 <= UI4_MAX)
{
V_VT(pVarDst) = VT_UI4;
V_UI4(pVarDst) = ul64;
return S_OK;
}
else if (dwVtBits & VTBIT_I8 && ul64 <= I8_MAX)
{
V_VT(pVarDst) = VT_I8;
V_I8(pVarDst) = ul64;
return S_OK;
}
else if (dwVtBits & VTBIT_UI8)
{
V_VT(pVarDst) = VT_UI8;
V_UI8(pVarDst) = ul64;
return S_OK;
}
else if ((dwVtBits & (REAL_VTBITS|VTBIT_DECIMAL)) == VTBIT_DECIMAL)
{
/* Decimal is only output choice left - fast path */
V_VT(pVarDst) = VT_DECIMAL;
DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
return S_OK;
}
}
}
if (dwVtBits & REAL_VTBITS)
{
/* Try to put the number into a float or real */
BOOL bOverflow = FALSE, bNegative = pNumprs->dwOutFlags & NUMPRS_NEG;
double whole = 0.0;
int i;
/* Convert the number into a double */
for (i = 0; i < pNumprs->cDig; i++)
whole = whole * 10.0 + rgbDig[i];
TRACE("Whole double value is %16.16g\n", whole);
/* Account for the scale */
while (multiplier10 > 10)
{
if (whole > dblMaximums[10])
{
dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
bOverflow = TRUE;
break;
}
whole = whole * dblMultipliers[10];
multiplier10 -= 10;
}
if (multiplier10 && !bOverflow)
{
if (whole > dblMaximums[multiplier10])
{
dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
bOverflow = TRUE;
}
else
whole = whole * dblMultipliers[multiplier10];
}
if (!bOverflow)
TRACE("Scaled double value is %16.16g\n", whole);
while (divisor10 > 10 && !bOverflow)
{
if (whole < dblMinimums[10] && whole != 0)
{
whole = 0; /* ignore underflow */
divisor10 = 0;
break;
}
whole = whole / dblMultipliers[10];
divisor10 -= 10;
}
if (divisor10 && !bOverflow)
{
if (whole < dblMinimums[divisor10] && whole != 0)
{
whole = 0; /* ignore underflow */
divisor10 = 0;
}
else
whole = whole / dblMultipliers[divisor10];
}
if (!bOverflow)
TRACE("Final double value is %16.16g\n", whole);
if (dwVtBits & VTBIT_R4 &&
((whole <= R4_MAX && whole >= R4_MIN) || whole == 0.0))
{
TRACE("Set R4 to final value\n");
V_VT(pVarDst) = VT_R4; /* Fits into a float */
V_R4(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
return S_OK;
}
if (dwVtBits & VTBIT_R8)
{
TRACE("Set R8 to final value\n");
V_VT(pVarDst) = VT_R8; /* Fits into a double */
V_R8(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
return S_OK;
}
if (dwVtBits & VTBIT_CY)
{
if (SUCCEEDED(VarCyFromR8(bNegative ? -whole : whole, &V_CY(pVarDst))))
{
V_VT(pVarDst) = VT_CY; /* Fits into a currency */
TRACE("Set CY to final value\n");
return S_OK;
}
TRACE("Value Overflows CY\n");
}
}
if (dwVtBits & VTBIT_DECIMAL)
{
int i;
ULONG carry;
ULONG64 tmp;
DECIMAL* pDec = &V_DECIMAL(pVarDst);
DECIMAL_SETZERO(*pDec);
DEC_LO32(pDec) = 0;
if (pNumprs->dwOutFlags & NUMPRS_NEG)
DEC_SIGN(pDec) = DECIMAL_NEG;
else
DEC_SIGN(pDec) = DECIMAL_POS;
/* Factor the significant digits */
for (i = 0; i < pNumprs->cDig; i++)
{
tmp = (ULONG64)DEC_LO32(pDec) * 10 + rgbDig[i];
carry = (ULONG)(tmp >> 32);
DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
carry = (ULONG)(tmp >> 32);
DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
if (tmp >> 32 & UI4_MAX)
{
VarNumFromParseNum_DecOverflow:
TRACE("Overflow\n");
DEC_LO32(pDec) = DEC_MID32(pDec) = DEC_HI32(pDec) = UI4_MAX;
return DISP_E_OVERFLOW;
}
}
/* Account for the scale of the number */
while (multiplier10 > 0)
{
tmp = (ULONG64)DEC_LO32(pDec) * 10;
carry = (ULONG)(tmp >> 32);
DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
carry = (ULONG)(tmp >> 32);
DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
if (tmp >> 32 & UI4_MAX)
goto VarNumFromParseNum_DecOverflow;
multiplier10--;
}
DEC_SCALE(pDec) = divisor10;
V_VT(pVarDst) = VT_DECIMAL;
return S_OK;
}
return DISP_E_OVERFLOW; /* No more output choices */
}
/**********************************************************************
* VarCat [OLEAUT32.318]
*
* Concatenates one variant onto another.
*
* PARAMS
* left [I] First variant
* right [I] Second variant
* result [O] Result variant
*
* RETURNS
* Success: S_OK.
* Failure: An HRESULT error code indicating the error.
*/
HRESULT WINAPI VarCat(LPVARIANT left, LPVARIANT right, LPVARIANT out)
{
BSTR left_str = NULL, right_str = NULL;
VARTYPE leftvt, rightvt;
HRESULT hres;
TRACE("%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), out);
leftvt = V_VT(left);
rightvt = V_VT(right);
/* when both left and right are NULL the result is NULL */
if (leftvt == VT_NULL && rightvt == VT_NULL)
{
V_VT(out) = VT_NULL;
return S_OK;
}
/* There are many special case for errors and return types */
if (leftvt == VT_VARIANT && (rightvt == VT_ERROR ||
rightvt == VT_DATE || rightvt == VT_DECIMAL))
hres = DISP_E_TYPEMISMATCH;
else if ((leftvt == VT_I2 || leftvt == VT_I4 ||
leftvt == VT_R4 || leftvt == VT_R8 ||
leftvt == VT_CY || leftvt == VT_BOOL ||
leftvt == VT_BSTR || leftvt == VT_I1 ||
leftvt == VT_UI1 || leftvt == VT_UI2 ||
leftvt == VT_UI4 || leftvt == VT_I8 ||
leftvt == VT_UI8 || leftvt == VT_INT ||
leftvt == VT_UINT || leftvt == VT_EMPTY ||
leftvt == VT_NULL || leftvt == VT_DATE ||
leftvt == VT_DECIMAL || leftvt == VT_DISPATCH)
&&
(rightvt == VT_I2 || rightvt == VT_I4 ||
rightvt == VT_R4 || rightvt == VT_R8 ||
rightvt == VT_CY || rightvt == VT_BOOL ||
rightvt == VT_BSTR || rightvt == VT_I1 ||
rightvt == VT_UI1 || rightvt == VT_UI2 ||
rightvt == VT_UI4 || rightvt == VT_I8 ||
rightvt == VT_UI8 || rightvt == VT_INT ||
rightvt == VT_UINT || rightvt == VT_EMPTY ||
rightvt == VT_NULL || rightvt == VT_DATE ||
rightvt == VT_DECIMAL || rightvt == VT_DISPATCH))
hres = S_OK;
else if (rightvt == VT_ERROR && leftvt < VT_VOID)
hres = DISP_E_TYPEMISMATCH;
else if (leftvt == VT_ERROR && (rightvt == VT_DATE ||
rightvt == VT_ERROR || rightvt == VT_DECIMAL))
hres = DISP_E_TYPEMISMATCH;
else if (rightvt == VT_DATE || rightvt == VT_ERROR ||
rightvt == VT_DECIMAL)
hres = DISP_E_BADVARTYPE;
else if (leftvt == VT_ERROR || rightvt == VT_ERROR)
hres = DISP_E_TYPEMISMATCH;
else if (leftvt == VT_VARIANT)
hres = DISP_E_TYPEMISMATCH;
else if (rightvt == VT_VARIANT && (leftvt == VT_EMPTY ||
leftvt == VT_NULL || leftvt == VT_I2 ||
leftvt == VT_I4 || leftvt == VT_R4 ||
leftvt == VT_R8 || leftvt == VT_CY ||
leftvt == VT_DATE || leftvt == VT_BSTR ||
leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
leftvt == VT_I1 || leftvt == VT_UI1 ||
leftvt == VT_UI2 || leftvt == VT_UI4 ||
leftvt == VT_I8 || leftvt == VT_UI8 ||
leftvt == VT_INT || leftvt == VT_UINT))
hres = DISP_E_TYPEMISMATCH;
else
hres = DISP_E_BADVARTYPE;
/* if result type is not S_OK, then no need to go further */
if (hres != S_OK)
{
V_VT(out) = VT_EMPTY;
return hres;
}
if (leftvt == VT_BSTR)
left_str = V_BSTR(left);
else
{
VARIANT converted, *tmp = left;
VariantInit(&converted);
if(leftvt == VT_DISPATCH)
{
hres = VARIANT_FetchDispatchValue(left, &converted);
if(FAILED(hres))
goto failed;
tmp = &converted;
}
hres = VariantChangeTypeEx(&converted, tmp, 0, VARIANT_ALPHABOOL|VARIANT_LOCALBOOL, VT_BSTR);
if (SUCCEEDED(hres))
left_str = V_BSTR(&converted);
else if (hres != DISP_E_TYPEMISMATCH)
{
VariantClear(&converted);
goto failed;
}
}
if (rightvt == VT_BSTR)
right_str = V_BSTR(right);
else
{
VARIANT converted, *tmp = right;
VariantInit(&converted);
if(rightvt == VT_DISPATCH)
{
hres = VARIANT_FetchDispatchValue(right, &converted);
if(FAILED(hres))
goto failed;
tmp = &converted;
}
hres = VariantChangeTypeEx(&converted, tmp, 0, VARIANT_ALPHABOOL|VARIANT_LOCALBOOL, VT_BSTR);
if (SUCCEEDED(hres))
right_str = V_BSTR(&converted);
else if (hres != DISP_E_TYPEMISMATCH)
{
VariantClear(&converted);
goto failed;
}
}
V_VT(out) = VT_BSTR;
hres = VarBstrCat(left_str, right_str, &V_BSTR(out));
failed:
if(V_VT(left) != VT_BSTR)
SysFreeString(left_str);
if(V_VT(right) != VT_BSTR)
SysFreeString(right_str);
return hres;
}
/* Wrapper around VariantChangeTypeEx() which permits changing a
variant with VT_RESERVED flag set. Needed by VarCmp. */
static HRESULT _VarChangeTypeExWrap (VARIANTARG* pvargDest,
VARIANTARG* pvargSrc, LCID lcid, USHORT wFlags, VARTYPE vt)
{
VARIANTARG vtmpsrc = *pvargSrc;
V_VT(&vtmpsrc) &= ~VT_RESERVED;
return VariantChangeTypeEx(pvargDest,&vtmpsrc,lcid,wFlags,vt);
}
/**********************************************************************
* VarCmp [OLEAUT32.176]
*
* Compare two variants.
*
* PARAMS
* left [I] First variant
* right [I] Second variant
* lcid [I] LCID (locale identifier) for the comparison
* flags [I] Flags to be used in the comparison:
* NORM_IGNORECASE, NORM_IGNORENONSPACE, NORM_IGNORESYMBOLS,
* NORM_IGNOREWIDTH, NORM_IGNOREKANATYPE, NORM_IGNOREKASHIDA
*
* RETURNS
* VARCMP_LT: left variant is less than right variant.
* VARCMP_EQ: input variants are equal.
* VARCMP_GT: left variant is greater than right variant.
* VARCMP_NULL: either one of the input variants is NULL.
* Failure: An HRESULT error code indicating the error.
*
* NOTES
* Native VarCmp up to and including WinXP doesn't like I1, UI2, VT_UI4,
* UI8 and UINT as input variants. INT is accepted only as left variant.
*
* If both input variants are ERROR then VARCMP_EQ will be returned, else
* an ERROR variant will trigger an error.
*
* Both input variants can have VT_RESERVED flag set which is ignored
* unless one and only one of the variants is a BSTR and the other one
* is not an EMPTY variant. All four VT_RESERVED combinations have a
* different meaning:
* - BSTR and other: BSTR is always greater than the other variant.
* - BSTR|VT_RESERVED and other: a string comparison is performed.
* - BSTR and other|VT_RESERVED: If the BSTR is a number a numeric
* comparison will take place else the BSTR is always greater.
* - BSTR|VT_RESERVED and other|VT_RESERVED: It seems that the other
* variant is ignored and the return value depends only on the sign
* of the BSTR if it is a number else the BSTR is always greater. A
* positive BSTR is greater, a negative one is smaller than the other
* variant.
*
* SEE
* VarBstrCmp for the lcid and flags usage.
*/
HRESULT WINAPI VarCmp(LPVARIANT left, LPVARIANT right, LCID lcid, DWORD flags)
{
VARTYPE lvt, rvt, vt;
VARIANT rv,lv;
DWORD xmask;
HRESULT rc;
TRACE("(%s,%s,0x%08x,0x%08x)\n", debugstr_variant(left), debugstr_variant(right), lcid, flags);
lvt = V_VT(left) & VT_TYPEMASK;
rvt = V_VT(right) & VT_TYPEMASK;
xmask = (1 << lvt) | (1 << rvt);
/* If we have any flag set except VT_RESERVED bail out.
