/* * Copyright 2015 Henri Verbeet for CodeWeavers * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA */ #include "config.h" #include "wine/port.h" #include "d2d1_private.h" #ifdef HAVE_FLOAT_H #include #endif WINE_DEFAULT_DEBUG_CHANNEL(d2d); #define D2D_CDT_EDGE_FLAG_FREED 0x80000000u #define D2D_CDT_EDGE_FLAG_VISITED(r) (1u << (r)) #define D2D_FP_EPS (1.0f / (1 << FLT_MANT_DIG)) static const D2D1_MATRIX_3X2_F identity = { 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, }; enum d2d_cdt_edge_next { D2D_EDGE_NEXT_ORIGIN = 0, D2D_EDGE_NEXT_ROT = 1, D2D_EDGE_NEXT_SYM = 2, D2D_EDGE_NEXT_TOR = 3, }; enum d2d_vertex_type { D2D_VERTEX_TYPE_NONE, D2D_VERTEX_TYPE_LINE, D2D_VERTEX_TYPE_BEZIER, }; struct d2d_figure { D2D1_POINT_2F *vertices; size_t vertices_size; enum d2d_vertex_type *vertex_types; size_t vertex_types_size; size_t vertex_count; D2D1_POINT_2F *bezier_controls; size_t bezier_controls_size; size_t bezier_control_count; D2D1_RECT_F bounds; }; struct d2d_cdt_edge_ref { size_t idx; enum d2d_cdt_edge_next r; }; struct d2d_cdt_edge { struct d2d_cdt_edge_ref next[4]; size_t vertex[2]; unsigned int flags; }; struct d2d_cdt { struct d2d_cdt_edge *edges; size_t edges_size; size_t edge_count; size_t free_edge; const D2D1_POINT_2F *vertices; }; struct d2d_geometry_intersection { size_t figure_idx; size_t segment_idx; float t; D2D1_POINT_2F p; }; struct d2d_geometry_intersections { struct d2d_geometry_intersection *intersections; size_t intersections_size; size_t intersection_count; }; struct d2d_fp_two_vec2 { float x[2]; float y[2]; }; struct d2d_fp_fin { float *now, *other; size_t length; }; static void d2d_bezier_vertex_set(struct d2d_bezier_vertex *b, const D2D1_POINT_2F *p, float u, float v, float sign) { b->position = *p; b->texcoord.u = u; b->texcoord.v = v; b->texcoord.sign = sign; } static void d2d_fp_two_sum(float *out, float a, float b) { float a_virt, a_round, b_virt, b_round; out[1] = a + b; b_virt = out[1] - a; a_virt = out[1] - b_virt; b_round = b - b_virt; a_round = a - a_virt; out[0] = a_round + b_round; } static void d2d_fp_fast_two_sum(float *out, float a, float b) { float b_virt; out[1] = a + b; b_virt = out[1] - a; out[0] = b - b_virt; } static void d2d_fp_two_two_sum(float *out, const float *a, const float *b) { float sum[2]; d2d_fp_two_sum(out, a[0], b[0]); d2d_fp_two_sum(sum, a[1], out[1]); d2d_fp_two_sum(&out[1], sum[0], b[1]); d2d_fp_two_sum(&out[2], sum[1], out[2]); } static void d2d_fp_two_diff_tail(float *out, float a, float b, float x) { float a_virt, a_round, b_virt, b_round; b_virt = a - x; a_virt = x + b_virt; b_round = b_virt - b; a_round = a - a_virt; *out = a_round + b_round; } static void d2d_fp_two_two_diff(float *out, const float *a, const float *b) { float sum[2], diff; diff = a[0] - b[0]; d2d_fp_two_diff_tail(out, a[0], b[0], diff); d2d_fp_two_sum(sum, a[1], diff); diff = sum[0] - b[1]; d2d_fp_two_diff_tail(&out[1], sum[0], b[1], diff); d2d_fp_two_sum(&out[2], sum[1], diff); } static void d2d_fp_split(float *out, float a) { float a_big, c; c = a * ((1 << (FLT_MANT_DIG / 2)) + 1.0f); a_big = c - a; out[1] = c - a_big; out[0] = a - out[1]; } static void d2d_fp_two_product_presplit(float *out, float a, float b, const float *b_split) { float a_split[2], err1, err2, err3; out[1] = a * b; d2d_fp_split(a_split, a); err1 = out[1] - (a_split[1] * b_split[1]); err2 = err1 - (a_split[0] * b_split[1]); err3 = err2 - (a_split[1] * b_split[0]); out[0] = (a_split[0] * b_split[0]) - err3; } static void d2d_fp_two_product(float *out, float a, float b) { float b_split[2]; d2d_fp_split(b_split, b); d2d_fp_two_product_presplit(out, a, b, b_split); } static void d2d_fp_square(float *out, float a) { float a_split[2], err1, err2; out[1] = a * a; d2d_fp_split(a_split, a); err1 = out[1] - (a_split[1] * a_split[1]); err2 = err1 - ((a_split[1] + a_split[1]) * a_split[0]); out[0] = (a_split[0] * a_split[0]) - err2; } static float d2d_fp_estimate(float *a, size_t len) { float out = a[0]; size_t idx = 1; while (idx < len) out += a[idx++]; return out; } static void d2d_fp_fast_expansion_sum_zeroelim(float *out, size_t *out_len, const float *a, size_t a_len, const float *b, size_t b_len) { float sum[2], q, a_curr, b_curr; size_t a_idx, b_idx, out_idx; a_curr = a[0]; b_curr = b[0]; a_idx = b_idx = 0; if ((b_curr > a_curr) == (b_curr > -a_curr)) { q = a_curr; a_curr = a[++a_idx]; } else { q = b_curr; b_curr = b[++b_idx]; } out_idx = 0; if (a_idx < a_len && b_idx < b_len) { if ((b_curr > a_curr) == (b_curr > -a_curr)) { d2d_fp_fast_two_sum(sum, a_curr, q); a_curr = a[++a_idx]; } else { d2d_fp_fast_two_sum(sum, b_curr, q); b_curr = b[++b_idx]; } if (sum[0] != 0.0f) out[out_idx++] = sum[0]; q = sum[1]; while (a_idx < a_len && b_idx < b_len) { if ((b_curr > a_curr) == (b_curr > -a_curr)) { d2d_fp_two_sum(sum, q, a_curr); a_curr = a[++a_idx]; } else { d2d_fp_two_sum(sum, q, b_curr); b_curr = b[++b_idx]; } if (sum[0] != 0.0f) out[out_idx++] = sum[0]; q = sum[1]; } } while (a_idx < a_len) { d2d_fp_two_sum(sum, q, a_curr); a_curr = a[++a_idx]; if (sum[0] != 0.0f) out[out_idx++] = sum[0]; q = sum[1]; } while (b_idx < b_len) { d2d_fp_two_sum(sum, q, b_curr); b_curr = b[++b_idx]; if (sum[0] != 0.0f) out[out_idx++] = sum[0]; q = sum[1]; } if (q != 0.0f || !out_idx) out[out_idx++] = q; *out_len = out_idx; } static void d2d_fp_scale_expansion_zeroelim(float *out, size_t *out_len, const float *a, size_t a_len, float b) { float product[2], sum[2], b_split[2], q[2], a_curr; size_t a_idx, out_idx; d2d_fp_split(b_split, b); d2d_fp_two_product_presplit(q, a[0], b, b_split); out_idx = 0; if (q[0] != 0.0f) out[out_idx++] = q[0]; for (a_idx = 1; a_idx < a_len; ++a_idx) { a_curr = a[a_idx]; d2d_fp_two_product_presplit(product, a_curr, b, b_split); d2d_fp_two_sum(sum, q[1], product[0]); if (sum[0] != 0.0f) out[out_idx++] = sum[0]; d2d_fp_fast_two_sum(q, product[1], sum[1]); if (q[0] != 0.0f) out[out_idx++] = q[0]; } if (q[1] != 0.0f || !out_idx) out[out_idx++] = q[1]; *out_len = out_idx; } static void d2d_point_subtract(D2D1_POINT_2F *out, const D2D1_POINT_2F *a, const D2D1_POINT_2F *b) { out->x = a->x - b->x; out->y = a->y - b->y; } /* This implementation is based on the paper "Adaptive Precision * Floating-Point Arithmetic and Fast Robust Geometric Predicates" and * associated (Public Domain) code by Jonathan Richard Shewchuk. */ static float d2d_point_ccw(const D2D1_POINT_2F *a, const D2D1_POINT_2F *b, const D2D1_POINT_2F *c) { static const float err_bound_result = (3.0f + 8.0f * D2D_FP_EPS) * D2D_FP_EPS; static const float err_bound_a = (3.0f + 16.0f * D2D_FP_EPS) * D2D_FP_EPS; static const float err_bound_b = (2.0f + 12.0f * D2D_FP_EPS) * D2D_FP_EPS; static const float err_bound_c = (9.0f + 64.0f * D2D_FP_EPS) * D2D_FP_EPS * D2D_FP_EPS; float det_d[16], det_c2[12], det_c1[8], det_b[4], temp4[4], temp2a[2], temp2b[2], abxacy[2], abyacx[2]; size_t det_d_len, det_c2_len, det_c1_len; float det, det_sum, err_bound; struct d2d_fp_two_vec2 ab, ac; ab.x[1] = b->x - a->x; ab.y[1] = b->y - a->y; ac.x[1] = c->x - a->x; ac.y[1] = c->y - a->y; abxacy[1] = ab.x[1] * ac.y[1]; abyacx[1] = ab.y[1] * ac.x[1]; det = abxacy[1] - abyacx[1]; if (abxacy[1] > 0.0f) { if (abyacx[1] <= 0.0f) return det; det_sum = abxacy[1] + abyacx[1]; } else if (abxacy[1] < 0.0f) { if (abyacx[1] >= 0.0f) return det; det_sum = -abxacy[1] - abyacx[1]; } else { return det; } err_bound = err_bound_a * det_sum; if (det >= err_bound || -det >= err_bound) return det; d2d_fp_two_product(abxacy, ab.x[1], ac.y[1]); d2d_fp_two_product(abyacx, ab.y[1], ac.x[1]); d2d_fp_two_two_diff(det_b, abxacy, abyacx); det = d2d_fp_estimate(det_b, 4); err_bound = err_bound_b * det_sum; if (det >= err_bound || -det >= err_bound) return det; d2d_fp_two_diff_tail(&ab.x[0], b->x, a->x, ab.x[1]); d2d_fp_two_diff_tail(&ab.y[0], b->y, a->y, ab.y[1]); d2d_fp_two_diff_tail(&ac.x[0], c->x, a->x, ac.x[1]); d2d_fp_two_diff_tail(&ac.y[0], c->y, a->y, ac.y[1]); if (ab.x[0] == 0.0f && ab.y[0] == 0.0f && ac.x[0] == 0.0f && ac.y[0] == 0.0f) return det; err_bound = err_bound_c * det_sum + err_bound_result * fabsf(det); det += (ab.x[1] * ac.y[0] + ac.y[1] * ab.x[0]) - (ab.y[1] * ac.x[0] + ac.x[1] * ab.y[0]); if (det >= err_bound || -det >= err_bound) return det; d2d_fp_two_product(temp2a, ab.x[0], ac.y[1]); d2d_fp_two_product(temp2b, ab.y[0], ac.x[1]); d2d_fp_two_two_diff(temp4, temp2a, temp2b); d2d_fp_fast_expansion_sum_zeroelim(det_c1, &det_c1_len, det_b, 4, temp4, 