/* * File elf.c - processing of ELF files * * Copyright (C) 1996, Eric Youngdale. * 1999-2007 Eric Pouech * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include "dbghelp_private.h" #include "image_private.h" #include "winternl.h" #include "wine/debug.h" #include "wine/heap.h" #define ELF_INFO_DEBUG_HEADER 0x0001 #define ELF_INFO_MODULE 0x0002 #define ELF_INFO_NAME 0x0004 WINE_DEFAULT_DEBUG_CHANNEL(dbghelp); struct elf_info { unsigned flags; /* IN one (or several) of the ELF_INFO constants */ DWORD_PTR dbg_hdr_addr; /* OUT address of debug header (if ELF_INFO_DEBUG_HEADER is set) */ struct module* module; /* OUT loaded module (if ELF_INFO_MODULE is set) */ const WCHAR* module_name; /* OUT found module name (if ELF_INFO_NAME is set) */ }; struct elf_sym32 { UINT32 st_name; /* Symbol name (string tbl index) */ UINT32 st_value; /* Symbol value */ UINT32 st_size; /* Symbol size */ UINT8 st_info; /* Symbol type and binding */ UINT8 st_other; /* Symbol visibility */ UINT16 st_shndx; /* Section index */ }; struct elf_sym { UINT32 st_name; /* Symbol name (string tbl index) */ UINT8 st_info; /* Symbol type and binding */ UINT8 st_other; /* Symbol visibility */ UINT16 st_shndx; /* Section index */ UINT64 st_value; /* Symbol value */ UINT64 st_size; /* Symbol size */ }; struct symtab_elt { struct hash_table_elt ht_elt; struct elf_sym sym; struct symt_compiland* compiland; unsigned used; }; struct elf_thunk_area { const char* symname; THUNK_ORDINAL ordinal; ULONG_PTR rva_start; ULONG_PTR rva_end; }; struct elf_module_info { ULONG_PTR elf_addr; unsigned short elf_mark : 1, elf_loader : 1; struct image_file_map file_map; }; /* Legal values for sh_type (section type). */ #define ELF_SHT_NULL 0 /* Section header table entry unused */ #define ELF_SHT_PROGBITS 1 /* Program data */ #define ELF_SHT_SYMTAB 2 /* Symbol table */ #define ELF_SHT_STRTAB 3 /* String table */ #define ELF_SHT_RELA 4 /* Relocation entries with addends */ #define ELF_SHT_HASH 5 /* Symbol hash table */ #define ELF_SHT_DYNAMIC 6 /* Dynamic linking information */ #define ELF_SHT_NOTE 7 /* Notes */ #define ELF_SHT_NOBITS 8 /* Program space with no data (bss) */ #define ELF_SHT_REL 9 /* Relocation entries, no addends */ #define ELF_SHT_SHLIB 10 /* Reserved */ #define ELF_SHT_DYNSYM 11 /* Dynamic linker symbol table */ #define ELF_SHT_INIT_ARRAY 14 /* Array of constructors */ #define ELF_SHT_FINI_ARRAY 15 /* Array of destructors */ #define ELF_SHT_PREINIT_ARRAY 16 /* Array of pre-constructors */ #define ELF_SHT_GROUP 17 /* Section group */ #define ELF_SHT_SYMTAB_SHNDX 18 /* Extended section indeces */ #define ELF_SHT_NUM 19 /* Number of defined types. */ /* Legal values for ST_TYPE subfield of st_info (symbol type). */ #define ELF_STT_NOTYPE 0 /* Symbol type is unspecified */ #define ELF_STT_OBJECT 1 /* Symbol is a data object */ #define ELF_STT_FUNC 2 /* Symbol is a code object */ #define ELF_STT_SECTION 3 /* Symbol associated with a section */ #define ELF_STT_FILE 4 /* Symbol's name is file name */ #define ELF_PT_LOAD 1 /* Loadable program segment */ #define ELF_DT_DEBUG 21 /* For debugging; unspecified */ #define ELF_AT_SYSINFO_EHDR 33 /****************************************************************** * elf_map_section * * Maps a single section into memory from an ELF file */ static const char* elf_map_section(struct image_section_map* ism) { struct elf_file_map* fmap = &ism->fmap->u.elf; SIZE_T ofst, size; HANDLE mapping; assert(ism->fmap->modtype == DMT_ELF); if (ism->sidx < 0 || ism->sidx >= ism->fmap->u.elf.elfhdr.e_shnum || fmap->sect[ism->sidx].shdr.sh_type == ELF_SHT_NOBITS) return IMAGE_NO_MAP; if (fmap->target_copy) { return fmap->target_copy + fmap->sect[ism->sidx].shdr.sh_offset; } /* align required information on allocation granularity */ ofst = fmap->sect[ism->sidx].shdr.sh_offset & ~(sysinfo.dwAllocationGranularity - 1); size = fmap->sect[ism->sidx].shdr.sh_offset + fmap->sect[ism->sidx].shdr.sh_size - ofst; if (!(mapping = CreateFileMappingW(fmap->handle, NULL, PAGE_READONLY, 0, ofst + size, NULL))) { ERR("map creation %p failed %u offset %lu %lu size %lu\n", fmap->handle, GetLastError(), ofst, ofst % 4096, size); return IMAGE_NO_MAP; } fmap->sect[ism->sidx].mapped = MapViewOfFile(mapping, FILE_MAP_READ, 0, ofst, size); CloseHandle(mapping); if (!fmap->sect[ism->sidx].mapped) { ERR("map %p failed %u offset %lu %lu size %lu\n", fmap->handle, GetLastError(), ofst, ofst % 4096, size); return IMAGE_NO_MAP; } return fmap->sect[ism->sidx].mapped + (fmap->sect[ism->sidx].shdr.sh_offset & (sysinfo.dwAllocationGranularity - 1)); } /****************************************************************** * elf_find_section * * Finds a section by name (and type) into memory from an ELF file * or its alternate if any */ static BOOL elf_find_section(struct image_file_map* _fmap, const char* name, struct image_section_map* ism) { struct elf_file_map* fmap = &_fmap->u.elf; unsigned i; if (fmap->shstrtab == IMAGE_NO_MAP) { struct image_section_map hdr_ism = {_fmap, fmap->elfhdr.e_shstrndx}; if ((fmap->shstrtab = elf_map_section(&hdr_ism)) == IMAGE_NO_MAP) return FALSE; } for (i = 0; i < fmap->elfhdr.e_shnum; i++) { if (strcmp(fmap->shstrtab + fmap->sect[i].shdr.sh_name, name) == 0) { ism->fmap = _fmap; ism->sidx = i; return TRUE; } } return FALSE; } static BOOL elf_find_section_type(struct image_file_map* _fmap, const char* name, unsigned sht, struct image_section_map* ism) { struct elf_file_map* fmap; unsigned i; while (_fmap) { if (_fmap->modtype != DMT_ELF) break; fmap = &_fmap->u.elf; if (fmap->shstrtab == IMAGE_NO_MAP) { struct image_section_map hdr_ism = {_fmap, fmap->elfhdr.e_shstrndx}; if ((fmap->shstrtab = elf_map_section(&hdr_ism)) == IMAGE_NO_MAP) break; } for (i = 0; i < fmap->elfhdr.e_shnum; i++) { if (strcmp(fmap->shstrtab + fmap->sect[i].shdr.sh_name, name) == 0 && sht == fmap->sect[i].shdr.sh_type) { ism->fmap = _fmap; ism->sidx = i; return TRUE; } } _fmap = _fmap->alternate; } ism->fmap = NULL; ism->sidx = -1; return FALSE; } /****************************************************************** * elf_unmap_section * * Unmaps a single section from memory */ static void elf_unmap_section(struct image_section_map* ism) { struct elf_file_map* fmap = &ism->fmap->u.elf; if (ism->sidx >= 0 && ism->sidx < fmap->elfhdr.e_shnum && !fmap->target_copy && fmap->sect[ism->sidx].mapped) { if (!UnmapViewOfFile(fmap->sect[ism->sidx].mapped)) WARN("Couldn't unmap the section\n"); fmap->sect[ism->sidx].mapped = NULL; } } static void elf_end_find(struct image_file_map* fmap) { struct image_section_map ism; while (fmap && fmap->modtype == DMT_ELF) { ism.fmap = fmap; ism.sidx = fmap->u.elf.elfhdr.e_shstrndx; elf_unmap_section(&ism); fmap->u.elf.shstrtab = IMAGE_NO_MAP; fmap = fmap->alternate; } } /****************************************************************** * elf_get_map_rva * * Get the RVA of an ELF section */ static DWORD_PTR elf_get_map_rva(const struct image_section_map* ism) { if (ism->sidx < 0 || ism->sidx >= ism->fmap->u.elf.elfhdr.e_shnum) return 0; return ism->fmap->u.elf.sect[ism->sidx].shdr.sh_addr - ism->fmap->u.elf.elf_start; } /****************************************************************** * elf_get_map_size * * Get the size of an ELF section */ static unsigned elf_get_map_size(const struct image_section_map* ism) { if (ism->sidx < 0 || ism->sidx >= ism->fmap->u.elf.elfhdr.e_shnum) return 0; return ism->fmap->u.elf.sect[ism->sidx].shdr.sh_size; } /****************************************************************** * elf_unmap_file * * Unmaps an ELF file from memory (previously mapped with elf_map_file) */ static void elf_unmap_file(struct image_file_map* fmap) { if (fmap->u.elf.handle != INVALID_HANDLE_VALUE) { struct image_section_map ism; ism.fmap = fmap; for (ism.sidx = 0; ism.sidx < fmap->u.elf.elfhdr.e_shnum; ism.sidx++) { elf_unmap_section(&ism); } HeapFree(GetProcessHeap(), 0, fmap->u.elf.sect); CloseHandle(fmap->u.elf.handle); } HeapFree(GetProcessHeap(), 0, fmap->u.elf.target_copy); } static const struct image_file_map_ops elf_file_map_ops = { elf_map_section, elf_unmap_section, elf_find_section, elf_get_map_rva, elf_get_map_size, elf_unmap_file, }; static inline void elf_reset_file_map(struct image_file_map* fmap) { fmap->ops = &elf_file_map_ops; fmap->alternate = NULL; fmap->u.elf.handle = INVALID_HANDLE_VALUE; fmap->u.elf.shstrtab = IMAGE_NO_MAP; fmap->u.elf.target_copy = NULL; } struct elf_map_file_data { enum {from_file, from_process, from_handle} kind; union { struct { const WCHAR* filename; } file; struct { HANDLE handle; void* load_addr; } process; HANDLE handle; } u; }; static BOOL elf_map_file_read(struct image_file_map* fmap, struct elf_map_file_data* emfd, void* buf, size_t len, size_t off) { LARGE_INTEGER li; DWORD bytes_read; SIZE_T dw; switch (emfd->kind) { case from_file: case from_handle: li.QuadPart = off; if (!SetFilePointerEx(fmap->u.elf.handle, li, NULL, FILE_BEGIN)) return FALSE; return ReadFile(fmap->u.elf.handle, buf, len, &bytes_read, NULL); case from_process: return ReadProcessMemory(emfd->u.process.handle, (void*)((ULONG_PTR)emfd->u.process.load_addr + (ULONG_PTR)off), buf, len, &dw) && dw == len; default: assert(0); return FALSE; } } static BOOL elf_map_shdr(struct elf_map_file_data* emfd, struct image_file_map* fmap, unsigned int i) { if (fmap->addr_size == 32) { struct { UINT32 sh_name; /* Section name (string tbl index) */ UINT32 sh_type; /* Section type */ UINT32 sh_flags; /* Section flags */ UINT32 sh_addr; /* Section virtual addr at execution */ UINT32 sh_offset; /* Section file offset */ UINT32 sh_size; /* Section size in bytes */ UINT32 sh_link; /* Link to another section */ UINT32 sh_info; /* Additional section information */ UINT32 sh_addralign; /* Section alignment */ UINT32 sh_entsize; /* Entry size if section holds table */ } shdr32; if (!elf_map_file_read(fmap, emfd, &shdr32, sizeof(shdr32), fmap->u.elf.elfhdr.e_shoff + i * sizeof(shdr32))) return FALSE; fmap->u.elf.sect[i].shdr.sh_name = shdr32.sh_name; fmap->u.elf.sect[i].shdr.sh_type = shdr32.sh_type; fmap->u.elf.sect[i].shdr.sh_flags = shdr32.sh_flags; fmap->u.elf.sect[i].shdr.sh_addr = shdr32.sh_addr; fmap->u.elf.sect[i].shdr.sh_offset = shdr32.sh_offset; fmap->u.elf.sect[i].shdr.sh_size = shdr32.sh_size; fmap->u.elf.sect[i].shdr.sh_link = shdr32.sh_link; fmap->u.elf.sect[i].shdr.sh_info = shdr32.sh_info; fmap->u.elf.sect[i].shdr.sh_addralign = shdr32.sh_addralign; fmap->u.elf.sect[i].shdr.sh_entsize = shdr32.sh_entsize; } else { if (!elf_map_file_read(fmap, emfd, &fmap->u.elf.sect[i].shdr, sizeof(fmap->u.elf.sect[i].shdr), fmap->u.elf.elfhdr.e_shoff + i * sizeof(fmap->u.elf.sect[i].shdr))) return FALSE; } return TRUE; } /****************************************************************** * elf_map_file * * Maps an ELF file into memory (and checks it's a real ELF file) */ static BOOL elf_map_file(struct elf_map_file_data* emfd, struct image_file_map* fmap) { unsigned int i; size_t tmp, page_mask = sysinfo.dwPageSize - 1; WCHAR *dos_path; unsigned char e_ident[ARRAY_SIZE(fmap->u.elf.elfhdr.e_ident)]; elf_reset_file_map(fmap); fmap->modtype = DMT_ELF; fmap->u.elf.handle = INVALID_HANDLE_VALUE; fmap->u.elf.target_copy = NULL; switch (emfd->kind) { case from_file: if (!(dos_path = get_dos_file_name(emfd->u.file.filename))) return FALSE; fmap->u.elf.handle = CreateFileW(dos_path, GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, 0, NULL); heap_free(dos_path); if (fmap->u.elf.handle == INVALID_HANDLE_VALUE) return FALSE; break; case from_handle: if (!DuplicateHandle(GetCurrentProcess(), emfd->u.handle, GetCurrentProcess(), &fmap->u.elf.handle, GENERIC_READ, FALSE, 0)) return FALSE; break; case from_process: break; } if (!elf_map_file_read(fmap, emfd, e_ident, sizeof(e_ident), 0)) return FALSE; /* and check for an ELF header */ if (memcmp(e_ident, "\177ELF", 4)) return FALSE; fmap->addr_size = e_ident[4] == 2 /* ELFCLASS64 */ ? 