Same for the left input variant type > VT_INT and for the
right input variant type > VT_I8. Yes, VT_INT is only supported
as left variant. Go figure */
if (((V_VT(left) | V_VT(right)) & ~VT_TYPEMASK & ~VT_RESERVED) ||
lvt > VT_INT || rvt > VT_I8) {
return DISP_E_BADVARTYPE;
}
/* Don't ask me why but native VarCmp cannot handle: VT_I1, VT_UI2, VT_UI4,
VT_UINT and VT_UI8. Tested with DCOM98, Win2k, WinXP */
if (rvt == VT_INT || xmask & (VTBIT_I1 | VTBIT_UI2 | VTBIT_UI4 | VTBIT_UI8 |
VTBIT_DISPATCH | VTBIT_VARIANT | VTBIT_UNKNOWN | VTBIT_15))
return DISP_E_TYPEMISMATCH;
/* If both variants are VT_ERROR return VARCMP_EQ */
if (xmask == VTBIT_ERROR)
return VARCMP_EQ;
else if (xmask & VTBIT_ERROR)
return DISP_E_TYPEMISMATCH;
if (xmask & VTBIT_NULL)
return VARCMP_NULL;
VariantInit(&lv);
VariantInit(&rv);
/* Two BSTRs, ignore VT_RESERVED */
if (xmask == VTBIT_BSTR)
return VarBstrCmp(V_BSTR(left), V_BSTR(right), lcid, flags);
/* A BSTR and another variant; we have to take care of VT_RESERVED */
if (xmask & VTBIT_BSTR) {
VARIANT *bstrv, *nonbv;
VARTYPE nonbvt;
int swap = 0;
/* Swap the variants so the BSTR is always on the left */
if (lvt == VT_BSTR) {
bstrv = left;
nonbv = right;
nonbvt = rvt;
} else {
swap = 1;
bstrv = right;
nonbv = left;
nonbvt = lvt;
}
/* BSTR and EMPTY: ignore VT_RESERVED */
if (nonbvt == VT_EMPTY)
rc = (!V_BSTR(bstrv) || !*V_BSTR(bstrv)) ? VARCMP_EQ : VARCMP_GT;
else {
VARTYPE breserv = V_VT(bstrv) & ~VT_TYPEMASK;
VARTYPE nreserv = V_VT(nonbv) & ~VT_TYPEMASK;
if (!breserv && !nreserv)
/* No VT_RESERVED set ==> BSTR always greater */
rc = VARCMP_GT;
else if (breserv && !nreserv) {
/* BSTR has VT_RESERVED set. Do a string comparison */
rc = VariantChangeTypeEx(&rv,nonbv,lcid,0,VT_BSTR);
if (FAILED(rc))
return rc;
rc = VarBstrCmp(V_BSTR(bstrv), V_BSTR(&rv), lcid, flags);
VariantClear(&rv);
} else if (V_BSTR(bstrv) && *V_BSTR(bstrv)) {
/* Non NULL nor empty BSTR */
/* If the BSTR is not a number the BSTR is greater */
rc = _VarChangeTypeExWrap(&lv,bstrv,lcid,0,VT_R8);
if (FAILED(rc))
rc = VARCMP_GT;
else if (breserv && nreserv)
/* FIXME: This is strange: with both VT_RESERVED set it
looks like the result depends only on the sign of
the BSTR number */
rc = (V_R8(&lv) >= 0) ? VARCMP_GT : VARCMP_LT;
else
/* Numeric comparison, will be handled below.
VARCMP_NULL used only to break out. */
rc = VARCMP_NULL;
VariantClear(&lv);
VariantClear(&rv);
} else
/* Empty or NULL BSTR */
rc = VARCMP_GT;
}
/* Fixup the return code if we swapped left and right */
if (swap) {
if (rc == VARCMP_GT)
rc = VARCMP_LT;
else if (rc == VARCMP_LT)
rc = VARCMP_GT;
}
if (rc != VARCMP_NULL)
return rc;
}
if (xmask & VTBIT_DECIMAL)
vt = VT_DECIMAL;
else if (xmask & VTBIT_BSTR)
vt = VT_R8;
else if (xmask & VTBIT_R4)
vt = VT_R4;
else if (xmask & (VTBIT_R8 | VTBIT_DATE))
vt = VT_R8;
else if (xmask & VTBIT_CY)
vt = VT_CY;
else
/* default to I8 */
vt = VT_I8;
/* Coerce the variants */
rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
/* Overflow, change to R8 */
vt = VT_R8;
rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
}
if (FAILED(rc))
return rc;
rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
/* Overflow, change to R8 */
vt = VT_R8;
rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
if (FAILED(rc))
return rc;
rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
}
if (FAILED(rc))
return rc;
#define _VARCMP(a,b) \
(((a) == (b)) ? VARCMP_EQ : (((a) < (b)) ? VARCMP_LT : VARCMP_GT))
switch (vt) {
case VT_CY:
return VarCyCmp(V_CY(&lv), V_CY(&rv));
case VT_DECIMAL:
return VarDecCmp(&V_DECIMAL(&lv), &V_DECIMAL(&rv));
case VT_I8:
return _VARCMP(V_I8(&lv), V_I8(&rv));
case VT_R4:
return _VARCMP(V_R4(&lv), V_R4(&rv));
case VT_R8:
return _VARCMP(V_R8(&lv), V_R8(&rv));
default:
/* We should never get here */
return E_FAIL;
}
#undef _VARCMP
}
/**********************************************************************
* VarAnd [OLEAUT32.142]
*
* Computes the logical AND of two variants.
*
* PARAMS
* left [I] First variant
* right [I] Second variant
* result [O] Result variant
*
* RETURNS
* Success: S_OK.
* Failure: An HRESULT error code indicating the error.
*/
HRESULT WINAPI VarAnd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
{
HRESULT hres = S_OK;
VARTYPE resvt = VT_EMPTY;
VARTYPE leftvt,rightvt;
VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
VARIANT varLeft, varRight;
VARIANT tempLeft, tempRight;
VariantInit(&varLeft);
VariantInit(&varRight);
VariantInit(&tempLeft);
VariantInit(&tempRight);
TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
/* Handle VT_DISPATCH by storing and taking address of returned value */
if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
{
hres = VARIANT_FetchDispatchValue(left, &tempLeft);
if (FAILED(hres)) goto VarAnd_Exit;
left = &tempLeft;
}
if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
{
hres = VARIANT_FetchDispatchValue(right, &tempRight);
if (FAILED(hres)) goto VarAnd_Exit;
right = &tempRight;
}
leftvt = V_VT(left)&VT_TYPEMASK;
rightvt = V_VT(right)&VT_TYPEMASK;
leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
if (leftExtraFlags != rightExtraFlags)
{
hres = DISP_E_BADVARTYPE;
goto VarAnd_Exit;
}
ExtraFlags = leftExtraFlags;
/* Native VarAnd always returns an error when using extra
* flags or if the variant combination is I8 and INT.
*/
if ((leftvt == VT_I8 && rightvt == VT_INT) ||
(leftvt == VT_INT && rightvt == VT_I8) ||
ExtraFlags != 0)
{
hres = DISP_E_BADVARTYPE;
goto VarAnd_Exit;
}
/* Determine return type */
else if (leftvt == VT_I8 || rightvt == VT_I8)
resvt = VT_I8;
else if (leftvt == VT_I4 || rightvt == VT_I4 ||
leftvt == VT_UINT || rightvt == VT_UINT ||
leftvt == VT_INT || rightvt == VT_INT ||
leftvt == VT_R4 || rightvt == VT_R4 ||
leftvt == VT_R8 || rightvt == VT_R8 ||
leftvt == VT_CY || rightvt == VT_CY ||
leftvt == VT_DATE || rightvt == VT_DATE ||
leftvt == VT_I1 || rightvt == VT_I1 ||
leftvt == VT_UI2 || rightvt == VT_UI2 ||
leftvt == VT_UI4 || rightvt == VT_UI4 ||
leftvt == VT_UI8 || rightvt == VT_UI8 ||
leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
resvt = VT_I4;
else if (leftvt == VT_UI1 || rightvt == VT_UI1 ||
leftvt == VT_I2 || rightvt == VT_I2 ||
leftvt == VT_EMPTY || rightvt == VT_EMPTY)
if ((leftvt == VT_NULL && rightvt == VT_UI1) ||
(leftvt == VT_UI1 && rightvt == VT_NULL) ||
(leftvt == VT_UI1 && rightvt == VT_UI1))
resvt = VT_UI1;
else
resvt = VT_I2;
else if (leftvt == VT_BOOL || rightvt == VT_BOOL ||
(leftvt == VT_BSTR && rightvt == VT_BSTR))
resvt = VT_BOOL;
else if (leftvt == VT_NULL || rightvt == VT_NULL ||
leftvt == VT_BSTR || rightvt == VT_BSTR)
resvt = VT_NULL;
else
{
hres = DISP_E_BADVARTYPE;
goto VarAnd_Exit;
}
if (leftvt == VT_NULL || rightvt == VT_NULL)
{
/*
* Special cases for when left variant is VT_NULL
* (VT_NULL & 0 = VT_NULL, VT_NULL & value = value)
*/
if (leftvt == VT_NULL)
{
VARIANT_BOOL b;
switch(rightvt)
{
case VT_I1: if (V_I1(right)) resvt = VT_NULL; break;
case VT_UI1: if (V_UI1(right)) resvt = VT_NULL; break;
case VT_I2: if (V_I2(right)) resvt = VT_NULL; break;
case VT_UI2: if (V_UI2(right)) resvt = VT_NULL; break;
case VT_I4: if (V_I4(right)) resvt = VT_NULL; break;
case VT_UI4: if (V_UI4(right)) resvt = VT_NULL; break;
case VT_I8: if (V_I8(right)) resvt = VT_NULL; break;
case VT_UI8: if (V_UI8(right)) resvt = VT_NULL; break;
case VT_INT: if (V_INT(right)) resvt = VT_NULL; break;
case VT_UINT: if (V_UINT(right)) resvt = VT_NULL; break;
case VT_BOOL: if (V_BOOL(right)) resvt = VT_NULL; break;
case VT_R4: if (V_R4(right)) resvt = VT_NULL; break;
case VT_R8: if (V_R8(right)) resvt = VT_NULL; break;
case VT_CY:
if(V_CY(right).int64)
resvt = VT_NULL;
break;
case VT_DECIMAL:
if (DEC_HI32(&V_DECIMAL(right)) ||
DEC_LO64(&V_DECIMAL(right)))
resvt = VT_NULL;
break;
case VT_BSTR:
hres = VarBoolFromStr(V_BSTR(right),
LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
if (FAILED(hres))
return hres;
else if (b)
V_VT(result) = VT_NULL;
else
{
V_VT(result) = VT_BOOL;
V_BOOL(result) = b;
}
goto VarAnd_Exit;
}
}
V_VT(result) = resvt;
goto VarAnd_Exit;
}
hres = VariantCopy(&varLeft, left);
if (FAILED(hres)) goto VarAnd_Exit;
hres = VariantCopy(&varRight, right);
if (FAILED(hres)) goto VarAnd_Exit;
if (resvt == VT_I4 && V_VT(&varLeft) == VT_UI4)
V_VT(&varLeft) = VT_I4; /* Don't overflow */
else
{
double d;
if (V_VT(&varLeft) == VT_BSTR &&
FAILED(VarR8FromStr(V_BSTR(&varLeft),
LOCALE_USER_DEFAULT, 0, &d)))
hres = VariantChangeType(&varLeft,&varLeft,
VARIANT_LOCALBOOL, VT_BOOL);
if (SUCCEEDED(hres) && V_VT(&varLeft) != resvt)
hres = VariantChangeType(&varLeft,&varLeft,0,resvt);
if (FAILED(hres)) goto VarAnd_Exit;
}
if (resvt == VT_I4 && V_VT(&varRight) == VT_UI4)
V_VT(&varRight) = VT_I4; /* Don't overflow */
else
{
double d;
if (V_VT(&varRight) == VT_BSTR &&
FAILED(VarR8FromStr(V_BSTR(&varRight),
LOCALE_USER_DEFAULT, 0, &d)))
hres = VariantChangeType(&varRight, &varRight,
VARIANT_LOCALBOOL, VT_BOOL);
if (SUCCEEDED(hres) && V_VT(&varRight) != resvt)
hres = VariantChangeType(&varRight, &varRight, 0, resvt);
if (FAILED(hres)) goto VarAnd_Exit;
}
V_VT(result) = resvt;
switch(resvt)
{
case VT_I8:
V_I8(result) = V_I8(&varLeft) & V_I8(&varRight);
break;
case VT_I4:
V_I4(result) = V_I4(&varLeft) & V_I4(&varRight);
break;
case VT_I2:
V_I2(result) = V_I2(&varLeft) & V_I2(&varRight);
break;
case VT_UI1:
V_UI1(result) = V_UI1(&varLeft) & V_UI1(&varRight);
break;
case VT_BOOL:
V_BOOL(result) = V_BOOL(&varLeft) & V_BOOL(&varRight);
break;
default:
FIXME("Couldn't bitwise AND variant types %d,%d\n",
leftvt,rightvt);
}
VarAnd_Exit:
VariantClear(&varLeft);
VariantClear(&varRight);
VariantClear(&tempLeft);
VariantClear(&tempRight);
return hres;
}
/**********************************************************************
* VarAdd [OLEAUT32.141]
*
* Add two variants.
*
* PARAMS
* left [I] First variant
* right [I] Second variant
* result [O] Result variant
*
* RETURNS
* Success: S_OK.
* Failure: An HRESULT error code indicating the error.
*
* NOTES
* Native VarAdd up to and including WinXP doesn't like I1, UI2, UI4,
* UI8, INT and UINT as input variants.
*
* Native VarAdd doesn't check for NULL in/out pointers and crashes. We do the
* same here.
*
* FIXME
* Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
* case.
*/
HRESULT WINAPI VarAdd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
{
HRESULT hres;
VARTYPE lvt, rvt, resvt, tvt;
VARIANT lv, rv, tv;
VARIANT tempLeft, tempRight;
double r8res;
/* Variant priority for coercion. Sorted from lowest to highest.