4); d2d_fp_two_product(temp2a, ab.x[1], ac.y[0]); d2d_fp_two_product(temp2b, ab.y[1], ac.x[0]); d2d_fp_two_two_diff(temp4, temp2a, temp2b); d2d_fp_fast_expansion_sum_zeroelim(det_c2, &det_c2_len, det_c1, det_c1_len, temp4, 4); d2d_fp_two_product(temp2a, ab.x[0], ac.y[0]); d2d_fp_two_product(temp2b, ab.y[0], ac.x[0]); d2d_fp_two_two_diff(temp4, temp2a, temp2b); d2d_fp_fast_expansion_sum_zeroelim(det_d, &det_d_len, det_c2, det_c2_len, temp4, 4); return det_d[det_d_len - 1]; } static BOOL d2d_array_reserve(void **elements, size_t *capacity, size_t element_count, size_t element_size) { size_t new_capacity, max_capacity; void *new_elements; if (element_count <= *capacity) return TRUE; max_capacity = ~(size_t)0 / element_size; if (max_capacity < element_count) return FALSE; new_capacity = max(*capacity, 4); while (new_capacity < element_count && new_capacity <= max_capacity / 2) new_capacity *= 2; if (new_capacity < element_count) new_capacity = max_capacity; if (*elements) new_elements = HeapReAlloc(GetProcessHeap(), 0, *elements, new_capacity * element_size); else new_elements = HeapAlloc(GetProcessHeap(), 0, new_capacity * element_size); if (!new_elements) return FALSE; *elements = new_elements; *capacity = new_capacity; return TRUE; } static void d2d_figure_update_bounds(struct d2d_figure *figure, D2D1_POINT_2F vertex) { if (vertex.x < figure->bounds.left) figure->bounds.left = vertex.x; if (vertex.x > figure->bounds.right) figure->bounds.right = vertex.x; if (vertex.y < figure->bounds.top) figure->bounds.top = vertex.y; if (vertex.y > figure->bounds.bottom) figure->bounds.bottom = vertex.y; } static BOOL d2d_figure_insert_vertex(struct d2d_figure *figure, size_t idx, D2D1_POINT_2F vertex) { if (!d2d_array_reserve((void **)&figure->vertices, &figure->vertices_size, figure->vertex_count + 1, sizeof(*figure->vertices))) { ERR("Failed to grow vertices array.\n"); return FALSE; } if (!d2d_array_reserve((void **)&figure->vertex_types, &figure->vertex_types_size, figure->vertex_count + 1, sizeof(*figure->vertex_types))) { ERR("Failed to grow vertex types array.\n"); return FALSE; } memmove(&figure->vertices[idx + 1], &figure->vertices[idx], (figure->vertex_count - idx) * sizeof(*figure->vertices)); memmove(&figure->vertex_types[idx + 1], &figure->vertex_types[idx], (figure->vertex_count - idx) * sizeof(*figure->vertex_types)); figure->vertices[idx] = vertex; figure->vertex_types[idx] = D2D_VERTEX_TYPE_NONE; d2d_figure_update_bounds(figure, vertex); ++figure->vertex_count; return TRUE; } static BOOL d2d_figure_add_vertex(struct d2d_figure *figure, D2D1_POINT_2F vertex) { if (!d2d_array_reserve((void **)&figure->vertices, &figure->vertices_size, figure->vertex_count + 1, sizeof(*figure->vertices))) { ERR("Failed to grow vertices array.\n"); return FALSE; } if (!d2d_array_reserve((void **)&figure->vertex_types, &figure->vertex_types_size, figure->vertex_count + 1, sizeof(*figure->vertex_types))) { ERR("Failed to grow vertex types array.