64 : 32; if (fmap->addr_size == 32) { struct { UINT8 e_ident[16]; /* Magic number and other info */ UINT16 e_type; /* Object file type */ UINT16 e_machine; /* Architecture */ UINT32 e_version; /* Object file version */ UINT32 e_entry; /* Entry point virtual address */ UINT32 e_phoff; /* Program header table file offset */ UINT32 e_shoff; /* Section header table file offset */ UINT32 e_flags; /* Processor-specific flags */ UINT16 e_ehsize; /* ELF header size in bytes */ UINT16 e_phentsize; /* Program header table entry size */ UINT16 e_phnum; /* Program header table entry count */ UINT16 e_shentsize; /* Section header table entry size */ UINT16 e_shnum; /* Section header table entry count */ UINT16 e_shstrndx; /* Section header string table index */ } elfhdr32; if (!elf_map_file_read(fmap, emfd, &elfhdr32, sizeof(elfhdr32), 0)) return FALSE; memcpy(fmap->u.elf.elfhdr.e_ident, elfhdr32.e_ident, sizeof(e_ident)); fmap->u.elf.elfhdr.e_type = elfhdr32.e_type; fmap->u.elf.elfhdr.e_machine = elfhdr32.e_machine; fmap->u.elf.elfhdr.e_version = elfhdr32.e_version; fmap->u.elf.elfhdr.e_entry = elfhdr32.e_entry; fmap->u.elf.elfhdr.e_phoff = elfhdr32.e_phoff; fmap->u.elf.elfhdr.e_shoff = elfhdr32.e_shoff; fmap->u.elf.elfhdr.e_flags = elfhdr32.e_flags; fmap->u.elf.elfhdr.e_ehsize = elfhdr32.e_ehsize; fmap->u.elf.elfhdr.e_phentsize = elfhdr32.e_phentsize; fmap->u.elf.elfhdr.e_phnum = elfhdr32.e_phnum; fmap->u.elf.elfhdr.e_shentsize = elfhdr32.e_shentsize; fmap->u.elf.elfhdr.e_shnum = elfhdr32.e_shnum; fmap->u.elf.elfhdr.e_shstrndx = elfhdr32.e_shstrndx; } else { if (!elf_map_file_read(fmap, emfd, &fmap->u.elf.elfhdr, sizeof(fmap->u.elf.elfhdr), 0)) return FALSE; } fmap->u.elf.sect = HeapAlloc(GetProcessHeap(), 0, fmap->u.elf.elfhdr.e_shnum * sizeof(fmap->u.elf.sect[0])); if (!fmap->u.elf.sect) return FALSE; for (i = 0; i < fmap->u.elf.elfhdr.e_shnum; i++) { if (!elf_map_shdr(emfd, fmap, i)) { HeapFree(GetProcessHeap(), 0, fmap->u.elf.sect); fmap->u.elf.sect = NULL; return FALSE; } fmap->u.elf.sect[i].mapped = NULL; } /* grab size of module once loaded in memory */ fmap->u.elf.elf_size = 0; fmap->u.elf.elf_start = ~0L; for (i = 0; i < fmap->u.elf.elfhdr.e_phnum; i++) { if (fmap->addr_size == 32) { struct { UINT32 p_type; /* Segment type */ UINT32 p_offset; /* Segment file offset */ UINT32 p_vaddr; /* Segment virtual address */ UINT32 p_paddr; /* Segment physical address */ UINT32 p_filesz; /* Segment size in file */ UINT32 p_memsz; /* Segment size in memory */ UINT32 p_flags; /* Segment flags */ UINT32 p_align; /* Segment alignment */ } phdr; if (elf_map_file_read(fmap, emfd, &phdr, sizeof(phdr), fmap->u.elf.elfhdr.e_phoff + i * sizeof(phdr)) && phdr.p_type == ELF_PT_LOAD) { tmp = (phdr.p_vaddr + phdr.p_memsz + page_mask) & ~page_mask; if (fmap->u.elf.elf_size < tmp) fmap->u.elf.elf_size = tmp; if (phdr.p_vaddr < fmap->u.elf.elf_start) fmap->u.elf.elf_start = phdr.p_vaddr; } } else { struct { UINT32 p_type; /* Segment type */ UINT32 p_flags; /* Segment flags */ UINT64 p_offset; /* Segment file offset */ UINT64 p_vaddr; /* Segment virtual address */ UINT64 p_paddr; /* Segment physical address */ UINT64 p_filesz; /* Segment size in file */ UINT64 p_memsz; /* Segment size in memory */ UINT64 p_align; /* Segment alignment */ } phdr; if (elf_map_file_read(fmap, emfd, &phdr, sizeof(phdr), fmap->u.elf.elfhdr.e_phoff + i * sizeof(phdr)) && phdr.p_type == ELF_PT_LOAD) { tmp = (phdr.p_vaddr + phdr.p_memsz + page_mask) & ~page_mask; if (fmap->u.elf.elf_size < tmp) fmap->u.elf.elf_size = tmp; if (phdr.p_vaddr < fmap->u.elf.elf_start) fmap->u.elf.elf_start = phdr.p_vaddr; } } } /* if non relocatable ELF, then remove fixed address from computation * otherwise, all addresses are zero based and start has no effect */ fmap->u.elf.elf_size -= fmap->u.elf.elf_start; switch (emfd->kind) { case from_handle: case from_file: break; case from_process: if (!(fmap->u.elf.target_copy = HeapAlloc(GetProcessHeap(), 0, fmap->u.elf.elf_size))) { HeapFree(GetProcessHeap(), 0, fmap->u.elf.sect); return FALSE; } if (!ReadProcessMemory(emfd->u.process.handle, emfd->u.process.load_addr, fmap->u.elf.target_copy, fmap->u.elf.elf_size, NULL)) { HeapFree(GetProcessHeap(), 0, fmap->u.elf.target_copy); HeapFree(GetProcessHeap(), 0, fmap->u.elf.sect); return FALSE; } break; } return TRUE; } BOOL elf_map_handle(HANDLE handle, struct image_file_map* fmap) { struct elf_map_file_data emfd; emfd.kind = from_handle; emfd.u.handle = handle; return elf_map_file(&emfd, fmap); } static void elf_module_remove(struct process* pcs, struct module_format* modfmt) { image_unmap_file(&modfmt->u.elf_info->file_map); HeapFree(GetProcessHeap(), 0, modfmt); } /****************************************************************** * elf_is_in_thunk_area * * Check whether an address lies within one of the thunk area we * know of. */ int elf_is_in_thunk_area(ULONG_PTR addr, const struct elf_thunk_area* thunks) { unsigned i; if (thunks) for (i = 0; thunks[i].symname; i++) { if (addr >= thunks[i].rva_start && addr < thunks[i].rva_end) return i; } return -1; } /****************************************************************** * elf_hash_symtab * * creating an internal hash table to ease use ELF symtab information lookup */ static void elf_hash_symtab(struct module* module, struct pool* pool, struct hash_table* ht_symtab, struct image_file_map* fmap, struct elf_thunk_area* thunks) { int i, j, nsym; const char* strp; const char* symname; struct symt_compiland* compiland = NULL; const char* ptr; struct symtab_elt* ste; struct image_section_map ism, ism_str; const char *symtab; if (!elf_find_section_type(fmap, ".symtab", ELF_SHT_SYMTAB, &ism) && !elf_find_section_type(fmap, ".dynsym", ELF_SHT_DYNSYM, &ism)) return; if ((symtab = image_map_section(&ism)) == IMAGE_NO_MAP) return; ism_str.fmap = ism.fmap; ism_str.sidx = fmap->u.elf.sect[ism.sidx].shdr.sh_link; if ((strp = image_map_section(&ism_str)) == IMAGE_NO_MAP) { image_unmap_section(&ism); return; } nsym = image_get_map_size(&ism) / (fmap->addr_size == 32 ? sizeof(struct elf_sym32) : sizeof(struct elf_sym)); for (j = 0; thunks[j].symname; j++) thunks[j].rva_start = thunks[j].rva_end = 0; for (i = 0; i < nsym; i++) { struct elf_sym sym; unsigned