VT_ERROR shows an invalid input variant type. */
enum coerceprio { vt_EMPTY, vt_UI1, vt_I2, vt_I4, vt_I8, vt_BSTR,vt_R4,
vt_R8, vt_CY, vt_DATE, vt_DECIMAL, vt_DISPATCH, vt_NULL,
vt_ERROR };
/* Mapping from priority to variant type. Keep in sync with coerceprio! */
static const VARTYPE prio2vt[] = { VT_EMPTY, VT_UI1, VT_I2, VT_I4, VT_I8, VT_BSTR, VT_R4,
VT_R8, VT_CY, VT_DATE, VT_DECIMAL, VT_DISPATCH,
VT_NULL, VT_ERROR };
/* Mapping for coercion from input variant to priority of result variant. */
static const VARTYPE coerce[] = {
/* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
vt_EMPTY, vt_NULL, vt_I2, vt_I4, vt_R4,
/* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
vt_R8, vt_CY, vt_DATE, vt_BSTR, vt_DISPATCH,
/* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
/* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
};
TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
VariantInit(&lv);
VariantInit(&rv);
VariantInit(&tv);
VariantInit(&tempLeft);
VariantInit(&tempRight);
/* Handle VT_DISPATCH by storing and taking address of returned value */
if ((V_VT(left) & VT_TYPEMASK) != VT_NULL && (V_VT(right) & VT_TYPEMASK) != VT_NULL)
{
if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
{
hres = VARIANT_FetchDispatchValue(left, &tempLeft);
if (FAILED(hres)) goto end;
left = &tempLeft;
}
if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
{
hres = VARIANT_FetchDispatchValue(right, &tempRight);
if (FAILED(hres)) goto end;
right = &tempRight;
}
}
lvt = V_VT(left)&VT_TYPEMASK;
rvt = V_VT(right)&VT_TYPEMASK;
/* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
Same for any input variant type > VT_I8 */
if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
lvt > VT_I8 || rvt > VT_I8) {
hres = DISP_E_BADVARTYPE;
goto end;
}
/* Determine the variant type to coerce to. */
if (coerce[lvt] > coerce[rvt]) {
resvt = prio2vt[coerce[lvt]];
tvt = prio2vt[coerce[rvt]];
} else {
resvt = prio2vt[coerce[rvt]];
tvt = prio2vt[coerce[lvt]];
}
/* Special cases where the result variant type is defined by both
input variants and not only that with the highest priority */
if (resvt == VT_BSTR) {
if (tvt == VT_EMPTY || tvt == VT_BSTR)
resvt = VT_BSTR;
else
resvt = VT_R8;
}
if (resvt == VT_R4 && (tvt == VT_BSTR || tvt == VT_I8 || tvt == VT_I4))
resvt = VT_R8;
/* For overflow detection use the biggest compatible type for the
addition */
switch (resvt) {
case VT_ERROR:
hres = DISP_E_BADVARTYPE;
goto end;
case VT_NULL:
hres = S_OK;
V_VT(result) = VT_NULL;
goto end;
case VT_DISPATCH:
FIXME("cannot handle variant type VT_DISPATCH\n");
hres = DISP_E_TYPEMISMATCH;
goto end;
case VT_EMPTY:
resvt = VT_I2;
/* Fall through */
case VT_UI1:
case VT_I2:
case VT_I4:
case VT_I8:
tvt = VT_I8;
break;
case VT_DATE:
case VT_R4:
tvt = VT_R8;
break;
default:
tvt = resvt;
}
/* Now coerce the variants */
hres = VariantChangeType(&lv, left, 0, tvt);
if (FAILED(hres))
goto end;
hres = VariantChangeType(&rv, right, 0, tvt);
if (FAILED(hres))
goto end;
/* Do the math */
hres = S_OK;
V_VT(result) = resvt;
switch (tvt) {
case VT_DECIMAL:
hres = VarDecAdd(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
&V_DECIMAL(result));
goto end;
case VT_CY:
hres = VarCyAdd(V_CY(&lv), V_CY(&rv), &V_CY(result));
goto end;
case VT_BSTR:
/* We do not add those, we concatenate them. */
hres = VarBstrCat(V_BSTR(&lv), V_BSTR(&rv), &V_BSTR(result));
goto end;
case VT_I8:
/* Overflow detection */
r8res = (double)V_I8(&lv) + (double)V_I8(&rv);
if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
V_VT(result) = VT_R8;
V_R8(result) = r8res;
goto end;
} else {
V_VT(&tv) = tvt;
V_I8(&tv) = V_I8(&lv) + V_I8(&rv);
}
break;
case VT_R8:
V_VT(&tv) = tvt;
/* FIXME: overflow detection */
V_R8(&tv) = V_R8(&lv) + V_R8(&rv);
break;
default:
ERR("We shouldn't get here! tvt = %d!\n", tvt);
break;
}
if (resvt != tvt) {
if ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
/* Overflow! Change to the vartype with the next higher priority.
With one exception: I4 ==> R8 even if it would fit in I8 */
if (resvt == VT_I4)
resvt = VT_R8;
else
resvt = prio2vt[coerce[resvt] + 1];
hres = VariantChangeType(result, &tv, 0, resvt);
}
} else
hres = VariantCopy(result, &tv);
end:
if (hres != S_OK) {
V_VT(result) = VT_EMPTY;
V_I4(result) = 0; /* No V_EMPTY */
}
VariantClear(&lv);
VariantClear(&rv);
VariantClear(&tv);
VariantClear(&tempLeft);
VariantClear(&tempRight);
TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
return hres;
}
/**********************************************************************
* VarMul [OLEAUT32.156]
*
* Multiply two variants.
*
* PARAMS
* left [I] First variant
* right [I] Second variant
* result [O] Result variant
*
* RETURNS
* Success: S_OK.
* Failure: An HRESULT error code indicating the error.
*
* NOTES
* Native VarMul up to and including WinXP doesn't like I1, UI2, UI4,
* UI8, INT and UINT as input variants. But it can multiply apples with oranges.
*
* Native VarMul doesn't check for NULL in/out pointers and crashes. We do the
* same here.
*
* FIXME
* Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
* case.
*/
HRESULT WINAPI VarMul(LPVARIANT left, LPVARIANT right, LPVARIANT result)
{
HRESULT hres;
VARTYPE lvt, rvt, resvt, tvt;
VARIANT lv, rv, tv;
VARIANT tempLeft, tempRight;
double r8res;
/* Variant priority for coercion. Sorted from lowest to highest.
VT_ERROR shows an invalid input variant type. */
enum coerceprio { vt_UI1 = 0, vt_I2, vt_I4, vt_I8, vt_CY, vt_R4, vt_R8,
vt_DECIMAL, vt_NULL, vt_ERROR };
/* Mapping from priority to variant type. Keep in sync with coerceprio! */
static const VARTYPE prio2vt[] = { VT_UI1, VT_I2, VT_I4, VT_I8, VT_CY, VT_R4, VT_R8,
VT_DECIMAL, VT_NULL, VT_ERROR };
/* Mapping for coercion from input variant to priority of result variant. */
static const VARTYPE coerce[] = {
/* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
vt_UI1, vt_NULL, vt_I2, vt_I4, vt_R4,
/* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
vt_R8, vt_CY, vt_R8, vt_R8, vt_ERROR,
/* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
/* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
};
TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
VariantInit(&lv);
VariantInit(&rv);
VariantInit(&tv);
VariantInit(&tempLeft);
VariantInit(&tempRight);
/* Handle VT_DISPATCH by storing and taking address of returned value */
if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
{
hres = VARIANT_FetchDispatchValue(left, &tempLeft);
if (FAILED(hres)) goto end;
left = &tempLeft;
}
if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
{
hres = VARIANT_FetchDispatchValue(right, &tempRight);
if (FAILED(hres)) goto end;
right = &tempRight;
}
lvt = V_VT(left)&VT_TYPEMASK;
rvt = V_VT(right)&VT_TYPEMASK;
/* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
Same for any input variant type > VT_I8 */
if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
lvt > VT_I8 || rvt > VT_I8) {
hres = DISP_E_BADVARTYPE;
goto end;
}
/* Determine the variant type to coerce to. */
if (coerce[lvt] > coerce[rvt]) {
resvt = prio2vt[coerce[lvt]];
tvt = prio2vt[coerce[rvt]];
} else {
resvt = prio2vt[coerce[rvt]];
tvt = prio2vt[coerce[lvt]];
}
/* Special cases where the result variant type is defined by both
input variants and not only that with the highest priority */
if (resvt == VT_R4 && (tvt == VT_CY || tvt == VT_I8 || tvt == VT_I4))
resvt = VT_R8;
if (lvt == VT_EMPTY && rvt == VT_EMPTY)
resvt = VT_I2;
/* For overflow detection use the biggest compatible type for the
multiplication */
switch (resvt) {
case VT_ERROR:
hres = DISP_E_BADVARTYPE;
goto end;
case VT_NULL:
hres = S_OK;
V_VT(result) = VT_NULL;
goto end;
case VT_UI1:
case VT_I2:
case VT_I4:
case VT_I8:
tvt = VT_I8;
break;
case VT_R4:
tvt = VT_R8;
break;
default:
tvt = resvt;
}
/* Now coerce the variants */
hres = VariantChangeType(&lv, left, 0, tvt);
if (FAILED(hres))
goto end;
hres = VariantChangeType(&rv, right, 0, tvt);
if (FAILED(hres))
goto end;
/* Do the math */
hres = S_OK;
V_VT(&tv) = tvt;
V_VT(result) = resvt;
switch (tvt) {
case VT_DECIMAL:
hres = VarDecMul(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
&V_DECIMAL(result));
goto end;
case VT_CY:
hres = VarCyMul(V_CY(&lv), V_CY(&rv), &V_CY(result));
goto end;
case VT_I8:
/* Overflow detection */
r8res = (double)V_I8(&lv) * (double)V_I8(&rv);
if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
V_VT(result) = VT_R8;
V_R8(result) = r8res;
goto end;
} else
V_I8(&tv) = V_I8(&lv) * V_I8(&rv);
break;
case VT_R8:
/* FIXME: overflow detection */
V_R8(&tv) = V_R8(&lv) * V_R8(&rv);
break;
default:
ERR("We shouldn't get here! tvt = %d!\n", tvt);
break;
}
if (resvt != tvt) {
while ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
/* Overflow! Change to the vartype with the next higher priority.
With one exception: I4 ==> R8 even if it would fit in I8 */
if (resvt == VT_I4)
resvt = VT_R8;
else
resvt = prio2vt[coerce[resvt] + 1];
}
} else
hres = VariantCopy(result, &tv);
end:
if (hres != S_OK) {
V_VT(result) = VT_EMPTY;
V_I4(result) = 0; /* No V_EMPTY */
}
VariantClear(&lv);
VariantClear(&rv);
VariantClear(&tv);
VariantClear(&tempLeft);
VariantClear(&tempRight);
TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
return hres;
}
/**********************************************************************
* VarDiv [OLEAUT32.143]
*
* Divides one variant with another.
*
* PARAMS
* left [I] First variant
* right [I] Second variant
* result [O] Result variant
*
* RETURNS
* Success: S_OK.
* Failure: An HRESULT error code indicating the error.
*/
HRESULT WINAPI VarDiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
{
HRESULT hres = S_OK;
VARTYPE resvt = VT_EMPTY;
VARTYPE leftvt,rightvt;
VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
VARIANT lv,rv;
VARIANT tempLeft, tempRight;
VariantInit(&tempLeft);
VariantInit(&tempRight);
VariantInit(&lv);
VariantInit(&rv);
TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
/* Handle VT_DISPATCH by storing and taking address of returned value */
if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
{
hres = VARIANT_FetchDispatchValue(left, &tempLeft);
if (FAILED(hres)) goto end;
left = &tempLeft;
}
if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
{
hres = VARIANT_FetchDispatchValue(right, &tempRight);
if (FAILED(hres)) goto end;
right = &tempRight;
}
leftvt = V_VT(left)&VT_TYPEMASK;
rightvt = V_VT(right)&VT_TYPEMASK;
leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
if (leftExtraFlags != rightExtraFlags)
{
hres = DISP_E_BADVARTYPE;
goto end;
}
ExtraFlags = leftExtraFlags;
/* Native VarDiv always returns an error when using extra flags */
if (ExtraFlags != 0)
{
hres = DISP_E_BADVARTYPE;
goto end;
}
/* Determine return type */
if (rightvt != VT_EMPTY)
{
if (leftvt == VT_NULL || rightvt == VT_NULL)
{
V_VT(result) = VT_NULL;
hres = S_OK;
goto end;
}
else if (leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
resvt = VT_DECIMAL;
else if (leftvt == VT_I8 || rightvt == VT_I8 ||
leftvt == VT_CY || rightvt == VT_CY ||
leftvt == VT_DATE || rightvt == VT_DATE ||
leftvt == VT_I4 || rightvt == VT_I4 ||
leftvt == VT_BSTR || rightvt == VT_BSTR ||
leftvt == VT_I2 || rightvt == VT_I2 ||
leftvt == VT_BOOL || rightvt == VT_BOOL ||
leftvt == VT_R8 || rightvt == VT_R8 ||
leftvt == VT_UI1 || rightvt == VT_UI1)
{
if ((leftvt == VT_UI1 && rightvt == VT_R4) ||
(leftvt == VT_R4 && rightvt == VT_UI1))
resvt = VT_R4;
else if ((leftvt == VT_R4 && (rightvt == VT_BOOL ||
rightvt == VT_I2)) || (rightvt == VT_R4 &&
(leftvt == VT_BOOL || leftvt == VT_I2)))
resvt = VT_R4;
else
resvt = VT_R8;
}
else if (leftvt == VT_R4 || rightvt == VT_R4)
resvt = VT_R4;
}
else if (leftvt == VT_NULL)
{
V_VT(result) = VT_NULL;
hres = S_OK;
goto end;
}
else
{
hres = DISP_E_BADVARTYPE;
goto end;
}
/* coerce to the result type */
hres = VariantChangeType(&lv, left, 0, resvt);
if (hres != S_OK) goto end;
hres = VariantChangeType(&rv, right, 0, resvt);
if (hres != S_OK) goto end;
/* do the math */
V_VT(result) = resvt;
switch (resvt)
{
case VT_R4:
if (V_R4(&lv) == 0.0 && V_R4(&rv) == 0.0)
{
hres = DISP_E_OVERFLOW;
V_VT(result) = VT_EMPTY;
}
else if (V_R4(&rv) == 0.0)
{
hres = DISP_E_DIVBYZERO;
V_VT(result) = VT_EMPTY;
}
else
V_R4(result) = V_R4(&lv) / V_R4(&rv);
break;
case VT_R8:
if (V_R8(&lv) == 0.0 && V_R8(&rv) == 0.0)
{
hres = DISP_E_OVERFLOW;
V_VT(result) = VT_EMPTY;
}
else if (V_R8(&rv) == 0.0)
{
hres = DISP_E_DIVBYZERO;
V_VT(result) = VT_EMPTY;
}
else
V_R8(result) = V_R8(&lv) / V_R8(&rv);
break;
case VT_DECIMAL:
hres = VarDecDiv(&(V_DECIMAL(&lv)), &(V_DECIMAL(&rv)), &(V_DECIMAL(result)));
break;
}
end:
VariantClear(&lv);
VariantClear(&rv);
VariantClear(&tempLeft);
VariantClear(&tempRight);
TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
return hres;
}
/**********************************************************************
* VarSub [OLEAUT32.159]
*
* Subtract two variants.
*
* PARAMS
* left [I] First variant
* right [I] Second variant
* result [O] Result variant
*
* RETURNS
* Success: S_OK.