\n"); return FALSE; } figure->vertices[figure->vertex_count] = vertex; figure->vertex_types[figure->vertex_count] = D2D_VERTEX_TYPE_NONE; d2d_figure_update_bounds(figure, vertex); ++figure->vertex_count; return TRUE; } static BOOL d2d_figure_add_bezier_control(struct d2d_figure *figure, const D2D1_POINT_2F *p) { if (!d2d_array_reserve((void **)&figure->bezier_controls, &figure->bezier_controls_size, figure->bezier_control_count + 1, sizeof(*figure->bezier_controls))) { ERR("Failed to grow bezier controls array.\n"); return FALSE; } figure->bezier_controls[figure->bezier_control_count++] = *p; return TRUE; } static void d2d_cdt_edge_rot(struct d2d_cdt_edge_ref *dst, const struct d2d_cdt_edge_ref *src) { dst->idx = src->idx; dst->r = (src->r + D2D_EDGE_NEXT_ROT) & 3; } static void d2d_cdt_edge_sym(struct d2d_cdt_edge_ref *dst, const struct d2d_cdt_edge_ref *src) { dst->idx = src->idx; dst->r = (src->r + D2D_EDGE_NEXT_SYM) & 3; } static void d2d_cdt_edge_tor(struct d2d_cdt_edge_ref *dst, const struct d2d_cdt_edge_ref *src) { dst->idx = src->idx; dst->r = (src->r + D2D_EDGE_NEXT_TOR) & 3; } static void d2d_cdt_edge_next_left(const struct d2d_cdt *cdt, struct d2d_cdt_edge_ref *dst, const struct d2d_cdt_edge_ref *src) { d2d_cdt_edge_rot(dst, &cdt->edges[src->idx].next[(src->r + D2D_EDGE_NEXT_TOR) & 3]); } static void d2d_cdt_edge_next_origin(const struct d2d_cdt *cdt, struct d2d_cdt_edge_ref *dst, const struct d2d_cdt_edge_ref *src) { *dst = cdt->edges[src->idx].next[src->r]; } static void d2d_cdt_edge_prev_origin(const struct d2d_cdt *cdt, struct d2d_cdt_edge_ref *dst, const struct d2d_cdt_edge_ref *src) { d2d_cdt_edge_rot(dst, &cdt->edges[src->idx].next[(src->r + D2D_EDGE_NEXT_ROT) & 3]); } static size_t d2d_cdt_edge_origin(const struct d2d_cdt *cdt, const struct d2d_cdt_edge_ref *e) { return cdt->edges[e->idx].vertex[e->r >> 1]; } static size_t d2d_cdt_edge_destination(const struct d2d_cdt *cdt, const struct d2d_cdt_edge_ref *e) { return cdt->edges[e->idx].vertex[!(e->r >> 1)]; } static void d2d_cdt_edge_set_origin(const struct d2d_cdt *cdt, const struct d2d_cdt_edge_ref *e, size_t vertex) { cdt->edges[e->idx].vertex[e->r >> 1] = vertex; } static void d2d_cdt_edge_set_destination(const struct d2d_cdt *cdt, const struct d2d_cdt_edge_ref *e, size_t vertex) { cdt->edges[e->idx].vertex[!(e->r >> 1)] = vertex; } static float d2d_cdt_ccw(const struct d2d_cdt *cdt, size_t a, size_t b, size_t c) { return d2d_point_ccw(&cdt->vertices[a], &cdt->vertices[b], &cdt->vertices[c]); } static BOOL d2d_cdt_rightof(const struct d2d_cdt *cdt, size_t p, const struct d2d_cdt_edge_ref *e) { return d2d_cdt_ccw(cdt, p, d2d_cdt_edge_destination(cdt, e), d2d_cdt_edge_origin(cdt, e)) > 0.0f; } static BOOL d2d_cdt_leftof(const struct