int type; if (fmap->addr_size == 32) { struct elf_sym32 *sym32 = &((struct elf_sym32 *)symtab)[i]; sym.st_name = sym32->st_name; sym.st_value = sym32->st_value; sym.st_size = sym32->st_size; sym.st_info = sym32->st_info; sym.st_other = sym32->st_other; sym.st_shndx = sym32->st_shndx; } else sym = ((struct elf_sym *)symtab)[i]; type = sym.st_info & 0xf; /* Ignore certain types of entries which really aren't of that much * interest. */ if ((type != ELF_STT_NOTYPE && type != ELF_STT_FILE && type != ELF_STT_OBJECT && type != ELF_STT_FUNC) || !sym.st_shndx) { continue; } symname = strp + sym.st_name; /* handle some specific symtab (that we'll throw away when done) */ switch (type) { case ELF_STT_FILE: if (symname) compiland = symt_new_compiland(module, sym.st_value, source_new(module, NULL, symname)); else compiland = NULL; continue; case ELF_STT_NOTYPE: /* we are only interested in wine markers inserted by winebuild */ for (j = 0; thunks[j].symname; j++) { if (!strcmp(symname, thunks[j].symname)) { thunks[j].rva_start = sym.st_value; thunks[j].rva_end = sym.st_value + sym.st_size; break; } } continue; } /* FIXME: we don't need to handle them (GCC internals) * Moreover, they screw up our symbol lookup :-/ */ if (symname[0] == '.' && symname[1] == 'L' && isdigit(symname[2])) continue; ste = pool_alloc(pool, sizeof(*ste)); ste->ht_elt.name = symname; /* GCC emits, in some cases, a .+ suffix. * This is used for static variable inside functions, so * that we can have several such variables with same name in * the same compilation unit * We simply ignore that suffix when present (we also get rid * of it in stabs parsing) */ ptr = symname + strlen(symname) - 1; if (isdigit(*ptr)) { while (isdigit(*ptr) && ptr >= symname) ptr--; if (ptr > symname && *ptr == '.') { char* n = pool_alloc(pool, ptr - symname + 1); memcpy(n, symname, ptr - symname + 1); n[ptr - symname] = '\0'; ste->ht_elt.name = n; } } ste->sym = sym; ste->compiland = compiland; ste->used = 0; hash_table_add(ht_symtab, &ste->ht_elt); } /* as we added in the ht_symtab pointers to the symbols themselves, * we cannot unmap yet the sections, it will be done when we're over * with this ELF file */ } /****************************************************************** * elf_lookup_symtab * * lookup a symbol by name in our internal hash table for the symtab */ static const struct elf_sym *elf_lookup_symtab(const struct module* module, const struct hash_table* ht_symtab, const char* name, const struct symt* compiland) { struct symtab_elt* weak_result = NULL; /* without compiland name */ struct symtab_elt* result = NULL; struct hash_table_iter hti; struct symtab_elt* ste; const char* compiland_name; const char* compiland_basename; const char* base; /* we need weak match up (at least) when symbols of same name, * defined several times in different compilation units, * are merged in a single one (hence a different filename for c.u.) */ if (compiland) { compiland_name = source_get(module, ((const struct symt_compiland*)compiland)->source); compiland_basename = file_nameA(compiland_name); } else compiland_name = compiland_basename = NULL; hash_table_iter_init(ht_symtab, &hti, name); while ((ste = hash_table_iter_up(&hti))) { if (ste->used || strcmp(ste->ht_elt.name, name)) continue; weak_result = ste; if ((ste->compiland && !compiland_name) || (!ste->compiland && compiland_name)) continue; if (ste->compiland && compiland_name) { const char* filename = source_get(module, ste->compiland->source); if (strcmp(filename, compiland_name)) { base = file_nameA(filename); if (strcmp(base, compiland_basename)) continue; } } if (result) { FIXME("Already found symbol %s (%s) in symtab %s @%08x and %s @%08x\n", name, compiland_name, source_get(module, result->compiland->source), (unsigned int)result->sym.st_value, source_get(module, ste->compiland->source), (unsigned int)ste->sym.st_value); } else { result = ste; ste->used = 1; } } if (!result && !(result = weak_result)) { FIXME("Couldn't find symbol %s!%s in symtab\n", debugstr_w(module->module.ModuleName), name); return NULL; } return &result->sym; } static BOOL elf_is_local_symbol(unsigned int info) { return !(info >> 4); } /****************************************************************** * elf_finish_stabs_info * * - get any relevant information (address & size) from the bits we got from the * stabs debugging information */ static void elf_finish_stabs_info(struct module* module, const struct hash_table* symtab) { struct hash_table_iter hti; void* ptr; struct symt_ht* sym; const struct elf_sym* symp; struct elf_module_info* elf_info = module->format_info[DFI_ELF]->u.elf_info; hash_table_iter_init(&module->ht_symbols, &hti, NULL); while ((ptr = hash_table_iter_up(&hti))) { sym = CONTAINING_RECORD(ptr, struct symt_ht, hash_elt); switch (sym->symt.tag) { case SymTagFunction: if (((struct symt_function*)sym)->address != elf_info->elf_addr && ((struct symt_function*)sym)->size) { break; } symp = elf_lookup_symtab(module, symtab, sym->hash_elt.name, ((struct symt_function*)sym)->container); if (symp) { if (((struct symt_function*)sym)->address != elf_info->elf_addr && ((struct symt_function*)sym)->address != elf_info->elf_addr + symp->st_value) FIXME("Changing address for %p/%s!%s from %08lx to %s\n", sym, debugstr_w(module->module.ModuleName), sym->hash_elt.name, ((struct symt_function*)sym)->address, wine_dbgstr_longlong(elf_info->elf_addr + symp->st_value)); if (((struct symt_function*)sym)->size && ((struct symt_function*)sym)->size != symp->st_size) FIXME("Changing size for %p/%s!%s from %08lx to %08x\n", sym, debugstr_w(module->module.ModuleName), sym->hash_elt.name, ((struct symt_function*)sym)->size, (unsigned int)symp->st_size); ((struct symt_function*)sym)->address = elf_info->elf_addr + symp->st_value; ((struct symt_function*)sym)->size = symp->st_size; } else FIXME("Couldn't find %s!