* Failure: An HRESULT error code indicating the error.
*/
HRESULT WINAPI VarSub(LPVARIANT left, LPVARIANT right, LPVARIANT result)
{
HRESULT hres = S_OK;
VARTYPE resvt = VT_EMPTY;
VARTYPE leftvt,rightvt;
VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
VARIANT lv,rv;
VARIANT tempLeft, tempRight;
VariantInit(&lv);
VariantInit(&rv);
VariantInit(&tempLeft);
VariantInit(&tempRight);
TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH &&
(V_VT(left)&(~VT_TYPEMASK)) == 0 &&
(V_VT(right) & VT_TYPEMASK) != VT_NULL)
{
if (NULL == V_DISPATCH(left)) {
if ((V_VT(right) & VT_TYPEMASK) >= VT_INT_PTR)
hres = DISP_E_BADVARTYPE;
else if ((V_VT(right) & VT_TYPEMASK) >= VT_UI8 &&
(V_VT(right) & VT_TYPEMASK) < VT_RECORD)
hres = DISP_E_BADVARTYPE;
else switch (V_VT(right) & VT_TYPEMASK)
{
case VT_VARIANT:
case VT_UNKNOWN:
case 15:
case VT_I1:
case VT_UI2:
case VT_UI4:
hres = DISP_E_BADVARTYPE;
}
if (FAILED(hres)) goto end;
}
hres = VARIANT_FetchDispatchValue(left, &tempLeft);
if (FAILED(hres)) goto end;
left = &tempLeft;
}
if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH &&
(V_VT(right)&(~VT_TYPEMASK)) == 0 &&
(V_VT(left) & VT_TYPEMASK) != VT_NULL)
{
if (NULL == V_DISPATCH(right))
{
if ((V_VT(left) & VT_TYPEMASK) >= VT_INT_PTR)
hres = DISP_E_BADVARTYPE;
else if ((V_VT(left) & VT_TYPEMASK) >= VT_UI8 &&
(V_VT(left) & VT_TYPEMASK) < VT_RECORD)
hres = DISP_E_BADVARTYPE;
else switch (V_VT(left) & VT_TYPEMASK)
{
case VT_VARIANT:
case VT_UNKNOWN:
case 15:
case VT_I1:
case VT_UI2:
case VT_UI4:
hres = DISP_E_BADVARTYPE;
}
if (FAILED(hres)) goto end;
}
hres = VARIANT_FetchDispatchValue(right, &tempRight);
if (FAILED(hres)) goto end;
right = &tempRight;
}
leftvt = V_VT(left)&VT_TYPEMASK;
rightvt = V_VT(right)&VT_TYPEMASK;
leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
if (leftExtraFlags != rightExtraFlags)
{
hres = DISP_E_BADVARTYPE;
goto end;
}
ExtraFlags = leftExtraFlags;
/* determine return type and return code */
/* All extra flags produce errors */
if (ExtraFlags == (VT_VECTOR|VT_BYREF|VT_RESERVED) ||
ExtraFlags == (VT_VECTOR|VT_RESERVED) ||
ExtraFlags == (VT_VECTOR|VT_BYREF) ||
ExtraFlags == (VT_BYREF|VT_RESERVED) ||
ExtraFlags == VT_VECTOR ||
ExtraFlags == VT_BYREF ||
ExtraFlags == VT_RESERVED)
{
hres = DISP_E_BADVARTYPE;
goto end;
}
else if (ExtraFlags >= VT_ARRAY)
{
hres = DISP_E_TYPEMISMATCH;
goto end;
}
/* Native VarSub cannot handle: VT_I1, VT_UI2, VT_UI4,
VT_INT, VT_UINT and VT_UI8. Tested with WinXP */
else if (leftvt == VT_CLSID || rightvt == VT_CLSID ||
leftvt == VT_VARIANT || rightvt == VT_VARIANT ||
leftvt == VT_I1 || rightvt == VT_I1 ||
leftvt == VT_UI2 || rightvt == VT_UI2 ||
leftvt == VT_UI4 || rightvt == VT_UI4 ||
leftvt == VT_UI8 || rightvt == VT_UI8 ||
leftvt == VT_INT || rightvt == VT_INT ||
leftvt == VT_UINT || rightvt == VT_UINT ||
leftvt == VT_UNKNOWN || rightvt == VT_UNKNOWN ||
leftvt == VT_RECORD || rightvt == VT_RECORD)
{
if (leftvt == VT_RECORD && rightvt == VT_I8)
hres = DISP_E_TYPEMISMATCH;
else if (leftvt < VT_UI1 && rightvt == VT_RECORD)
hres = DISP_E_TYPEMISMATCH;
else if (leftvt >= VT_UI1 && rightvt == VT_RECORD)
hres = DISP_E_TYPEMISMATCH;
else if (leftvt == VT_RECORD && rightvt <= VT_UI1)
hres = DISP_E_TYPEMISMATCH;
else if (leftvt == VT_RECORD && rightvt > VT_UI1)
hres = DISP_E_BADVARTYPE;
else
hres = DISP_E_BADVARTYPE;
goto end;
}
/* The following flags/types are invalid for left variant */
else if (!((leftvt <= VT_LPWSTR || leftvt == VT_RECORD ||
leftvt == VT_CLSID) && leftvt != (VARTYPE)15 /* undefined vt */ &&
(leftvt < VT_VOID || leftvt > VT_LPWSTR)))
{
hres = DISP_E_BADVARTYPE;
goto end;
}
/* The following flags/types are invalid for right variant */
else if (!((rightvt <= VT_LPWSTR || rightvt == VT_RECORD ||
rightvt == VT_CLSID) && rightvt != (VARTYPE)15 /* undefined vt */ &&
(rightvt < VT_VOID || rightvt > VT_LPWSTR)))
{
hres = DISP_E_BADVARTYPE;
goto end;
}
else if ((leftvt == VT_NULL && rightvt == VT_DISPATCH) ||
(leftvt == VT_DISPATCH && rightvt == VT_NULL))
resvt = VT_NULL;
else if (leftvt == VT_DISPATCH || rightvt == VT_DISPATCH ||
leftvt == VT_ERROR || rightvt == VT_ERROR)
{
hres = DISP_E_TYPEMISMATCH;
goto end;
}
else if (leftvt == VT_NULL || rightvt == VT_NULL)
resvt = VT_NULL;
else if ((leftvt == VT_EMPTY && rightvt == VT_BSTR) ||
(leftvt == VT_DATE && rightvt == VT_DATE) ||
(leftvt == VT_BSTR && rightvt == VT_EMPTY) ||
(leftvt == VT_BSTR && rightvt == VT_BSTR))
resvt = VT_R8;
else if (leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
resvt = VT_DECIMAL;
else if (leftvt == VT_DATE || rightvt == VT_DATE)
resvt = VT_DATE;
else if (leftvt == VT_CY || rightvt == VT_CY)
resvt = VT_CY;
else if (leftvt == VT_R8 || rightvt == VT_R8)
resvt = VT_R8;
else if (leftvt == VT_BSTR || rightvt == VT_BSTR)
resvt = VT_R8;
else if (leftvt == VT_R4 || rightvt == VT_R4)
{
if (leftvt == VT_I4 || rightvt == VT_I4 ||
leftvt == VT_I8 || rightvt == VT_I8)
resvt = VT_R8;
else
resvt = VT_R4;
}
else if (leftvt == VT_I8 || rightvt == VT_I8)
resvt = VT_I8;
else if (leftvt == VT_I4 || rightvt == VT_I4)
resvt = VT_I4;
else if (leftvt == VT_I2 || rightvt == VT_I2 ||
leftvt == VT_BOOL || rightvt == VT_BOOL ||
(leftvt == VT_EMPTY && rightvt == VT_EMPTY))
resvt = VT_I2;
else if (leftvt == VT_UI1 || rightvt == VT_UI1)
resvt = VT_UI1;
else
{
hres = DISP_E_TYPEMISMATCH;
goto end;
}
/* coerce to the result type */
if (leftvt == VT_BSTR && rightvt == VT_DATE)
hres = VariantChangeType(&lv, left, 0, VT_R8);
else
hres = VariantChangeType(&lv, left, 0, resvt);
if (hres != S_OK) goto end;
if (leftvt == VT_DATE && rightvt == VT_BSTR)
hres = VariantChangeType(&rv, right, 0, VT_R8);
else
hres = VariantChangeType(&rv, right, 0, resvt);
if (hres != S_OK) goto end;
/* do the math */
V_VT(result) = resvt;
switch (resvt)
{
case VT_NULL:
break;
case VT_DATE:
V_DATE(result) = V_DATE(&lv) - V_DATE(&rv);
break;
case VT_CY:
hres = VarCySub(V_CY(&lv), V_CY(&rv), &(V_CY(result)));
break;
case VT_R4:
V_R4(result) = V_R4(&lv) - V_R4(&rv);
break;
case VT_I8:
V_I8(result) = V_I8(&lv) - V_I8(&rv);
break;
case VT_I4:
V_I4(result) = V_I4(&lv) - V_I4(&rv);
break;
case VT_I2:
V_I2(result) = V_I2(&lv) - V_I2(&rv);
break;
case VT_UI1:
V_UI1(result) = V_UI2(&lv) - V_UI1(&rv);
break;
case VT_R8:
V_R8(result) = V_R8(&lv) - V_R8(&rv);
break;
case VT_DECIMAL:
hres = VarDecSub(&(V_DECIMAL(&lv)), &(V_DECIMAL(&rv)), &(V_DECIMAL(result)));
break;
}
end:
VariantClear(&lv);
VariantClear(&rv);
VariantClear(&tempLeft);
VariantClear(&tempRight);
TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
return hres;
}
/**********************************************************************
* VarOr [OLEAUT32.157]
*
* Perform a logical or (OR) operation on two variants.
*
* PARAMS
* pVarLeft [I] First variant
* pVarRight [I] Variant to OR with pVarLeft
* pVarOut [O] Destination for OR result
*
* RETURNS
* Success: S_OK. pVarOut contains the result of the operation with its type
* taken from the table listed under VarXor().
* Failure: An HRESULT error code indicating the error.
*
* NOTES
* See the Notes section of VarXor() for further information.
*/
HRESULT WINAPI VarOr(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
{
VARTYPE vt = VT_I4;
VARIANT varLeft, varRight, varStr;
HRESULT hRet;
VARIANT tempLeft, tempRight;
VariantInit(&tempLeft);
VariantInit(&tempRight);
VariantInit(&varLeft);
VariantInit(&varRight);
VariantInit(&varStr);
TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft), debugstr_variant(pVarRight), pVarOut);
/* Handle VT_DISPATCH by storing and taking address of returned value */
if ((V_VT(pVarLeft) & VT_TYPEMASK) == VT_DISPATCH)
{
hRet = VARIANT_FetchDispatchValue(pVarLeft, &tempLeft);
if (FAILED(hRet)) goto VarOr_Exit;
pVarLeft = &tempLeft;
}
if ((V_VT(pVarRight) & VT_TYPEMASK) == VT_DISPATCH)
{
hRet = VARIANT_FetchDispatchValue(pVarRight, &tempRight);
if (FAILED(hRet)) goto VarOr_Exit;
pVarRight = &tempRight;
}
if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
V_VT(pVarLeft) == VT_DISPATCH || V_VT(pVarRight) == VT_DISPATCH ||
V_VT(pVarLeft) == VT_RECORD || V_VT(pVarRight) == VT_RECORD)
{
hRet = DISP_E_BADVARTYPE;
goto VarOr_Exit;
}
V_VT(&varLeft) = V_VT(&varRight) = V_VT(&varStr) = VT_EMPTY;
if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
{
/* NULL OR Zero is NULL, NULL OR value is value */
if (V_VT(pVarLeft) == VT_NULL)
pVarLeft = pVarRight; /* point to the non-NULL var */
V_VT(pVarOut) = VT_NULL;
V_I4(pVarOut) = 0;
switch (V_VT(pVarLeft))
{
case VT_DATE: case VT_R8:
if (V_R8(pVarLeft))
goto VarOr_AsEmpty;
hRet = S_OK;
goto VarOr_Exit;
case VT_BOOL:
if (V_BOOL(pVarLeft))
*pVarOut = *pVarLeft;
hRet = S_OK;
goto VarOr_Exit;
case VT_I2: case VT_UI2:
if (V_I2(pVarLeft))
goto VarOr_AsEmpty;
hRet = S_OK;
goto VarOr_Exit;
case VT_I1:
if (V_I1(pVarLeft))
goto VarOr_AsEmpty;
hRet = S_OK;
goto VarOr_Exit;
case VT_UI1:
if (V_UI1(pVarLeft))
*pVarOut = *pVarLeft;
hRet = S_OK;
goto VarOr_Exit;
case VT_R4:
if (V_R4(pVarLeft))
goto VarOr_AsEmpty;
hRet = S_OK;
goto VarOr_Exit;
case VT_I4: case VT_UI4: case VT_INT: case VT_UINT:
if (V_I4(pVarLeft))
goto VarOr_AsEmpty;
hRet = S_OK;
goto VarOr_Exit;
case VT_CY:
if (V_CY(pVarLeft).int64)
goto VarOr_AsEmpty;
hRet = S_OK;
goto VarOr_Exit;
case VT_I8: case VT_UI8:
if (V_I8(pVarLeft))
goto VarOr_AsEmpty;
hRet = S_OK;
goto VarOr_Exit;
case VT_DECIMAL:
if (DEC_HI32(&V_DECIMAL(pVarLeft)) || DEC_LO64(&V_DECIMAL(pVarLeft)))
goto VarOr_AsEmpty;
hRet = S_OK;
goto VarOr_Exit;
case VT_BSTR:
{
VARIANT_BOOL b;
if (!V_BSTR(pVarLeft))
{
hRet = DISP_E_BADVARTYPE;
goto VarOr_Exit;
}
hRet = VarBoolFromStr(V_BSTR(pVarLeft), LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
if (SUCCEEDED(hRet) && b)
{
V_VT(pVarOut) = VT_BOOL;
V_BOOL(pVarOut) = b;
}
goto VarOr_Exit;
}
case VT_NULL: case VT_EMPTY:
V_VT(pVarOut) = VT_NULL;
hRet = S_OK;
goto VarOr_Exit;
default:
hRet = DISP_E_BADVARTYPE;
goto VarOr_Exit;
}
}
if (V_VT(pVarLeft) == VT_EMPTY || V_VT(pVarRight) == VT_EMPTY)
{
if (V_VT(pVarLeft) == VT_EMPTY)
pVarLeft = pVarRight; /* point to the non-EMPTY var */
VarOr_AsEmpty:
/* Since one argument is empty (0), OR'ing it with the other simply
* gives the others value (as 0|x => x). So just convert the other
* argument to the required result type.
