/* * Copyright 2007 David Adam * Copyright 2007 Vijay Kiran Kamuju * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA */ #include "d3drm_private.h" /* Create a RGB color from its components */ D3DCOLOR WINAPI D3DRMCreateColorRGB(D3DVALUE red, D3DVALUE green, D3DVALUE blue) { return D3DRMCreateColorRGBA(red, green, blue, 1.0f); } /* Create a RGBA color from its components */ D3DCOLOR WINAPI D3DRMCreateColorRGBA(D3DVALUE red, D3DVALUE green, D3DVALUE blue, D3DVALUE alpha) { D3DCOLOR color; d3drm_set_color(&color, red, green, blue, alpha); return color; } /* Determine the alpha part of a color */ D3DVALUE WINAPI D3DRMColorGetAlpha(D3DCOLOR color) { return (RGBA_GETALPHA(color)/255.0); } /* Determine the blue part of a color */ D3DVALUE WINAPI D3DRMColorGetBlue(D3DCOLOR color) { return (RGBA_GETBLUE(color)/255.0); } /* Determine the green part of a color */ D3DVALUE WINAPI D3DRMColorGetGreen(D3DCOLOR color) { return (RGBA_GETGREEN(color)/255.0); } /* Determine the red part of a color */ D3DVALUE WINAPI D3DRMColorGetRed(D3DCOLOR color) { return (RGBA_GETRED(color)/255.0); } /* Product of 2 quaternions */ D3DRMQUATERNION * WINAPI D3DRMQuaternionMultiply(D3DRMQUATERNION *q, D3DRMQUATERNION *a, D3DRMQUATERNION *b) { D3DRMQUATERNION temp; D3DVECTOR cross_product; D3DRMVectorCrossProduct(&cross_product, &a->v, &b->v); temp.s = a->s * b->s - D3DRMVectorDotProduct(&a->v, &b->v); temp.v.u1.x = a->s * b->v.u1.x + b->s * a->v.u1.x + cross_product.u1.x; temp.v.u2.y = a->s * b->v.u2.y + b->s * a->v.u2.y + cross_product.u2.y; temp.v.u3.z = a->s * b->v.u3.z + b->s * a->v.u3.z + cross_product.u3.z; *q = temp; return q; } /* Matrix for the Rotation that a unit quaternion represents */ void WINAPI D3DRMMatrixFromQuaternion(D3DRMMATRIX4D m, D3DRMQUATERNION *q) { D3DVALUE w,x,y,z; w = q->s; x = q->v.u1.x; y = q->v.u2.y; z = q->v.u3.z; m[0][0] = 1.0-2.0*(y*y+z*z); m[1][1] = 1.0-2.0*(x*x+z*z); m[2][2] = 1.0-2.0*(x*x+y*y); m[1][0] = 2.0*(x*y+z*w); m[0][1] = 2.0*(x*y-z*w); m[2][0] = 2.0*(x*z-y*w); m[0][2] = 2.0*(x*z+y*w); m[2][1] = 2.0*(y*z+x*w); m[1][2] = 2.0*(y*z-x*w); m[3][0] = 0.0; m[3][1] = 0.0; m[3][2] = 0.0; m[0][3] = 0.0; m[1][3] = 0.0; m[2][3] = 0.0; m[3][3] = 1.0; } /* Return a unit quaternion that represents a rotation of an angle around an axis */ D3DRMQUATERNION * WINAPI D3DRMQuaternionFromRotation(D3DRMQUATERNION *q, D3DVECTOR *v, D3DVALUE theta) { q->s = cos(theta/2.0); D3DRMVectorScale(&q->v, D3DRMVectorNormalize(v), sin(theta/2.0)); return q; } /* Interpolation between two quaternions */ D3DRMQUATERNION * WINAPI D3DRMQuaternionSlerp(D3DRMQUATERNION *q, D3DRMQUATERNION *a, D3DRMQUATERNION *b, D3DVALUE alpha) { D3DVALUE dot, epsilon, temp, theta, u; D3DVECTOR v1, v2; dot = a->s * b->s + D3DRMVectorDotProduct(&a->v, &b->v); epsilon = 1.0f; temp = 1.0f - alpha; u = alpha; if (dot < 0.0) { epsilon = -1.0; dot = -dot; } if( 1.0f - dot > 0.001f ) { theta = acos(dot); temp = sin(theta * temp) / sin(theta); u = sin(theta * alpha) / sin(theta); } q->s = temp * a->s + epsilon * u * b->s; D3DRMVectorScale(&v1, &a->v, temp); D3DRMVectorScale(&v2, &b->v, epsilon * u); D3DRMVectorAdd(&q->v, &v1, &v2); return q; } /* Add Two Vectors */ D3DVECTOR * WINAPI D3DRMVectorAdd(D3DVECTOR *d, D3DVECTOR *s1, D3DVECTOR *s2) { D3DVECTOR temp; temp.u1.x=s1->u1.x + s2->u1.x; temp.u2.y=s1->u2.y + s2->u2.y; temp.u3.z=s1->u3.z + s2->u3.z; *d = temp; return d; } /* Subtract Two Vectors */ D3DVECTOR * WINAPI D3DRMVectorSubtract(D3DVECTOR *d, D3DVECTOR *s1, D3DVECTOR *s2) { D3DVECTOR temp; temp.u1.x=s1->u1.x - s2->u1.x; temp.u2.y=s1->u2.y - s2->u2.y; temp.u3.z=s1->u3.z - s2->u3.z; *d = temp; return d; } /* Cross Product of Two Vectors */ D3DVECTOR * WINAPI D3DRMVectorCrossProduct(D3DVECTOR *d, D3DVECTOR *s1, D3DVECTOR *s2) { D3DVECTOR temp; temp.u1.x=s1->u2.y * s2->u3.z - s1->u3.z * s2->u2.y; temp.u2.y=s1->u3.z * s2->u1.x - s1->u1.x * s2->u3.z; temp.u3.z=s1->u1.x * s2->u2.y - s1->u2.y * s2->u1.x; *d = temp; return d; } /* Dot Product of Two vectors */ D3DVALUE WINAPI D3DRMVectorDotProduct(D3DVECTOR *s1, D3DVECTOR *s2) { D3DVALUE dot_product; dot_product=s1->u1.x * s2->u1.x + s1->u2.y * s2->u2.y + s1->u3.z * s2->u3.z; return dot_product; } /* Norm of a vector */ D3DVALUE WINAPI D3DRMVectorModulus(D3DVECTOR *v) { D3DVALUE result; result=sqrt(v->u1.x * v->u1.x + v->u2.y * v->u2.y + v->u3.z * v->u3.z); return result; } /* Normalize a vector. Returns (1,0,0) if INPUT is the NULL vector. */ D3DVECTOR * WINAPI D3DRMVectorNormalize(D3DVECTOR *u) { D3DVALUE modulus = D3DRMVectorModulus(u); if(modulus) { D3DRMVectorScale(u,u,1.0/modulus); } else { u->u1.x=1.0; u->u2.y=0.0; u->u3.z=0.0; } return u; } /* Returns a random unit vector */ D3DVECTOR * WINAPI D3DRMVectorRandom(D3DVECTOR *d) { d->u1.x = rand(); d->u2.y = rand(); d->u3.z = rand(); D3DRMVectorNormalize(d); return d; } /* Reflection of a vector on a surface */ D3DVECTOR * WINAPI D3DRMVectorReflect(D3DVECTOR *r, D3DVECTOR *ray, D3DVECTOR *norm) { D3DVECTOR sca, temp; D3DRMVectorSubtract(&temp, D3DRMVectorScale(&sca, norm, 2.0*D3DRMVectorDotProduct(ray,norm)), ray); *r = temp; return r; } /* Rotation of a vector */ D3DVECTOR * WINAPI D3DRMVectorRotate(D3DVECTOR *r, D3DVECTOR *v, D3DVECTOR *axis, D3DVALUE theta) { D3DRMQUATERNION quaternion1, quaternion2, quaternion3; D3DVECTOR norm; quaternion1.s = cos(theta * 0.5f); quaternion2.s = cos(theta * 0.5f); norm = *D3DRMVectorNormalize(axis); D3DRMVectorScale(&quaternion1.v, &norm, sin(theta * 0.5f)); D3DRMVectorScale(&quaternion2.v, &norm, -sin(theta * 0.5f)); quaternion3.s = 0.0; quaternion3.v = *v; D3DRMQuaternionMultiply(&quaternion1, &quaternion1, &quaternion3); D3DRMQuaternionMultiply(&quaternion1, &quaternion1, &quaternion2); *r = *D3DRMVectorNormalize(&quaternion1.v); return r; } /* Scale a vector */ D3DVECTOR * WINAPI D3DRMVectorScale(D3DVECTOR *d, D3DVECTOR *s, D3DVALUE factor) { D3DVECTOR temp; temp.u1.x=factor * s->u1.x; temp.u2.y=factor * s->u2.y; temp.u3.z=factor * s->u3.z; *d = temp; return d; }