%s\n", debugstr_w(module->module.ModuleName), sym->hash_elt.name); break; case SymTagData: switch (((struct symt_data*)sym)->kind) { case DataIsGlobal: case DataIsFileStatic: if (((struct symt_data*)sym)->u.var.kind != loc_absolute || ((struct symt_data*)sym)->u.var.offset != elf_info->elf_addr) break; symp = elf_lookup_symtab(module, symtab, sym->hash_elt.name, ((struct symt_data*)sym)->container); if (symp) { if (((struct symt_data*)sym)->u.var.offset != elf_info->elf_addr && ((struct symt_data*)sym)->u.var.offset != elf_info->elf_addr + symp->st_value) FIXME("Changing address for %p/%s!%s from %08lx to %s\n", sym, debugstr_w(module->module.ModuleName), sym->hash_elt.name, ((struct symt_function*)sym)->address, wine_dbgstr_longlong(elf_info->elf_addr + symp->st_value)); ((struct symt_data*)sym)->u.var.offset = elf_info->elf_addr + symp->st_value; ((struct symt_data*)sym)->kind = elf_is_local_symbol(symp->st_info) ? DataIsFileStatic : DataIsGlobal; } else FIXME("Couldn't find %s!%s\n", debugstr_w(module->module.ModuleName), sym->hash_elt.name); break; default:; } break; default: FIXME("Unsupported tag %u\n", sym->symt.tag); break; } } /* since we may have changed some addresses & sizes, mark the module to be resorted */ module->sortlist_valid = FALSE; } /****************************************************************** * elf_load_wine_thunks * * creating the thunk objects for a wine native DLL */ static int elf_new_wine_thunks(struct module* module, const struct hash_table* ht_symtab, const struct elf_thunk_area* thunks) { int j; struct hash_table_iter hti; struct symtab_elt* ste; DWORD_PTR addr; struct symt_ht* symt; hash_table_iter_init(ht_symtab, &hti, NULL); while ((ste = hash_table_iter_up(&hti))) { if (ste->used) continue; addr = module->reloc_delta + ste->sym.st_value; j = elf_is_in_thunk_area(ste->sym.st_value, thunks); if (j >= 0) /* thunk found */ { symt_new_thunk(module, ste->compiland, ste->ht_elt.name, thunks[j].ordinal, addr, ste->sym.st_size); } else { ULONG64 ref_addr; struct location loc; symt = symt_find_nearest(module, addr); if (symt && !symt_get_address(&symt->symt, &ref_addr)) ref_addr = addr; if (!symt || addr != ref_addr) { /* creating public symbols for all the ELF symbols which haven't been * used yet (ie we have no debug information on them) * That's the case, for example, of the .spec.c files */ switch (ste->sym.st_info & 0xf) { case ELF_STT_FUNC: symt_new_function(module, ste->compiland, ste->ht_elt.name, addr, ste->sym.st_size, NULL); break; case ELF_STT_OBJECT: loc.kind = loc_absolute; loc.reg = 0; loc.offset = addr; symt_new_global_variable(module, ste->compiland, ste->ht_elt.name, elf_is_local_symbol(ste->sym.st_info), loc, ste->sym.st_size, NULL); break; default: FIXME("Shouldn't happen\n"); break; } /* FIXME: this is a hack !!! * we are adding new symbols, but as we're parsing a symbol table * (hopefully without duplicate symbols) we delay rebuilding the sorted * module table until we're done with the symbol table * Otherwise, as we intertwine symbols' add and lookup, performance * is rather bad */ module->sortlist_valid = TRUE; } } } /* see comment above */ module->sortlist_valid = FALSE; return TRUE; } /****************************************************************** * elf_new_public_symbols * * Creates a set of public symbols from an ELF symtab */ static int elf_new_public_symbols(struct module* module, const struct hash_table* symtab) { struct hash_table_iter hti; struct symtab_elt* ste; if (dbghelp_options & SYMOPT_NO_PUBLICS) return TRUE; /* FIXME: we're missing the ELF entry point here */ hash_table_iter_init(symtab, &hti, NULL); while ((ste = hash_table_iter_up(&hti))) { symt_new_public(module, ste->compiland, ste->ht_elt.name, FALSE, module->reloc_delta + ste->sym.st_value, ste->sym.st_size); } return TRUE; } /****************************************************************** * elf_load_debug_info_from_map * * Loads the symbolic information from ELF module which mapping is described * in fmap * the module has been loaded at 'load_offset' address, so symbols' address * relocation is performed. * CRC is checked if fmap->with_crc is TRUE * returns * 0 if the file doesn't contain symbolic info (or this info cannot be * read or parsed) * 1 on success */ static BOOL elf_load_debug_info_from_map(struct module* module, struct image_file_map* fmap, struct pool* pool, struct hash_table* ht_symtab) { BOOL ret = FALSE, lret; struct elf_thunk_area thunks[] = { {"__wine_spec_import_thunks", THUNK_ORDINAL_NOTYPE, 0, 0}, /* inter DLL calls */ {"__wine_spec_delayed_import_loaders", THUNK_ORDINAL_LOAD, 0, 0}, /* delayed inter DLL calls */ {"__wine_spec_delayed_import_thunks", THUNK_ORDINAL_LOAD, 0, 0}, /* delayed inter DLL calls */ {"__wine_delay_load", THUNK_ORDINAL_LOAD, 0, 0}, /* delayed inter DLL calls */ {"__wine_spec_thunk_text_16", -16, 0, 0}, /* 16 => 32 thunks */ {"__wine_spec_thunk_text_32", -32, 0, 0}, /* 32 => 16 thunks */ {NULL, 0, 0, 0} }; module->module.SymType = SymExport; /* create a hash table for the symtab */ elf_hash_symtab(module, pool, ht_symtab, fmap, thunks); if (!(dbghelp_options & SYMOPT_PUBLICS_ONLY)) { struct image_section_map stab_sect, stabstr_sect; /* check if we need an alternate file (from debuglink or build-id) */ ret = image_check_alternate(fmap, module); if (image_find_section(fmap, ".stab", &stab_sect) && image_find_section(fmap, ".stabstr", &stabstr_sect)) { const char* stab; const char* stabstr; stab = image_map_section(&stab_sect); stabstr = image_map_section(&stabstr_sect); if (stab != IMAGE_NO_MAP && stabstr != IMAGE_NO_MAP) { /* OK, now just parse all of the stabs. */ lret = stabs_parse(module, module->format_info[DFI_ELF]->u.elf_info->elf_addr, stab, image_get_map_size(&stab_sect) / sizeof(struct stab_nlist), sizeof(struct stab_nlist), stabstr, image_get_map_size(&stabstr_sect), NULL, NULL); if (lret) /* and fill in the missing information for stabs */ elf_finish_stabs_info(module, ht_symtab); else WARN("Couldn't correctly read stabs\n"); ret = ret || lret; } image_unmap_section(&stab_sect); image_unmap_section(&stabstr_sect); } lret = dwarf2_parse(module, module->reloc_delta, thunks, fmap); ret = ret || lret; } if (wcsstr(module->module.ModuleName, S_ElfW) || !wcscmp(module->module.ModuleName, S_WineLoaderW)) { /* add the thunks for native libraries */ if (!