*/
switch (V_VT(pVarLeft))
{
case VT_BSTR:
if (!V_BSTR(pVarLeft))
{
hRet = DISP_E_BADVARTYPE;
goto VarOr_Exit;
}
hRet = VariantCopy(&varStr, pVarLeft);
if (FAILED(hRet))
goto VarOr_Exit;
pVarLeft = &varStr;
hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
if (FAILED(hRet))
goto VarOr_Exit;
/* Fall Through ... */
case VT_EMPTY: case VT_UI1: case VT_BOOL: case VT_I2:
V_VT(pVarOut) = VT_I2;
break;
case VT_DATE: case VT_CY: case VT_DECIMAL: case VT_R4: case VT_R8:
case VT_I1: case VT_UI2: case VT_I4: case VT_UI4:
case VT_INT: case VT_UINT: case VT_UI8:
V_VT(pVarOut) = VT_I4;
break;
case VT_I8:
V_VT(pVarOut) = VT_I8;
break;
default:
hRet = DISP_E_BADVARTYPE;
goto VarOr_Exit;
}
hRet = VariantCopy(&varLeft, pVarLeft);
if (FAILED(hRet))
goto VarOr_Exit;
pVarLeft = &varLeft;
hRet = VariantChangeType(pVarOut, pVarLeft, 0, V_VT(pVarOut));
goto VarOr_Exit;
}
if (V_VT(pVarLeft) == VT_BOOL && V_VT(pVarRight) == VT_BOOL)
{
V_VT(pVarOut) = VT_BOOL;
V_BOOL(pVarOut) = V_BOOL(pVarLeft) | V_BOOL(pVarRight);
hRet = S_OK;
goto VarOr_Exit;
}
if (V_VT(pVarLeft) == VT_UI1 && V_VT(pVarRight) == VT_UI1)
{
V_VT(pVarOut) = VT_UI1;
V_UI1(pVarOut) = V_UI1(pVarLeft) | V_UI1(pVarRight);
hRet = S_OK;
goto VarOr_Exit;
}
if (V_VT(pVarLeft) == VT_BSTR)
{
hRet = VariantCopy(&varStr, pVarLeft);
if (FAILED(hRet))
goto VarOr_Exit;
pVarLeft = &varStr;
hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
if (FAILED(hRet))
goto VarOr_Exit;
}
if (V_VT(pVarLeft) == VT_BOOL &&
(V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_BSTR))
{
vt = VT_BOOL;
}
else if ((V_VT(pVarLeft) == VT_BOOL || V_VT(pVarLeft) == VT_UI1 ||
V_VT(pVarLeft) == VT_I2 || V_VT(pVarLeft) == VT_BSTR) &&
(V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_UI1 ||
V_VT(pVarRight) == VT_I2 || V_VT(pVarRight) == VT_BSTR))
{
vt = VT_I2;
}
else if (V_VT(pVarLeft) == VT_I8 || V_VT(pVarRight) == VT_I8)
{
if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
{
hRet = DISP_E_TYPEMISMATCH;
goto VarOr_Exit;
}
vt = VT_I8;
}
hRet = VariantCopy(&varLeft, pVarLeft);
if (FAILED(hRet))
goto VarOr_Exit;
hRet = VariantCopy(&varRight, pVarRight);
if (FAILED(hRet))
goto VarOr_Exit;
if (vt == VT_I4 && V_VT(&varLeft) == VT_UI4)
V_VT(&varLeft) = VT_I4; /* Don't overflow */
else
{
double d;
if (V_VT(&varLeft) == VT_BSTR &&
FAILED(VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d)))
hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL, VT_BOOL);
if (SUCCEEDED(hRet) && V_VT(&varLeft) != vt)
hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
if (FAILED(hRet))
goto VarOr_Exit;
}
if (vt == VT_I4 && V_VT(&varRight) == VT_UI4)
V_VT(&varRight) = VT_I4; /* Don't overflow */
else
{
double d;
if (V_VT(&varRight) == VT_BSTR &&
FAILED(VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d)))
hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL, VT_BOOL);
if (SUCCEEDED(hRet) && V_VT(&varRight) != vt)
hRet = VariantChangeType(&varRight, &varRight, 0, vt);
if (FAILED(hRet))
goto VarOr_Exit;
}
V_VT(pVarOut) = vt;
if (vt == VT_I8)
{
V_I8(pVarOut) = V_I8(&varLeft) | V_I8(&varRight);
}
else if (vt == VT_I4)
{
V_I4(pVarOut) = V_I4(&varLeft) | V_I4(&varRight);
}
else
{
V_I2(pVarOut) = V_I2(&varLeft) | V_I2(&varRight);
}
VarOr_Exit:
VariantClear(&varStr);
VariantClear(&varLeft);
VariantClear(&varRight);
VariantClear(&tempLeft);
VariantClear(&tempRight);
return hRet;
}
/**********************************************************************
* VarAbs [OLEAUT32.168]
*
* Convert a variant to its absolute value.
*
* PARAMS
* pVarIn [I] Source variant
* pVarOut [O] Destination for converted value
*
* RETURNS
* Success: S_OK. pVarOut contains the absolute value of pVarIn.
* Failure: An HRESULT error code indicating the error.
*
* NOTES
* - This function does not process by-reference variants.
* - The type of the value stored in pVarOut depends on the type of pVarIn,
* according to the following table:
*| Input Type Output Type
*| ---------- -----------
*| VT_BOOL VT_I2
*| VT_BSTR VT_R8
*| (All others) Unchanged
*/
HRESULT WINAPI VarAbs(LPVARIANT pVarIn, LPVARIANT pVarOut)
{
VARIANT varIn;
HRESULT hRet = S_OK;
VARIANT temp;
VariantInit(&temp);
TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
/* Handle VT_DISPATCH by storing and taking address of returned value */
if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
{
hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
if (FAILED(hRet)) goto VarAbs_Exit;
pVarIn = &temp;
}
if (V_ISARRAY(pVarIn) || V_VT(pVarIn) == VT_UNKNOWN ||
V_VT(pVarIn) == VT_DISPATCH || V_VT(pVarIn) == VT_RECORD ||
V_VT(pVarIn) == VT_ERROR)
{
hRet = DISP_E_TYPEMISMATCH;
goto VarAbs_Exit;
}
*pVarOut = *pVarIn; /* Shallow copy the value, and invert it if needed */
#define ABS_CASE(typ,min) \
case VT_##typ: if (V_##typ(pVarIn) == min) hRet = DISP_E_OVERFLOW; \
else if (V_##typ(pVarIn) < 0) V_##typ(pVarOut) = -V_##typ(pVarIn); \
break
switch (V_VT(pVarIn))
{
ABS_CASE(I1,I1_MIN);
case VT_BOOL:
V_VT(pVarOut) = VT_I2;
/* BOOL->I2, Fall through ... */
ABS_CASE(I2,I2_MIN);
case VT_INT:
ABS_CASE(I4,I4_MIN);
ABS_CASE(I8,I8_MIN);
ABS_CASE(R4,R4_MIN);
case VT_BSTR:
hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
if (FAILED(hRet))
break;
V_VT(pVarOut) = VT_R8;
pVarIn = &varIn;
/* Fall through ... */
case VT_DATE:
ABS_CASE(R8,R8_MIN);
case VT_CY:
hRet = VarCyAbs(V_CY(pVarIn), & V_CY(pVarOut));
break;
case VT_DECIMAL:
DEC_SIGN(&V_DECIMAL(pVarOut)) &= ~DECIMAL_NEG;
break;
case VT_UI1:
case VT_UI2:
case VT_UINT:
case VT_UI4:
case VT_UI8:
/* No-Op */
break;
case VT_EMPTY:
V_VT(pVarOut) = VT_I2;
case VT_NULL:
V_I2(pVarOut) = 0;
break;
default:
hRet = DISP_E_BADVARTYPE;
}
VarAbs_Exit:
VariantClear(&temp);
return hRet;
}
/**********************************************************************
* VarFix [OLEAUT32.169]
*
* Truncate a variants value to a whole number.
*
* PARAMS
* pVarIn [I] Source variant
* pVarOut [O] Destination for converted value
*
* RETURNS
* Success: S_OK. pVarOut contains the converted value.
* Failure: An HRESULT error code indicating the error.
*
* NOTES
* - The type of the value stored in pVarOut depends on the type of pVarIn,
* according to the following table:
*| Input Type Output Type
*| ---------- -----------
*| VT_BOOL VT_I2
*| VT_EMPTY VT_I2
*| VT_BSTR VT_R8
*| All Others Unchanged
* - The difference between this function and VarInt() is that VarInt() rounds
* negative numbers away from 0, while this function rounds them towards zero.
*/
HRESULT WINAPI VarFix(LPVARIANT pVarIn, LPVARIANT pVarOut)
{
HRESULT hRet = S_OK;
VARIANT temp;
VariantInit(&temp);
TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
/* Handle VT_DISPATCH by storing and taking address of returned value */
if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
{
hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
if (FAILED(hRet)) goto VarFix_Exit;
pVarIn = &temp;
}
V_VT(pVarOut) = V_VT(pVarIn);
switch (V_VT(pVarIn))
{
case VT_UI1:
V_UI1(pVarOut) = V_UI1(pVarIn);
break;
case VT_BOOL:
V_VT(pVarOut) = VT_I2;
/* Fall through */
case VT_I2:
V_I2(pVarOut) = V_I2(pVarIn);
break;
case VT_I4:
V_I4(pVarOut) = V_I4(pVarIn);
break;
case VT_I8:
V_I8(pVarOut) = V_I8(pVarIn);
break;
case VT_R4:
if (V_R4(pVarIn) < 0.0f)
V_R4(pVarOut) = (float)ceil(V_R4(pVarIn));
else
V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
break;
case VT_BSTR:
V_VT(pVarOut) = VT_R8;
hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
pVarIn = pVarOut;
/* Fall through */
case VT_DATE:
case VT_R8:
if (V_R8(pVarIn) < 0.0)
V_R8(pVarOut) = ceil(V_R8(pVarIn));
else
V_R8(pVarOut) = floor(V_R8(pVarIn));
break;
case VT_CY:
hRet = VarCyFix(V_CY(pVarIn), &V_CY(pVarOut));
break;
case VT_DECIMAL:
hRet = VarDecFix(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
break;
case VT_EMPTY:
V_VT(pVarOut) = VT_I2;
V_I2(pVarOut) = 0;
break;
case VT_NULL:
/* No-Op */
break;
default:
if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
hRet = DISP_E_BADVARTYPE;
else
hRet = DISP_E_TYPEMISMATCH;
}
VarFix_Exit:
if (FAILED(hRet))
V_VT(pVarOut) = VT_EMPTY;
VariantClear(&temp);
return hRet;
}
/**********************************************************************
* VarInt [OLEAUT32.172]
*
* Truncate a variants value to a whole number.
*
* PARAMS
* pVarIn [I] Source variant
* pVarOut [O] Destination for converted value
*
* RETURNS
* Success: S_OK. pVarOut contains the converted value.
* Failure: An HRESULT error code indicating the error.
*
* NOTES
* - The type of the value stored in pVarOut depends on the type of pVarIn,
* according to the following table:
*| Input Type Output Type
*| ---------- -----------
*| VT_BOOL VT_I2
*| VT_EMPTY VT_I2
*| VT_BSTR VT_R8
*| All Others Unchanged
* - The difference between this function and VarFix() is that VarFix() rounds
* negative numbers towards 0, while this function rounds them away from zero.
*/
HRESULT WINAPI VarInt(LPVARIANT pVarIn, LPVARIANT pVarOut)
{
HRESULT hRet = S_OK;
VARIANT temp;
VariantInit(&temp);
TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
/* Handle VT_DISPATCH by storing and taking address of returned value */
if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
{
hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
if (FAILED(hRet)) goto VarInt_Exit;
pVarIn = &temp;
}
V_VT(pVarOut) = V_VT(pVarIn);
switch (V_VT(pVarIn))
{
case VT_R4:
V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
break;
case VT_BSTR:
V_VT(pVarOut) = VT_R8;
hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
pVarIn = pVarOut;
/* Fall through */
case VT_DATE:
case VT_R8:
V_R8(pVarOut) = floor(V_R8(pVarIn));
break;
case VT_CY:
hRet = VarCyInt(V_CY(pVarIn), &V_CY(pVarOut));
break;
case VT_DECIMAL:
hRet = VarDecInt(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
break;
default:
hRet = VarFix(pVarIn, pVarOut);
}
VarInt_Exit:
VariantClear(&temp);
return hRet;
}
/**********************************************************************
* VarXor [OLEAUT32.167]
*
* Perform a logical exclusive-or (XOR) operation on two variants.
*
* PARAMS
* pVarLeft [I] First variant
* pVarRight [I] Variant to XOR with pVarLeft
* pVarOut [O] Destination for XOR result
*
* RETURNS
* Success: S_OK. pVarOut contains the result of the operation with its type
* taken from the table below).
* Failure: An HRESULT error code indicating the error.
*
* NOTES
* - Neither pVarLeft or pVarRight are modified by this function.
* - This function does not process by-reference variants.
* - Input types of VT_BSTR may be numeric strings or boolean text.
* - The type of result stored in pVarOut depends on the types of pVarLeft
* and pVarRight, and will be one of VT_UI1, VT_I2, VT_I4, VT_I8, VT_BOOL,
* or VT_NULL if the function succeeds.
* - Type promotion is inconsistent and as a result certain combinations of
* values will return DISP_E_OVERFLOW even when they could be represented.
* This matches the behaviour of native oleaut32.