(dbghelp_options & SYMOPT_PUBLICS_ONLY)) elf_new_wine_thunks(module, ht_symtab, thunks); } /* add all the public symbols from symtab */ if (elf_new_public_symbols(module, ht_symtab) && !ret) ret = TRUE; return ret; } /****************************************************************** * elf_load_debug_info * * Loads ELF debugging information from the module image file. */ static BOOL elf_load_debug_info(struct process* process, struct module* module) { BOOL ret = TRUE; struct pool pool; struct hash_table ht_symtab; struct module_format* modfmt; if (module->type != DMT_ELF || !(modfmt = module->format_info[DFI_ELF]) || !modfmt->u.elf_info) { ERR("Bad elf module '%s'\n", debugstr_w(module->module.LoadedImageName)); return FALSE; } pool_init(&pool, 65536); hash_table_init(&pool, &ht_symtab, 256); ret = elf_load_debug_info_from_map(module, &modfmt->u.elf_info->file_map, &pool, &ht_symtab); pool_destroy(&pool); return ret; } /****************************************************************** * elf_fetch_file_info * * Gathers some more information for an ELF module from a given file */ static BOOL elf_fetch_file_info(struct process* process, const WCHAR* name, ULONG_PTR load_addr, DWORD_PTR* base, DWORD* size, DWORD* checksum) { struct image_file_map fmap; struct elf_map_file_data emfd; emfd.kind = from_file; emfd.u.file.filename = name; if (!elf_map_file(&emfd, &fmap)) return FALSE; if (base) *base = fmap.u.elf.elf_start; *size = fmap.u.elf.elf_size; *checksum = calc_crc32(fmap.u.elf.handle); image_unmap_file(&fmap); return TRUE; } static BOOL elf_load_file_from_fmap(struct process* pcs, const WCHAR* filename, struct image_file_map* fmap, ULONG_PTR load_offset, ULONG_PTR dyn_addr, struct elf_info* elf_info) { BOOL ret = FALSE; if (elf_info->flags & ELF_INFO_DEBUG_HEADER) { struct image_section_map ism; if (elf_find_section_type(fmap, ".dynamic", ELF_SHT_DYNAMIC, &ism)) { char* ptr = (char*)(ULONG_PTR)fmap->u.elf.sect[ism.sidx].shdr.sh_addr; ULONG_PTR len; if (load_offset) ptr += load_offset - fmap->u.elf.elf_start; if (fmap->addr_size == 32) { struct { INT32 d_tag; /* Dynamic entry type */ UINT32 d_val; /* Integer or address value */ } dyn; do { if (!ReadProcessMemory(pcs->handle, ptr, &dyn, sizeof(dyn), &len) || len != sizeof(dyn)) return ret; if (dyn.d_tag == ELF_DT_DEBUG) { elf_info->dbg_hdr_addr = dyn.d_val; if (load_offset == 0 && dyn_addr == 0) /* likely the case */ /* Assume this module (the Wine loader) has been * loaded at its preferred address */ dyn_addr = ism.fmap->u.elf.sect[ism.sidx].shdr.sh_addr; break; } ptr += sizeof(dyn); } while (dyn.d_tag); if (!dyn.d_tag) return ret; } else { struct { INT64 d_tag; /* Dynamic entry type */ UINT64 d_val; /* Integer or address value */ } dyn; do { if (!ReadProcessMemory(pcs->handle, ptr, &dyn, sizeof(dyn), &len) || len != sizeof(dyn)) return ret; if (dyn.d_tag == ELF_DT_DEBUG) { elf_info->dbg_hdr_addr = dyn.d_val; if (load_offset == 0 && dyn_addr == 0) /* likely the case */ /* Assume this module (the Wine loader) has been * loaded at its preferred address */ dyn_addr = ism.fmap->u.elf.sect[ism.sidx].shdr.sh_addr; break; } ptr += sizeof(dyn); } while (dyn.d_tag); if (!dyn.d_tag) return ret; } } elf_end_find(fmap); } if (elf_info->flags & ELF_INFO_MODULE) { struct elf_module_info *elf_module_info; struct module_format* modfmt; struct image_section_map ism; ULONG_PTR modbase = load_offset; if (elf_find_section_type(fmap, ".dynamic", ELF_SHT_DYNAMIC, &ism)) { ULONG_PTR rva_dyn = elf_get_map_rva(&ism); TRACE("For module %s, got ELF (start=%lx dyn=%lx), link_map (start=%lx dyn=%lx)\n", debugstr_w(filename), (ULONG_PTR)fmap->u.elf.elf_start, rva_dyn, load_offset, dyn_addr); if (dyn_addr && load_offset + rva_dyn != dyn_addr) { WARN("\thave to relocate: %lx\n", dyn_addr - rva_dyn); modbase = dyn_addr - rva_dyn; } } else WARN("For module %s, no .dynamic section\n", debugstr_w(filename)); elf_end_find(fmap); modfmt = HeapAlloc(GetProcessHeap(), 0, sizeof(struct module_format) + sizeof(struct elf_module_info)); if (!modfmt) return FALSE; elf_info->module = module_new(pcs, filename, DMT_ELF, FALSE, modbase, fmap->u.elf.elf_size, 0, calc_crc32(fmap->u.elf.handle)); if (!elf_info->module) { HeapFree(GetProcessHeap(), 0, modfmt); return FALSE; } elf_info->module->reloc_delta = elf_info->module->module.BaseOfImage - fmap->u.elf.elf_start; elf_module_info = (void*)(modfmt + 1); elf_info->module->format_info[DFI_ELF] = modfmt; modfmt->module = elf_info->module; modfmt->remove = elf_module_remove; modfmt->loc_compute = NULL; modfmt->u.elf_info = elf_module_info; elf_module_info->elf_addr = load_offset; elf_module_info->file_map = *fmap; elf_reset_file_map(fmap); if (dbghelp_options & SYMOPT_DEFERRED_LOADS) { elf_info->module->module.SymType = SymDeferred; ret = TRUE; } else ret = elf_load_debug_info(pcs, elf_info->module); elf_module_info->elf_mark = 1; elf_module_info->elf_loader = 0; } else ret = TRUE; if (elf_info->flags & ELF_INFO_NAME) { WCHAR* ptr; ptr = HeapAlloc(GetProcessHeap(), 0, (lstrlenW(filename) + 1) * sizeof(WCHAR)); if (ptr) { lstrcpyW(ptr, filename); elf_info->module_name = ptr; } else ret = FALSE; } return ret; } /****************************************************************** * elf_load_file * * Loads the information for ELF module stored in 'filename' * the module has been loaded at 'load_offset' address * returns * -1 if the file cannot be found/opened * 0 if the file doesn't contain symbolic info (or this info cannot be * read or parsed) * 1 on success */ static BOOL elf_load_file(struct process* pcs, const WCHAR* filename, ULONG_PTR load_offset, ULONG_PTR dyn_addr, struct elf_info* elf_info) { BOOL ret = FALSE; struct image_file_map fmap; struct elf_map_file_data emfd; TRACE("Processing elf file '%s' at %08lx\n", debugstr_w(filename), load_offset); emfd.kind = from_file; emfd.u.file.filename = filename; if (!elf_map_file(&emfd, &fmap)) return ret; /* Next, we need to find a few of the internal ELF headers within * this thing. We need the main executable header, and the section * table. */ if (!fmap.u.elf.elf_start && !load_offset) ERR("Relocatable ELF %s, but no load address. Loading at 0x0000000\n", debugstr_w(filename)); ret = elf_load_file_from_fmap(pcs, filename, &fmap, load_offset, dyn_addr, elf_info); image_unmap_file(&fmap); return ret; } struct elf_load_file_params { struct process *process; ULONG_PTR load_offset; ULONG_PTR dyn_addr; struct elf_info *elf_info; }; static BOOL elf_load_file_cb(void *param, HANDLE handle, const WCHAR *filename) { struct elf_load_file_params *load_file = param; return elf_load_file(load_file->process, filename, load_file->load_offset, load_file->dyn_addr, load_file->elf_info); } /****************************************************************** * elf_search_auxv * * locate some a value from the debuggee auxiliary vector */ static BOOL elf_search_auxv(const struct process* pcs, unsigned type, ULONG_PTR* val) { char buffer[sizeof(SYMBOL_INFO) + MAX_SYM_NAME]; SYMBOL_INFO*si = (SYMBOL_INFO*)buffer; BYTE* addr; BYTE* str; BYTE* str_max; si->SizeOfStruct = sizeof(*si); si->MaxNameLen = MAX_SYM_NAME; if (!SymFromName(pcs->handle, "libwine.so.1!__wine_main_environ", si) || !(addr = (void*)(DWORD_PTR)si->Address) || !ReadProcessMemory(pcs->handle, addr, &addr, sizeof(addr), NULL) || !addr) { FIXME("can't find symbol in module\n"); return FALSE; } /* walk through envp[] */ /* envp[] strings are located after the auxiliary vector, so protect the walk */ str_max = (void*)(DWORD_PTR)~0L; while (ReadProcessMemory(pcs->handle, addr, &str, sizeof(str), NULL) && (addr = (void*)((DWORD_PTR)addr + sizeof(str))) != NULL && str != NULL) str_max = min(str_max, str); /* Walk through the end of envp[] array. * Actually, there can be several NULLs at the end of envp[]. This happens when an env variable is * deleted, the last entry is replaced by an extra NULL. */ while (addr < str_max && ReadProcessMemory(pcs->handle, addr, &str, sizeof(str), NULL) && str == NULL) addr = (void*)((DWORD_PTR)addr + sizeof(str)); if (pcs->is_64bit) { struct { UINT64 a_type; UINT64 a_val; } auxv; while (ReadProcessMemory(pcs->handle, addr, &auxv, sizeof(auxv), NULL) && auxv.a_type) { if (auxv.a_type == type) { *val = auxv.a_val; return TRUE; } addr += sizeof(auxv); } } else { struct { UINT32 a_type; UINT32 a_val; } auxv; while (ReadProcessMemory(pcs->handle, addr, &auxv, sizeof(auxv), NULL) && auxv.a_type) { if (auxv.a_type == type) { *val = auxv.a_val; return TRUE; } addr += sizeof(auxv); } } return FALSE; } /****************************************************************** * elf_search_and_load_file * * lookup a file in standard ELF locations, and if found, load it */ static BOOL elf_search_and_load_file(struct process* pcs, const WCHAR* filename, ULONG_PTR load_offset, ULONG_PTR dyn_addr, struct elf_info* elf_info) { BOOL ret = FALSE; struct module* module; static const WCHAR S_libstdcPPW[] = {'l','i','b','s','t','d','c','+','+','\0'}; if (filename == NULL || *filename == '\0') return FALSE; if ((module = module_is_already_loaded(pcs, filename))) { elf_info->module = module; elf_info->module->format_info[DFI_ELF]->u.elf_info->elf_mark = 1; return module->module.SymType; } if (wcsstr(filename, S_libstdcPPW)) return FALSE; /* We know we can't do it */ ret = elf_load_file(pcs, filename, load_offset, dyn_addr, elf_info); /* if relative pathname, try some absolute base dirs */ if (!ret && filename == file_name(filename)) { struct elf_load_file_params load_elf; load_elf.process = pcs; load_elf.load_offset = load_offset; load_elf.dyn_addr = dyn_addr; load_elf.elf_info = elf_info; ret = search_unix_path(filename, getenv("LD_LIBRARY_PATH"), elf_load_file_cb, &load_elf) || search_dll_path(filename, elf_load_file_cb, &load_elf); } return ret; } typedef BOOL (*enum_elf_modules_cb)(const WCHAR*, ULONG_PTR load_addr, ULONG_PTR dyn_addr, BOOL is_system, void* user); /****************************************************************** * elf_enum_modules_internal * * Enumerate ELF modules from a running process */ static BOOL elf_enum_modules_internal(const struct process* pcs, const WCHAR* main_name, enum_elf_modules_cb cb, void* user) { WCHAR bufstrW[MAX_PATH]; char bufstr[256]; ULONG_PTR lm_addr; if (pcs->is_64bit) { struct { UINT32 r_version; UINT64 r_map; UINT64 r_brk; UINT32 r_state; UINT64 r_ldbase; } dbg_hdr; struct { UINT64 l_addr; UINT64 l_name; UINT64 l_ld; UINT64 l_next, l_prev; } lm; if (!pcs->dbg_hdr_addr || !read_process_memory(pcs, pcs->dbg_hdr_addr, &dbg_hdr, sizeof(dbg_hdr))) return FALSE; /* Now walk the linked list. In all known ELF implementations, * the dynamic loader maintains this linked list for us. In some * cases the first entry doesn't appear with a name, in other cases it * does. */ for (lm_addr = dbg_hdr.r_map; lm_addr; lm_addr = lm.l_next) { if (!read_process_memory(pcs, lm_addr, &lm, sizeof(lm))) return FALSE; if (lm.l_prev && /* skip first entry, normally debuggee itself */ lm.l_name && read_process_memory(pcs, lm.l_name, bufstr, sizeof(bufstr))) { bufstr[sizeof(bufstr) - 1] = '\0'; MultiByteToWideChar(CP_UNIXCP, 0, bufstr, -1, bufstrW, ARRAY_SIZE(bufstrW)); if (main_name && !bufstrW[0]) lstrcpyW(bufstrW, main_name); if (!cb(bufstrW, (ULONG_PTR)lm.l_addr, (ULONG_PTR)lm.l_ld, FALSE, user)) break; } } } else { struct { UINT32 r_version; UINT32 r_map; UINT32 r_brk; UINT32 r_state; UINT32 r_ldbase; } dbg_hdr; struct { UINT32 l_addr; UINT32 l_name; UINT32 l_ld; UINT32 l_next, l_prev; } lm; if (!pcs->dbg_hdr_addr || !read_process_memory(pcs, pcs->dbg_hdr_addr, &dbg_hdr, sizeof(dbg_hdr))) return FALSE; /* Now walk the linked list. In all known ELF implementations, * the dynamic loader maintains this linked list for us. In some * cases the first entry doesn't appear with a name, in other cases it * does. */ for (lm_addr = dbg_hdr.r_map; lm_addr; lm_addr = lm.l_next) { if (!read_process_memory(pcs, lm_addr, &lm, sizeof(lm))) return FALSE; if (lm.l_prev && /* skip first