*/
HRESULT WINAPI VarXor(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
{
VARTYPE vt;
VARIANT varLeft, varRight;
VARIANT tempLeft, tempRight;
double d;
HRESULT hRet;
TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft), debugstr_variant(pVarRight), pVarOut);
if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
V_VT(pVarLeft) > VT_UINT || V_VT(pVarRight) > VT_UINT ||
V_VT(pVarLeft) == VT_VARIANT || V_VT(pVarRight) == VT_VARIANT ||
V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
V_VT(pVarLeft) == (VARTYPE)15 || V_VT(pVarRight) == (VARTYPE)15 ||
V_VT(pVarLeft) == VT_ERROR || V_VT(pVarRight) == VT_ERROR)
return DISP_E_BADVARTYPE;
if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
{
/* NULL XOR anything valid is NULL */
V_VT(pVarOut) = VT_NULL;
return S_OK;
}
VariantInit(&tempLeft);
VariantInit(&tempRight);
/* Handle VT_DISPATCH by storing and taking address of returned value */
if ((V_VT(pVarLeft) & VT_TYPEMASK) == VT_DISPATCH)
{
hRet = VARIANT_FetchDispatchValue(pVarLeft, &tempLeft);
if (FAILED(hRet)) goto VarXor_Exit;
pVarLeft = &tempLeft;
}
if ((V_VT(pVarRight) & VT_TYPEMASK) == VT_DISPATCH)
{
hRet = VARIANT_FetchDispatchValue(pVarRight, &tempRight);
if (FAILED(hRet)) goto VarXor_Exit;
pVarRight = &tempRight;
}
/* Copy our inputs so we don't disturb anything */
V_VT(&varLeft) = V_VT(&varRight) = VT_EMPTY;
hRet = VariantCopy(&varLeft, pVarLeft);
if (FAILED(hRet))
goto VarXor_Exit;
hRet = VariantCopy(&varRight, pVarRight);
if (FAILED(hRet))
goto VarXor_Exit;
/* Try any strings first as numbers, then as VT_BOOL */
if (V_VT(&varLeft) == VT_BSTR)
{
hRet = VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d);
hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL,
FAILED(hRet) ? VT_BOOL : VT_I4);
if (FAILED(hRet))
goto VarXor_Exit;
}
if (V_VT(&varRight) == VT_BSTR)
{
hRet = VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d);
hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL,
FAILED(hRet) ? VT_BOOL : VT_I4);
if (FAILED(hRet))
goto VarXor_Exit;
}
/* Determine the result type */
if (V_VT(&varLeft) == VT_I8 || V_VT(&varRight) == VT_I8)
{
if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
{
hRet = DISP_E_TYPEMISMATCH;
goto VarXor_Exit;
}
vt = VT_I8;
}
else
{
switch ((V_VT(&varLeft) << 16) | V_VT(&varRight))
{
case (VT_BOOL << 16) | VT_BOOL:
vt = VT_BOOL;
break;
case (VT_UI1 << 16) | VT_UI1:
vt = VT_UI1;
break;
case (VT_EMPTY << 16) | VT_EMPTY:
case (VT_EMPTY << 16) | VT_UI1:
case (VT_EMPTY << 16) | VT_I2:
case (VT_EMPTY << 16) | VT_BOOL:
case (VT_UI1 << 16) | VT_EMPTY:
case (VT_UI1 << 16) | VT_I2:
case (VT_UI1 << 16) | VT_BOOL:
case (VT_I2 << 16) | VT_EMPTY:
case (VT_I2 << 16) | VT_UI1:
case (VT_I2 << 16) | VT_I2:
case (VT_I2 << 16) | VT_BOOL:
case (VT_BOOL << 16) | VT_EMPTY:
case (VT_BOOL << 16) | VT_UI1:
case (VT_BOOL << 16) | VT_I2:
vt = VT_I2;
break;
default:
vt = VT_I4;
break;
}
}
/* VT_UI4 does not overflow */
if (vt != VT_I8)
{
if (V_VT(&varLeft) == VT_UI4)
V_VT(&varLeft) = VT_I4;
if (V_VT(&varRight) == VT_UI4)
V_VT(&varRight) = VT_I4;
}
/* Convert our input copies to the result type */
if (V_VT(&varLeft) != vt)
hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
if (FAILED(hRet))
goto VarXor_Exit;
if (V_VT(&varRight) != vt)
hRet = VariantChangeType(&varRight, &varRight, 0, vt);
if (FAILED(hRet))
goto VarXor_Exit;
V_VT(pVarOut) = vt;
/* Calculate the result */
switch (vt)
{
case VT_I8:
V_I8(pVarOut) = V_I8(&varLeft) ^ V_I8(&varRight);
break;
case VT_I4:
V_I4(pVarOut) = V_I4(&varLeft) ^ V_I4(&varRight);
break;
case VT_BOOL:
case VT_I2:
V_I2(pVarOut) = V_I2(&varLeft) ^ V_I2(&varRight);
break;
case VT_UI1:
V_UI1(pVarOut) = V_UI1(&varLeft) ^ V_UI1(&varRight);
break;
}
VarXor_Exit:
VariantClear(&varLeft);
VariantClear(&varRight);
VariantClear(&tempLeft);
VariantClear(&tempRight);
return hRet;
}
/**********************************************************************
* VarEqv [OLEAUT32.172]
*
* Determine if two variants contain the same value.
*
* PARAMS
* pVarLeft [I] First variant to compare
* pVarRight [I] Variant to compare to pVarLeft
* pVarOut [O] Destination for comparison result
*
* RETURNS
* Success: S_OK. pVarOut contains the result of the comparison (VARIANT_TRUE
* if equivalent or non-zero otherwise.
* Failure: An HRESULT error code indicating the error.
*
* NOTES
* - This function simply calls VarXor() on pVarLeft and pVarRight and inverts
* the result.
*/
HRESULT WINAPI VarEqv(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
{
HRESULT hRet;
TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft), debugstr_variant(pVarRight), pVarOut);
hRet = VarXor(pVarLeft, pVarRight, pVarOut);
if (SUCCEEDED(hRet))
{
if (V_VT(pVarOut) == VT_I8)
V_I8(pVarOut) = ~V_I8(pVarOut);
else
V_UI4(pVarOut) = ~V_UI4(pVarOut);
}
return hRet;
}
/**********************************************************************
* VarNeg [OLEAUT32.173]
*
* Negate the value of a variant.
*
* PARAMS
* pVarIn [I] Source variant
* pVarOut [O] Destination for converted value
*
* RETURNS
* Success: S_OK. pVarOut contains the converted value.
* Failure: An HRESULT error code indicating the error.
*
* NOTES
* - The type of the value stored in pVarOut depends on the type of pVarIn,
* according to the following table:
*| Input Type Output Type
*| ---------- -----------
*| VT_EMPTY VT_I2
*| VT_UI1 VT_I2
*| VT_BOOL VT_I2
*| VT_BSTR VT_R8
*| All Others Unchanged (unless promoted)
* - Where the negated value of a variant does not fit in its base type, the type
* is promoted according to the following table:
*| Input Type Promoted To
*| ---------- -----------
*| VT_I2 VT_I4
*| VT_I4 VT_R8
*| VT_I8 VT_R8
* - The native version of this function returns DISP_E_BADVARTYPE for valid
* variant types that cannot be negated, and returns DISP_E_TYPEMISMATCH
* for types which are not valid. Since this is in contravention of the
* meaning of those error codes and unlikely to be relied on by applications,
* this implementation returns errors consistent with the other high level
* variant math functions.
*/
HRESULT WINAPI VarNeg(LPVARIANT pVarIn, LPVARIANT pVarOut)
{
HRESULT hRet = S_OK;
VARIANT temp;
VariantInit(&temp);
TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
/* Handle VT_DISPATCH by storing and taking address of returned value */
if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
{
hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
if (FAILED(hRet)) goto VarNeg_Exit;
pVarIn = &temp;
}
V_VT(pVarOut) = V_VT(pVarIn);
switch (V_VT(pVarIn))
{
case VT_UI1:
V_VT(pVarOut) = VT_I2;
V_I2(pVarOut) = -V_UI1(pVarIn);
break;
case VT_BOOL:
V_VT(pVarOut) = VT_I2;
/* Fall through */
case VT_I2:
if (V_I2(pVarIn) == I2_MIN)
{
V_VT(pVarOut) = VT_I4;
V_I4(pVarOut) = -(int)V_I2(pVarIn);
}
else
V_I2(pVarOut) = -V_I2(pVarIn);
break;
case VT_I4:
if (V_I4(pVarIn) == I4_MIN)
{
V_VT(pVarOut) = VT_R8;
V_R8(pVarOut) = -(double)V_I4(pVarIn);
}
else
V_I4(pVarOut) = -V_I4(pVarIn);
break;
case VT_I8:
if (V_I8(pVarIn) == I8_MIN)
{
V_VT(pVarOut) = VT_R8;
hRet = VarR8FromI8(V_I8(pVarIn), &V_R8(pVarOut));
V_R8(pVarOut) *= -1.0;
}
else
V_I8(pVarOut) = -V_I8(pVarIn);
break;
case VT_R4:
V_R4(pVarOut) = -V_R4(pVarIn);
break;
case VT_DATE:
case VT_R8:
V_R8(pVarOut) = -V_R8(pVarIn);
break;
case VT_CY:
hRet = VarCyNeg(V_CY(pVarIn), &V_CY(pVarOut));
break;
case VT_DECIMAL:
hRet = VarDecNeg(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
break;
case VT_BSTR:
V_VT(pVarOut) = VT_R8;
hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
V_R8(pVarOut) = -V_R8(pVarOut);
break;
case VT_EMPTY:
V_VT(pVarOut) = VT_I2;
V_I2(pVarOut) = 0;
break;
case VT_NULL:
/* No-Op */
break;
default:
if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
hRet = DISP_E_BADVARTYPE;
else
hRet = DISP_E_TYPEMISMATCH;
}
VarNeg_Exit:
if (FAILED(hRet))
V_VT(pVarOut) = VT_EMPTY;
VariantClear(&temp);
return hRet;
}
/**********************************************************************
* VarNot [OLEAUT32.174]
*
* Perform a not operation on a variant.
*
* PARAMS
* pVarIn [I] Source variant
* pVarOut [O] Destination for converted value
*
* RETURNS
* Success: S_OK. pVarOut contains the converted value.
* Failure: An HRESULT error code indicating the error.
*
* NOTES
* - Strictly speaking, this function performs a bitwise ones complement
* on the variants value (after possibly converting to VT_I4, see below).
* This only behaves like a boolean not operation if the value in
* pVarIn is either VARIANT_TRUE or VARIANT_FALSE and the type is signed.
* - To perform a genuine not operation, convert the variant to a VT_BOOL
* before calling this function.
* - This function does not process by-reference variants.
* - The type of the value stored in pVarOut depends on the type of pVarIn,
* according to the following table:
*| Input Type Output Type
*| ---------- -----------
*| VT_EMPTY VT_I2
*| VT_R4 VT_I4
*| VT_R8 VT_I4
*| VT_BSTR VT_I4
*| VT_DECIMAL VT_I4
*| VT_CY VT_I4
*| (All others) Unchanged
*/
HRESULT WINAPI VarNot(LPVARIANT pVarIn, LPVARIANT pVarOut)
{
VARIANT varIn;
HRESULT hRet = S_OK;
VARIANT temp;
VariantInit(&temp);
TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
/* Handle VT_DISPATCH by storing and taking address of returned value */
if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
{
hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
if (FAILED(hRet)) goto VarNot_Exit;
pVarIn = &temp;
}
if (V_VT(pVarIn) == VT_BSTR)
{
V_VT(&varIn) = VT_R8;
hRet = VarR8FromStr( V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn) );
if (FAILED(hRet))
{
V_VT(&varIn) = VT_BOOL;
hRet = VarBoolFromStr( V_BSTR(pVarIn), LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &V_BOOL(&varIn) );
}
if (FAILED(hRet)) goto VarNot_Exit;
pVarIn = &varIn;
}
V_VT(pVarOut) = V_VT(pVarIn);
switch (V_VT(pVarIn))
{
case VT_I1:
V_I4(pVarOut) = ~V_I1(pVarIn);
V_VT(pVarOut) = VT_I4;
break;
case VT_UI1: V_UI1(pVarOut) = ~V_UI1(pVarIn); break;
case VT_BOOL:
case VT_I2: V_I2(pVarOut) = ~V_I2(pVarIn); break;
case VT_UI2:
V_I4(pVarOut) = ~V_UI2(pVarIn);
V_VT(pVarOut) = VT_I4;
break;
case VT_DECIMAL:
hRet = VarI4FromDec(&V_DECIMAL(pVarIn), &V_I4(&varIn));
if (FAILED(hRet))
break;
pVarIn = &varIn;
/* Fall through ... */
case VT_INT:
V_VT(pVarOut) = VT_I4;
/* Fall through ... */
case VT_I4: V_I4(pVarOut) = ~V_I4(pVarIn); break;
case VT_UINT:
case VT_UI4:
V_I4(pVarOut) = ~V_UI4(pVarIn);
V_VT(pVarOut) = VT_I4;
break;
case VT_I8: V_I8(pVarOut) = ~V_I8(pVarIn); break;
case VT_UI8:
V_I4(pVarOut) = ~V_UI8(pVarIn);
V_VT(pVarOut) = VT_I4;
break;
case VT_R4:
hRet = VarI4FromR4(V_R4(pVarIn), &V_I4(pVarOut));
V_I4(pVarOut) = ~V_I4(pVarOut);
V_VT(pVarOut) = VT_I4;
break;
case VT_DATE:
case VT_R8:
hRet = VarI4FromR8(V_R8(pVarIn), &V_I4(pVarOut));
V_I4(pVarOut) = ~V_I4(pVarOut);
V_VT(pVarOut) = VT_I4;
break;
case VT_CY:
hRet = VarI4FromCy(V_CY(pVarIn), &V_I4(pVarOut));
V_I4(pVarOut) = ~V_I4(pVarOut);
V_VT(pVarOut) = VT_I4;
break;
case VT_EMPTY:
V_I2(pVarOut) = ~0;
V_VT(pVarOut) = VT_I2;
break;
case VT_NULL:
/* No-Op */
break;
default:
if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
hRet = DISP_E_BADVARTYPE;
else
hRet = DISP_E_TYPEMISMATCH;
}
VarNot_Exit:
if (FAILED(hRet))
V_VT(pVarOut) = VT_EMPTY;
VariantClear(&temp);
return hRet;
}
/**********************************************************************
* VarRound [OLEAUT32.175]
*
* Perform a round operation on a variant.
*
* PARAMS
* pVarIn [I] Source variant
* deci [I] Number of decimals to round to
* pVarOut [O] Destination for converted value
*
* RETURNS
* Success: S_OK. pVarOut contains the converted value.