entry, normally debuggee itself */ lm.l_name && read_process_memory(pcs, lm.l_name, bufstr, sizeof(bufstr))) { bufstr[sizeof(bufstr) - 1] = '\0'; MultiByteToWideChar(CP_UNIXCP, 0, bufstr, -1, bufstrW, ARRAY_SIZE(bufstrW)); if (main_name && !bufstrW[0]) lstrcpyW(bufstrW, main_name); if (!cb(bufstrW, (ULONG_PTR)lm.l_addr, (ULONG_PTR)lm.l_ld, FALSE, user)) break; } } } if (!lm_addr) { ULONG_PTR ehdr_addr; if (elf_search_auxv(pcs, ELF_AT_SYSINFO_EHDR, &ehdr_addr)) { static const WCHAR vdsoW[] = {'[','v','d','s','o',']','.','s','o',0}; cb(vdsoW, ehdr_addr, 0, TRUE, user); } } return TRUE; } struct elf_enum_user { enum_modules_cb cb; void* user; }; static BOOL elf_enum_modules_translate(const WCHAR* name, ULONG_PTR load_addr, ULONG_PTR dyn_addr, BOOL is_system, void* user) { struct elf_enum_user* eeu = user; return eeu->cb(name, load_addr, eeu->user); } /****************************************************************** * elf_enum_modules * * Enumerates the ELF loaded modules from a running target (hProc) * This function doesn't require that someone has called SymInitialize * on this very process. */ static BOOL elf_enum_modules(struct process* process, enum_modules_cb cb, void* user) { struct elf_info elf_info; BOOL ret; struct elf_enum_user eeu; elf_info.flags = ELF_INFO_DEBUG_HEADER | ELF_INFO_NAME; elf_info.module_name = NULL; eeu.cb = cb; eeu.user = user; ret = elf_enum_modules_internal(process, elf_info.module_name, elf_enum_modules_translate, &eeu); HeapFree(GetProcessHeap(), 0, (char*)elf_info.module_name); return ret; } struct elf_load { struct process* pcs; struct elf_info elf_info; const WCHAR* name; BOOL ret; }; /****************************************************************** * elf_load_cb * * Callback for elf_load_module, used to walk the list of loaded * modules. */ static BOOL elf_load_cb(const WCHAR* name, ULONG_PTR load_addr, ULONG_PTR dyn_addr, BOOL is_system, void* user) { struct elf_load* el = user; BOOL ret = TRUE; const WCHAR* p; if (is_system) /* virtual ELF module, created by system. handle it from memory */ { struct module* module; struct elf_map_file_data emfd; struct image_file_map fmap; if ((module = module_is_already_loaded(el->pcs, name))) { el->elf_info.module = module; el->elf_info.module->format_info[DFI_ELF]->u.elf_info->elf_mark = 1; return module->module.SymType; } emfd.kind = from_process; emfd.u.process.handle = el->pcs->handle; emfd.u.process.load_addr = (void*)load_addr; if (elf_map_file(&emfd, &fmap)) el->ret = elf_load_file_from_fmap(el->pcs, name, &fmap, load_addr, 0, &el->elf_info); return TRUE; } if (el->name) { /* memcmp is needed for matches when bufstr contains also version information * el->name: libc.so, name: libc.so.6.0 */ p = file_name(name); } if (!el->name || !memcmp(p, el->name, lstrlenW(el->name) * sizeof(WCHAR))) { el->ret = elf_search_and_load_file(el->pcs, name, load_addr, dyn_addr, &el->elf_info); if (el->name) ret = FALSE; } return ret; } /****************************************************************** * elf_load_module * * loads an ELF module and stores it in process' module list * Also, find module real name and load address from * the real loaded modules list in pcs address space */ static struct module* elf_load_module(struct process* pcs, const WCHAR* name, ULONG_PTR addr) { struct elf_load el; TRACE("(%p %s %08lx)\n", pcs, debugstr_w(name), addr); el.elf_info.flags = ELF_INFO_MODULE; el.ret = FALSE; if (pcs->dbg_hdr_addr) /* we're debugging a life target */ { el.pcs = pcs; /* do only the lookup from the filename, not the path (as we lookup module * name in the process' loaded module list) */ el.name = file_name(name); el.ret = FALSE; if (!elf_enum_modules_internal(pcs, NULL, elf_load_cb, &el)) return NULL; } else if (addr) { el.name = name; el.ret = elf_search_and_load_file(pcs, el.name, addr, 0, &el.elf_info); } if (!el.ret) return NULL; assert(el.elf_info.module); return el.elf_info.module; } /****************************************************************** * elf_synchronize_module_list * * this function rescans the debuggee module's list and synchronizes it with * the one from 'pcs', i.e.: * - if a module is in debuggee and not in pcs, it's loaded into pcs * - if a module is in pcs and not in debuggee, it's unloaded from pcs */ static BOOL elf_synchronize_module_list(struct process* pcs) { struct module* module; struct elf_load el; for (module = pcs->lmodules; module; module = module->next) { if (module->type == DMT_ELF && !module->is_virtual) module->format_info[DFI_ELF]->u.elf_info->elf_mark = 0; } el.pcs = pcs; el.elf_info.flags = ELF_INFO_MODULE; el.ret = FALSE; el.name = NULL; /* fetch all modules */ if (!elf_enum_modules_internal(pcs, NULL, elf_load_cb, &el)) return FALSE; module = pcs->lmodules; while (module) { if (module->type == DMT_ELF && !module->is_virtual) { struct elf_module_info* elf_info = module->format_info[DFI_ELF]->u.elf_info; if (!elf_info->elf_mark && !elf_info->elf_loader) { module_remove(pcs, module); /* restart all over */ module = pcs->lmodules; continue; } } module = module->next; } return TRUE; } static const struct loader_ops elf_loader_ops = { elf_synchronize_module_list, elf_load_module, elf_load_debug_info, elf_enum_modules, elf_fetch_file_info, }; /****************************************************************** * elf_read_wine_loader_dbg_info * * Try to find a decent wine executable which could have loaded the debuggee */ BOOL elf_read_wine_loader_dbg_info(struct process* pcs, ULONG_PTR addr) { struct elf_info elf_info; WCHAR *loader; BOOL ret; elf_info.flags = ELF_INFO_DEBUG_HEADER | ELF_INFO_MODULE; loader = get_wine_loader_name(pcs); ret = elf_search_and_load_file(pcs, loader, addr, 0, &elf_info); heap_free(loader); if (!ret || !elf_info.dbg_hdr_addr) return FALSE; TRACE("Found ELF debug header %#lx\n", elf_info.dbg_hdr_addr); elf_info.module->format_info[DFI_ELF]->u.elf_info->elf_loader = 1; module_set_module(elf_info.module, S_WineLoaderW); pcs->dbg_hdr_addr = elf_info.dbg_hdr_addr; pcs->loader = &elf_loader_ops; return TRUE; }