* Failure: An HRESULT error code indicating the error.
*
* NOTES
* - Floating point values are rounded to the desired number of decimals.
* - Some integer types are just copied to the return variable.
* - Some other integer types are not handled and fail.
*/
HRESULT WINAPI VarRound(LPVARIANT pVarIn, int deci, LPVARIANT pVarOut)
{
VARIANT varIn;
HRESULT hRet = S_OK;
float factor;
VARIANT temp;
VariantInit(&temp);
TRACE("(%s,%d)\n", debugstr_variant(pVarIn), deci);
/* Handle VT_DISPATCH by storing and taking address of returned value */
if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
{
hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
if (FAILED(hRet)) goto VarRound_Exit;
pVarIn = &temp;
}
switch (V_VT(pVarIn))
{
/* cases that fail on windows */
case VT_I1:
case VT_I8:
case VT_UI2:
case VT_UI4:
hRet = DISP_E_BADVARTYPE;
break;
/* cases just copying in to out */
case VT_UI1:
V_VT(pVarOut) = V_VT(pVarIn);
V_UI1(pVarOut) = V_UI1(pVarIn);
break;
case VT_I2:
V_VT(pVarOut) = V_VT(pVarIn);
V_I2(pVarOut) = V_I2(pVarIn);
break;
case VT_I4:
V_VT(pVarOut) = V_VT(pVarIn);
V_I4(pVarOut) = V_I4(pVarIn);
break;
case VT_NULL:
V_VT(pVarOut) = V_VT(pVarIn);
/* value unchanged */
break;
/* cases that change type */
case VT_EMPTY:
V_VT(pVarOut) = VT_I2;
V_I2(pVarOut) = 0;
break;
case VT_BOOL:
V_VT(pVarOut) = VT_I2;
V_I2(pVarOut) = V_BOOL(pVarIn);
break;
case VT_BSTR:
hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
if (FAILED(hRet))
break;
V_VT(&varIn)=VT_R8;
pVarIn = &varIn;
/* Fall through ... */
/* cases we need to do math */
case VT_R8:
if (V_R8(pVarIn)>0) {
V_R8(pVarOut)=floor(V_R8(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
} else {
V_R8(pVarOut)=ceil(V_R8(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
}
V_VT(pVarOut) = V_VT(pVarIn);
break;
case VT_R4:
if (V_R4(pVarIn)>0) {
V_R4(pVarOut)=floor(V_R4(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
} else {
V_R4(pVarOut)=ceil(V_R4(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
}
V_VT(pVarOut) = V_VT(pVarIn);
break;
case VT_DATE:
if (V_DATE(pVarIn)>0) {
V_DATE(pVarOut)=floor(V_DATE(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
} else {
V_DATE(pVarOut)=ceil(V_DATE(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
}
V_VT(pVarOut) = V_VT(pVarIn);
break;
case VT_CY:
if (deci>3)
factor=1;
else
factor=pow(10, 4-deci);
if (V_CY(pVarIn).int64>0) {
V_CY(pVarOut).int64=floor(V_CY(pVarIn).int64/factor)*factor;
} else {
V_CY(pVarOut).int64=ceil(V_CY(pVarIn).int64/factor)*factor;
}
V_VT(pVarOut) = V_VT(pVarIn);
break;
case VT_DECIMAL:
{
double dbl;
hRet = VarR8FromDec(&V_DECIMAL(pVarIn), &dbl);
if (FAILED(hRet))
break;
if (dbl>0.0f)
dbl = floor(dbl*pow(10,deci)+0.5);
else
dbl = ceil(dbl*pow(10,deci)-0.5);
V_VT(pVarOut)=VT_DECIMAL;
hRet = VarDecFromR8(dbl, &V_DECIMAL(pVarOut));
break;
}
/* cases we don't know yet */
default:
FIXME("unimplemented part, V_VT(pVarIn) == 0x%X, deci == %d\n",
V_VT(pVarIn) & VT_TYPEMASK, deci);
hRet = DISP_E_BADVARTYPE;
}
VarRound_Exit:
if (FAILED(hRet))
V_VT(pVarOut) = VT_EMPTY;
VariantClear(&temp);
TRACE("returning 0x%08x %s\n", hRet, debugstr_variant(pVarOut));
return hRet;
}
/**********************************************************************
* VarIdiv [OLEAUT32.153]
*
* Converts input variants to integers and divides them.
*
* PARAMS
* left [I] Left hand variant
* right [I] Right hand variant
* result [O] Destination for quotient
*
* RETURNS
* Success: S_OK. result contains the quotient.
* Failure: An HRESULT error code indicating the error.
*
* NOTES
* If either expression is null, null is returned, as per MSDN
*/
HRESULT WINAPI VarIdiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
{
HRESULT hres = S_OK;
VARTYPE resvt = VT_EMPTY;
VARTYPE leftvt,rightvt;
VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
VARIANT lv,rv;
VARIANT tempLeft, tempRight;
TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
VariantInit(&lv);
VariantInit(&rv);
VariantInit(&tempLeft);
VariantInit(&tempRight);
leftvt = V_VT(left)&VT_TYPEMASK;
rightvt = V_VT(right)&VT_TYPEMASK;
leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
if (leftExtraFlags != rightExtraFlags)
{
hres = DISP_E_BADVARTYPE;
goto end;
}
ExtraFlags = leftExtraFlags;
/* Native VarIdiv always returns an error when using extra
* flags or if the variant combination is I8 and INT.
*/
if ((leftvt == VT_I8 && rightvt == VT_INT) ||
(leftvt == VT_INT && rightvt == VT_I8) ||
(rightvt == VT_EMPTY && leftvt != VT_NULL) ||
ExtraFlags != 0)
{
hres = DISP_E_BADVARTYPE;
goto end;
}
/* Determine variant type */
else if (leftvt == VT_NULL || rightvt == VT_NULL)
{
V_VT(result) = VT_NULL;
hres = S_OK;
goto end;
}
else if (leftvt == VT_I8 || rightvt == VT_I8)
resvt = VT_I8;
else if (leftvt == VT_I4 || rightvt == VT_I4 ||
leftvt == VT_INT || rightvt == VT_INT ||
leftvt == VT_UINT || rightvt == VT_UINT ||
leftvt == VT_UI8 || rightvt == VT_UI8 ||
leftvt == VT_UI4 || rightvt == VT_UI4 ||
leftvt == VT_UI2 || rightvt == VT_UI2 ||
leftvt == VT_I1 || rightvt == VT_I1 ||
leftvt == VT_BSTR || rightvt == VT_BSTR ||
leftvt == VT_DATE || rightvt == VT_DATE ||
leftvt == VT_CY || rightvt == VT_CY ||
leftvt == VT_DECIMAL || rightvt == VT_DECIMAL ||
leftvt == VT_R8 || rightvt == VT_R8 ||
leftvt == VT_R4 || rightvt == VT_R4)
resvt = VT_I4;
else if (leftvt == VT_I2 || rightvt == VT_I2 ||
leftvt == VT_BOOL || rightvt == VT_BOOL ||
leftvt == VT_EMPTY)
resvt = VT_I2;
else if (leftvt == VT_UI1 || rightvt == VT_UI1)
resvt = VT_UI1;
else
{
hres = DISP_E_BADVARTYPE;
goto end;
}
/* coerce to the result type */
hres = VariantChangeType(&lv, left, 0, resvt);
if (hres != S_OK) goto end;
hres = VariantChangeType(&rv, right, 0, resvt);
if (hres != S_OK) goto end;
/* do the math */
V_VT(result) = resvt;
switch (resvt)
{
case VT_UI1:
if (V_UI1(&rv) == 0)
{
hres = DISP_E_DIVBYZERO;
V_VT(result) = VT_EMPTY;
}
else
V_UI1(result) = V_UI1(&lv) / V_UI1(&rv);
break;
case VT_I2:
if (V_I2(&rv) == 0)
{
hres = DISP_E_DIVBYZERO;
V_VT(result) = VT_EMPTY;
}
else
V_I2(result) = V_I2(&lv) / V_I2(&rv);
break;
case VT_I4:
if (V_I4(&rv) == 0)
{
hres = DISP_E_DIVBYZERO;
V_VT(result) = VT_EMPTY;
}
else
V_I4(result) = V_I4(&lv) / V_I4(&rv);
break;
case VT_I8:
if (V_I8(&rv) == 0)
{
hres = DISP_E_DIVBYZERO;
V_VT(result) = VT_EMPTY;
}
else
V_I8(result) = V_I8(&lv) / V_I8(&rv);
break;
default:
FIXME("Couldn't integer divide variant types %d,%d\n",
leftvt,rightvt);
}
end:
VariantClear(&lv);
VariantClear(&rv);
VariantClear(&tempLeft);
VariantClear(&tempRight);
return hres;
}
/**********************************************************************
* VarMod [OLEAUT32.155]
*
* Perform the modulus operation of the right hand variant on the left
*
* PARAMS
* left [I] Left hand variant
* right [I] Right hand variant
* result [O] Destination for converted value
*
* RETURNS
* Success: S_OK. result contains the remainder.
* Failure: An HRESULT error code indicating the error.
*
* NOTE:
* If an error occurs the type of result will be modified but the value will not be.
* Doesn't support arrays or any special flags yet.
*/
HRESULT WINAPI VarMod(LPVARIANT left, LPVARIANT right, LPVARIANT result)
{
BOOL lOk = TRUE;
HRESULT rc = E_FAIL;
int resT = 0;
VARIANT lv,rv;
VARIANT tempLeft, tempRight;
VariantInit(&tempLeft);
VariantInit(&tempRight);
VariantInit(&lv);
VariantInit(&rv);
TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
/* Handle VT_DISPATCH by storing and taking address of returned value */
if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
{
rc = VARIANT_FetchDispatchValue(left, &tempLeft);
if (FAILED(rc)) goto end;
left = &tempLeft;
}
if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
{
rc = VARIANT_FetchDispatchValue(right, &tempRight);
if (FAILED(rc)) goto end;
right = &tempRight;
}
/* check for invalid inputs */
lOk = TRUE;
switch (V_VT(left) & VT_TYPEMASK) {
case VT_BOOL :
case VT_I1 :
case VT_I2 :
case VT_I4 :
case VT_I8 :
case VT_INT :
case VT_UI1 :
case VT_UI2 :
case VT_UI4 :
case VT_UI8 :
case VT_UINT :
case VT_R4 :
case VT_R8 :
case VT_CY :
case VT_EMPTY:
case VT_DATE :
case VT_BSTR :
case VT_DECIMAL:
break;
case VT_VARIANT:
case VT_UNKNOWN:
V_VT(result) = VT_EMPTY;
rc = DISP_E_TYPEMISMATCH;
goto end;
case VT_ERROR:
rc = DISP_E_TYPEMISMATCH;
goto end;
case VT_RECORD:
V_VT(result) = VT_EMPTY;
rc = DISP_E_TYPEMISMATCH;
goto end;
case VT_NULL:
break;
default:
V_VT(result) = VT_EMPTY;
rc = DISP_E_BADVARTYPE;
goto end;
}
switch (V_VT(right) & VT_TYPEMASK) {
case VT_BOOL :
case VT_I1 :
case VT_I2 :
case VT_I4 :
case VT_I8 :
if((V_VT(left) == VT_INT) && (V_VT(right) == VT_I8))
{
V_VT(result) = VT_EMPTY;
rc = DISP_E_TYPEMISMATCH;
goto end;
}
case VT_INT :
if((V_VT(right) == VT_INT) && (V_VT(left) == VT_I8))
{
V_VT(result) = VT_EMPTY;
rc = DISP_E_TYPEMISMATCH;
goto end;
}
case VT_UI1 :
case VT_UI2 :
case VT_UI4 :
case VT_UI8 :
case VT_UINT :
case VT_R4 :
case VT_R8 :
case VT_CY :
if(V_VT(left) == VT_EMPTY)
{
V_VT(result) = VT_I4;
rc = S_OK;
goto end;
}
case VT_EMPTY:
case VT_DATE :
case VT_DECIMAL:
if(V_VT(left) == VT_ERROR)
{
V_VT(result) = VT_EMPTY;
rc = DISP_E_TYPEMISMATCH;
goto end;
}
case VT_BSTR:
if(V_VT(left) == VT_NULL)
{
V_VT(result) = VT_NULL;
rc = S_OK;
goto end;
}
break;
case VT_VOID:
V_VT(result) = VT_EMPTY;
rc = DISP_E_BADVARTYPE;
goto end;
case VT_NULL:
if(V_VT(left) == VT_VOID)
{
V_VT(result) = VT_EMPTY;
rc = DISP_E_BADVARTYPE;
} else if((V_VT(left) == VT_NULL) || (V_VT(left) == VT_EMPTY) || (V_VT(left) == VT_ERROR) ||
lOk)
{
V_VT(result) = VT_NULL;
rc = S_OK;
} else
{
V_VT(result) = VT_NULL;
rc = DISP_E_BADVARTYPE;
}
goto end;
case VT_VARIANT:
case VT_UNKNOWN:
V_VT(result) = VT_EMPTY;
rc = DISP_E_TYPEMISMATCH;
goto end;
case VT_ERROR:
rc = DISP_E_TYPEMISMATCH;
goto end;
case VT_RECORD:
if((V_VT(left) == 15) || ((V_VT(left) >= 24) && (V_VT(left) <= 35)) || !lOk)
{
V_VT(result) = VT_EMPTY;
rc = DISP_E_BADVARTYPE;
} else
{
V_VT(result) = VT_EMPTY;
rc = DISP_E_TYPEMISMATCH;
}
goto end;
default:
V_VT(result) = VT_EMPTY;
rc = DISP_E_BADVARTYPE;
goto end;
}
/* determine the result type */
if((V_VT(left) == VT_I8) || (V_VT(right) == VT_I8)) resT = VT_I8;
else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_UI1)) resT = VT_UI1;
else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_I2)) resT = VT_I2;
else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_UI1)) resT = VT_I2;
else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_I2)) resT = VT_I2;
else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_UI1)) resT = VT_I2;
else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_I2)) resT = VT_I2;
else resT = VT_I4; /* most outputs are I4 */
/* convert to I8 for the modulo */
rc = VariantChangeType(&lv, left, 0, VT_I8);
if(FAILED(rc))
{
FIXME("Could not convert left type %d to %d? rc == 0x%X\n", V_VT(left), VT_I8, rc);
goto end;
}
rc = VariantChangeType(&rv, right, 0, VT_I8);
if(FAILED(rc))
{
FIXME("Could not convert right type %d to %d? rc == 0x%X\n", V_VT(right), VT_I8, rc);
goto end;
}
/* if right is zero set VT_EMPTY and return divide by zero */
if(V_I8(&rv) == 0)
{
V_VT(result) = VT_EMPTY;
rc = DISP_E_DIVBYZERO;
goto end;
}
/* perform the modulo operation */
V_VT(result) = VT_I8;
V_I8(result) = V_I8(&lv) % V_I8(&rv);
TRACE("V_I8(left) == %s, V_I8(right) == %s, V_I8(result) == %s\n",
wine_dbgstr_longlong(V_I8(&lv)), wine_dbgstr_longlong(V_I8(&rv)),
wine_dbgstr_longlong(V_I8(result)));
/* convert left and right to the destination type */
rc = VariantChangeType(result, result, 0, resT);
if(FAILED(rc))
{
FIXME("Could not convert 0x%x to %d?\n", V_VT(result), resT);
/* fall to end of function */
}
end:
VariantClear(&lv);
VariantClear(&rv);
VariantClear(&tempLeft);
VariantClear(&tempRight);
return rc;
}
/**********************************************************************
* VarPow [OLEAUT32.158]
*
* Computes the power of one variant to another variant.
*
* PARAMS
* left [I] First variant
* right [I] Second variant
* result [O] Result variant
*
* RETURNS
* Success: S_OK.
* Failure: An HRESULT error code indicating the error.
*/
HRESULT WINAPI VarPow(LPVARIANT left, LPVARIANT right, LPVARIANT result)
{
HRESULT hr = S_OK;
VARIANT dl,dr;
VARTYPE resvt = VT_EMPTY;
VARTYPE leftvt,rightvt;
VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
VARIANT tempLeft, tempRight;
TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
VariantInit(&dl);
VariantInit(&dr);
VariantInit(&tempLeft);
VariantInit(&tempRight);
/* Handle VT_DISPATCH by storing and taking address of returned value */
if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
{
hr = VARIANT_FetchDispatchValue(left, &tempLeft);
if (FAILED(hr)) goto end;
left = &tempLeft;
}
if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
{
hr = VARIANT_FetchDispatchValue(right, &tempRight);
if (FAILED(hr)) goto end;
right = &tempRight;
}
leftvt = V_VT(left)&VT_TYPEMASK;
rightvt = V_VT(right)&VT_TYPEMASK;
leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
if (leftExtraFlags != rightExtraFlags)
{
hr = DISP_E_BADVARTYPE;
goto end;
}
ExtraFlags = leftExtraFlags;
/* Native VarPow always returns an error when using extra flags */
if (ExtraFlags != 0)
{
hr = DISP_E_BADVARTYPE;
goto end;
}
/* Determine return type */
else if (leftvt == VT_NULL || rightvt == VT_NULL) {
V_VT(result) = VT_NULL;
hr = S_OK;
goto end;
}
else if ((leftvt == VT_EMPTY || leftvt == VT_I2 ||
leftvt == VT_I4 || leftvt == VT_R4 ||
leftvt == VT_R8 || leftvt == VT_CY ||
leftvt == VT_DATE || leftvt == VT_BSTR ||
leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
(leftvt >= VT_I1 && leftvt <= VT_UINT)) &&
(rightvt == VT_EMPTY || rightvt == VT_I2 ||
rightvt == VT_I4 || rightvt == VT_R4 ||
rightvt == VT_R8 || rightvt == VT_CY ||
rightvt == VT_DATE || rightvt == VT_BSTR ||
rightvt == VT_BOOL || rightvt == VT_DECIMAL ||
(rightvt >= VT_I1 && rightvt <= VT_UINT)))
resvt = VT_R8;
else
{
hr = DISP_E_BADVARTYPE;
goto end;
}
hr = VariantChangeType(&dl,left,0,resvt);
if (FAILED(hr)) {
ERR("Could not change passed left argument to VT_R8, handle it differently.\n");
hr = E_FAIL;
goto end;
}
hr = VariantChangeType(&dr,right,0,resvt);
if (FAILED(hr)) {
ERR("Could not change passed right argument to VT_R8, handle it differently.\n");
hr = E_FAIL;
goto end;
}
V_VT(result) = VT_R8;
V_R8(result) = pow(V_R8(&dl),V_R8(&dr));
end:
VariantClear(&dl);
VariantClear(&dr);
VariantClear(&tempLeft);
VariantClear(&tempRight);
return hr;
}
/**********************************************************************
* VarImp [OLEAUT32.154]
*
* Bitwise implication of two variants.
*
* PARAMS
* left [I] First variant
* right [I] Second variant
* result [O] Result variant
*
* RETURNS
* Success: S_OK.
* Failure: An HRESULT error code indicating the error.
*/
HRESULT WINAPI VarImp(LPVARIANT left, LPVARIANT right, LPVARIANT result)
{
HRESULT hres = S_OK;
VARTYPE resvt = VT_EMPTY;
VARTYPE leftvt,rightvt;
VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
VARIANT lv,rv;
double d;
VARIANT tempLeft, tempRight;
VariantInit(&lv);
VariantInit(&rv);
VariantInit(&tempLeft);
VariantInit(&tempRight);
TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
/* Handle VT_DISPATCH by storing and taking address of returned value */
if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
{
hres = VARIANT_FetchDispatchValue(left, &tempLeft);
if (FAILED(hres)) goto VarImp_Exit;
left = &tempLeft;
}
if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
{
hres = VARIANT_FetchDispatchValue(right, &tempRight);
if (FAILED(hres)) goto VarImp_Exit;
right = &tempRight;
}
leftvt = V_VT(left)&VT_TYPEMASK;
rightvt = V_VT(right)&VT_TYPEMASK;
leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
if (leftExtraFlags != rightExtraFlags)
{
hres = DISP_E_BADVARTYPE;
goto VarImp_Exit;
}
ExtraFlags = leftExtraFlags;
/* Native VarImp always returns an error when using extra
* flags or if the variants are I8 and INT.
*/
if ((leftvt == VT_I8 && rightvt == VT_INT) ||
ExtraFlags != 0)
{
hres = DISP_E_BADVARTYPE;
goto VarImp_Exit;
}
/* Determine result type */
else if ((leftvt == VT_NULL && rightvt == VT_NULL) ||
(leftvt == VT_NULL && rightvt == VT_EMPTY))
{
V_VT(result) = VT_NULL;
hres = S_OK;
goto VarImp_Exit;
}
else if (leftvt == VT_I8 || rightvt == VT_I8)
resvt = VT_I8;
else if (leftvt == VT_I4 || rightvt == VT_I4 ||
leftvt == VT_INT || rightvt == VT_INT ||
leftvt == VT_UINT || rightvt == VT_UINT ||
leftvt == VT_UI4 || rightvt == VT_UI4 ||
leftvt == VT_UI8 || rightvt == VT_UI8 ||
leftvt == VT_UI2 || rightvt == VT_UI2 ||
leftvt == VT_DECIMAL || rightvt == VT_DECIMAL ||
leftvt == VT_DATE || rightvt == VT_DATE ||
leftvt == VT_CY || rightvt == VT_CY ||
leftvt == VT_R8 || rightvt == VT_R8 ||
leftvt == VT_R4 || rightvt == VT_R4 ||
leftvt == VT_I1 || rightvt == VT_I1)
resvt = VT_I4;
else if ((leftvt == VT_UI1 && rightvt == VT_UI1) ||
(leftvt == VT_UI1 && rightvt == VT_NULL) ||
(leftvt == VT_NULL && rightvt == VT_UI1))
resvt = VT_UI1;
else if (leftvt == VT_EMPTY || rightvt == VT_EMPTY ||
leftvt == VT_I2 || rightvt == VT_I2 ||
leftvt == VT_UI1 || rightvt == VT_UI1)
resvt = VT_I2;
else if (leftvt == VT_BOOL || rightvt == VT_BOOL ||
leftvt == VT_BSTR || rightvt == VT_BSTR)
resvt = VT_BOOL;
/* VT_NULL requires special handling for when the opposite
* variant is equal to something other than -1.
* (NULL Imp 0 = NULL, NULL Imp n = n)
*/
if (leftvt == VT_NULL)
{
VARIANT_BOOL b;
switch(rightvt)
{
case VT_I1: if (!V_I1(right)) resvt = VT_NULL; break;
case VT_UI1: if (!V_UI1(right)) resvt = VT_NULL; break;
case VT_I2: if (!V_I2(right)) resvt = VT_NULL; break;
case VT_UI2: if (!V_UI2(right)) resvt = VT_NULL; break;
case VT_I4: if (!V_I4(right)) resvt = VT_NULL; break;
case VT_UI4: if (!V_UI4(right)) resvt = VT_NULL; break;
case VT_I8: if (!V_I8(right)) resvt = VT_NULL; break;
case VT_UI8: if (!V_UI8(right)) resvt = VT_NULL; break;
case VT_INT: if (!V_INT(right)) resvt = VT_NULL; break;
case VT_UINT: if (!V_UINT(right)) resvt = VT_NULL; break;
case VT_BOOL: if (!V_BOOL(right)) resvt = VT_NULL; break;
case VT_R4: if (!V_R4(right)) resvt = VT_NULL; break;
case VT_R8: if (!V_R8(right)) resvt = VT_NULL; break;
case VT_DATE: if (!V_DATE(right)) resvt = VT_NULL; break;
case VT_CY: if (!V_CY(right).int64) resvt = VT_NULL; break;
case VT_DECIMAL:
if (!(DEC_HI32(&V_DECIMAL(right)) || DEC_LO64(&V_DECIMAL(right))))
resvt = VT_NULL;
break;
case VT_BSTR:
hres = VarBoolFromStr(V_BSTR(right),LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
if (FAILED(hres)) goto VarImp_Exit;
else if (!b)
V_VT(result) = VT_NULL;
else
{
V_VT(result) = VT_BOOL;
V_BOOL(result) = b;
}
goto VarImp_Exit;
}
if (resvt == VT_NULL)
{
V_VT(result) = resvt;
goto VarImp_Exit;
}
else
{
hres = VariantChangeType(result,right,0,resvt);
goto VarImp_Exit;
}
}
/* Special handling is required when NULL is the right variant.
* (-1 Imp NULL = NULL, n Imp NULL = n Imp 0)
*/
else if (rightvt == VT_NULL)
{
VARIANT_BOOL b;
switch(leftvt)
{
case VT_I1: if (V_I1(left) == -1) resvt = VT_NULL; break;
case VT_UI1: if (V_UI1(left) == 0xff) resvt = VT_NULL; break;
case VT_I2: if (V_I2(left) == -1) resvt = VT_NULL; break;
case VT_UI2: if (V_UI2(left) == 0xffff) resvt = VT_NULL; break;
case VT_INT: if (V_INT(left) == -1) resvt = VT_NULL; break;
case VT_UINT: if (V_UINT(left) == ~0u) resvt = VT_NULL; break;
case VT_I4: if (V_I4(left) == -1) resvt = VT_NULL; break;
case VT_UI4: if (V_UI4(left) == ~0u) resvt = VT_NULL; break;
case VT_I8: if (V_I8(left) == -1) resvt = VT_NULL; break;
case VT_UI8: if (V_UI8(left) == ~(ULONGLONG)0) resvt = VT_NULL; break;
case VT_BOOL: if (V_BOOL(left) == VARIANT_TRUE) resvt = VT_NULL; break;
case VT_R4: if (V_R4(left) == -1.0) resvt = VT_NULL; break;
case VT_R8: if (V_R8(left) == -1.0) resvt = VT_NULL; break;
case VT_CY: if (V_CY(left).int64 == -1) resvt = VT_NULL; break;
case VT_DECIMAL:
if (DEC_HI32(&V_DECIMAL(left)) == 0xffffffff)
resvt = VT_NULL;
break;
case VT_BSTR:
hres = VarBoolFromStr(V_BSTR(left),LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
if (FAILED(hres)) goto VarImp_Exit;
else if (b == VARIANT_TRUE)
resvt = VT_NULL;
}
if (resvt == VT_NULL)
{
V_VT(result) = resvt;
goto VarImp_Exit;
}
}
hres = VariantCopy(&lv, left);
if (FAILED(hres)) goto VarImp_Exit;
if (rightvt == VT_NULL)
{
memset( &rv, 0, sizeof(rv) );
V_VT(&rv) = resvt;
}
else
{
hres = VariantCopy(&rv, right);
if (FAILED(hres)) goto VarImp_Exit;
}
if (V_VT(&lv) == VT_BSTR &&
FAILED(VarR8FromStr(V_BSTR(&lv),LOCALE_USER_DEFAULT, 0, &d)))
hres = VariantChangeType(&lv,&lv,VARIANT_LOCALBOOL, VT_BOOL);
if (SUCCEEDED(hres) && V_VT(&lv) != resvt)
hres = VariantChangeType(&lv,&lv,0,resvt);
if (FAILED(hres)) goto VarImp_Exit;
if (V_VT(&rv) == VT_BSTR &&
FAILED(VarR8FromStr(V_BSTR(&rv),LOCALE_USER_DEFAULT, 0, &d)))
hres = VariantChangeType(&rv, &rv,VARIANT_LOCALBOOL, VT_BOOL);
if (SUCCEEDED(hres) && V_VT(&rv) != resvt)
hres = VariantChangeType(&rv, &rv, 0, resvt);
if (FAILED(hres)) goto VarImp_Exit;
/* do the math */
V_VT(result) = resvt;
switch (resvt)
{
case VT_I8:
V_I8(result) = (~V_I8(&lv)) | V_I8(&rv);
break;
case VT_I4:
V_I4(result) = (~V_I4(&lv)) | V_I4(&rv);
break;
case VT_I2:
V_I2(result) = (~V_I2(&lv)) | V_I2(&rv);
break;
case VT_UI1:
V_UI1(result) = (~V_UI1(&lv)) | V_UI1(&rv);
break;
case VT_BOOL:
V_BOOL(result) = (~V_BOOL(&lv)) | V_BOOL(&rv);
break;
default:
FIXME("Couldn't perform bitwise implication on variant types %d,%d\n",
leftvt,rightvt);
}
VarImp_Exit:
VariantClear(&lv);
VariantClear(&rv);
VariantClear(&tempLeft);
VariantClear(&tempRight);
return hres;
}