d2d_cdt *cdt, size_t p, const struct d2d_cdt_edge_ref *e) { return d2d_cdt_ccw(cdt, p, d2d_cdt_edge_origin(cdt, e), d2d_cdt_edge_destination(cdt, e)) > 0.0f; } /* |ax ay| * |bx by| */ static void d2d_fp_four_det2x2(float *out, float ax, float ay, float bx, float by) { float axby[2], aybx[2]; d2d_fp_two_product(axby, ax, by); d2d_fp_two_product(aybx, ay, bx); d2d_fp_two_two_diff(out, axby, aybx); } /* (a->x² + a->y²) * det2x2 */ static void d2d_fp_sub_det3x3(float *out, size_t *out_len, const struct d2d_fp_two_vec2 *a, const float *det2x2) { size_t axd_len, ayd_len, axxd_len, ayyd_len; float axd[8], ayd[8], axxd[16], ayyd[16]; d2d_fp_scale_expansion_zeroelim(axd, &axd_len, det2x2, 4, a->x[1]); d2d_fp_scale_expansion_zeroelim(axxd, &axxd_len, axd, axd_len, a->x[1]); d2d_fp_scale_expansion_zeroelim(ayd, &ayd_len, det2x2, 4, a->y[1]); d2d_fp_scale_expansion_zeroelim(ayyd, &ayyd_len, ayd, ayd_len, a->y[1]); d2d_fp_fast_expansion_sum_zeroelim(out, out_len, axxd, axxd_len, ayyd, ayyd_len); } /* det_abt = det_ab * c[0] * fin += c[0] * (az * b - bz * a + c[1] * det_ab * 2.0f) */ static void d2d_cdt_incircle_refine1(struct d2d_fp_fin *fin, float *det_abt, size_t *det_abt_len, const float *det_ab, float a, const float *az, float b, const float *bz, const float *c) { size_t temp48_len, temp32_len, temp16a_len, temp16b_len, temp16c_len, temp8_len; float temp48[48], temp32[32], temp16a[16], temp16b[16], temp16c[16], temp8[8]; float *swap; d2d_fp_scale_expansion_zeroelim(det_abt, det_abt_len, det_ab, 4, c[0]); d2d_fp_scale_expansion_zeroelim(temp16a, &temp16a_len, det_abt, *det_abt_len, 2.0f * c[1]); d2d_fp_scale_expansion_zeroelim(temp8, &temp8_len, az, 4, c[0]); d2d_fp_scale_expansion_zeroelim(temp16b, &temp16b_len, temp8, temp8_len, b); d2d_fp_scale_expansion_zeroelim(temp8, &temp8_len, bz, 4, c[0]); d2d_fp_scale_expansion_zeroelim(temp16c, &temp16c_len, temp8, temp8_len, -a); d2d_fp_fast_expansion_sum_zeroelim(temp32, &temp32_len, temp16a, temp16a_len, temp16b, temp16b_len); d2d_fp_fast_expansion_sum_zeroelim(temp48, &temp48_len, temp16c, temp16c_len, temp32, temp32_len); d2d_fp_fast_expansion_sum_zeroelim(fin->other, &fin->length, fin->now, fin->length, temp48, temp48_len); swap = fin->now; fin->now = fin->other; fin->other = swap; } static void d2d_cdt_incircle_refine2(struct d2d_fp_fin *fin, const struct d2d_fp_two_vec2 *a, const struct d2d_fp_two_vec2 *b, const float *bz, const struct d2d_fp_two_vec2 *c, const float *cz, const float *axt_det_bc, size_t axt_det_bc_len, const float *ayt_det_bc, size_t ayt_det_bc_len) { size_t temp64_len, temp48_len, temp32a_len, temp32b_len, temp16a_len, temp16b_len, temp8_len; float temp64[64], temp48[48], temp32a[32], temp32b[32], temp16a[16], temp16b[16], temp8[8]; float bct[8], bctt[4], temp4a[4], temp4b[4], temp2a[2], temp2b[2]; size_t bct_len, bctt_len; float *swap; /* bct = (b->x[0] * c->y[1] + b->x[1] * c->y[0]) - (c->x[0] * b->y[1] + c->x[1] * b->y[0]) */ /* bctt = b->x[0] * c->y[0] + c->x[0] * b->y[0] */ if (b->x[0] != 0.0f || b->y[0] != 0.0f || c->x[0] != 0.0f || c->y[0] != 0.0f) { d2d_fp_two_product(temp2a, b->x[0], c->y[1]); d2d_fp_two_product(temp2b, b->x[1], c->y[0]); d2d_fp_two_two_sum(temp4a, temp2a, temp2b); d2d_fp_two_product(temp2a, c->x[0], -b->y[1]); d2d_fp_two_product(temp2b, c->x[1], -b->y[0]); d2d_fp_two_two_sum(temp4b, temp2a, temp2b); d2d_fp_fast_expansion_sum_zeroelim(bct, &bct_len, temp4a, 4, temp4b, 4); d2d_fp_two_product(temp2a, b->x[0], c->y[0]); d2d_fp_two_product(temp2b, c->x[0], b->y[0]); d2d_fp_two_two_diff(bctt, temp2a, temp2b); bctt_len = 4; } else { bct[0] = 0.0f; bct_len = 1; bctt[0] = 0.0f; bctt_len = 1; } if (a->x[0] != 0.0f) { size_t axt_bct_len, axt_bctt_len; float axt_bct[16], axt_bctt[8]; /* fin += a->x[0] * (axt_det_bc + bct * 2.0f * a->x[1]) */ d2d_fp_scale_expansion_zeroelim(temp16a, &temp16a_len, axt_det_bc, axt_det_bc_len, a->x[0]); d2d_fp_scale_expansion_zeroelim(axt_bct, &axt_bct_len, bct, bct_len, a->x[0]); d2d_fp_scale_expansion_zeroelim(temp32a, &temp32a_len, axt_bct, axt_bct_len, 2.0f * a->x[1]); d2d_fp_fast_expansion_sum_zeroelim(temp48, &temp48_len, temp16a, temp16a_len, temp32a, temp32a_len); d2d_fp_fast_expansion_sum_zeroelim(fin->other, &fin->length, fin->now, fin->length, temp48, temp48_len); swap = fin->now; fin->now = fin->other; fin->other = swap; if (b->y[0] != 0.0f) { /* fin += a->x[0] * cz * b->y[0] */ d2d_fp_scale_expansion_zeroelim(temp8, &temp8_len, cz, 4, a->x[0]); d2d_fp_scale_expansion_zeroelim(temp16a, &temp16a_len, temp8, temp8_len, b->y[0]); d2d_fp_fast_expansion_sum_zeroelim(fin->other, &fin->length, fin->now, fin->length, temp16a, temp16a_len); swap = fin->now; fin->now = fin->other; fin->other = swap; } if (c->y[0] != 0.0f) { /* fin -= a->x[0] * bz * c->y[0] */ d2d_fp_scale_expansion_zeroelim(temp8, &temp8_len, bz, 4, -a->x[0]); d2d_fp_scale_expansion_zeroelim(temp16a, &temp16a_len, temp8, temp8_len, c->y[0]); d2d_fp_fast_expansion_sum_zeroelim(fin->other, &fin->length, fin->now, fin->length, temp16a, temp16a_len); swap = fin->now; fin->now = fin->other; fin->other = swap; } /* fin += a->x[0] * (bct * a->x[0] + bctt * (2.0f * a->x[1] + a->x[0])) */ d2d_fp_scale_expansion_zeroelim(temp32a, &temp32a_len, axt_bct, axt_bct_len, a->x[0]); d2d_fp_scale_expansion_zeroelim(axt_bctt, &axt_bctt_len, bctt, bctt_len, a->x[0]); d2d_fp_scale_expansion_zeroelim(temp16a, &temp16a_len, axt_bctt, axt_bctt_len, 2.0f * a->x[1]); d2d_fp_scale_expansion_zeroelim(temp16b, &temp16b_len, axt_bctt, axt_bctt_len, a->x[0]); d2d_fp_fast_expansion_sum_zeroelim(temp32b, &temp32b_len, temp16a, temp16a_len, temp16b, temp16b_len); d2d_fp_fast_expansion_sum_zeroelim(temp64, &temp64_len, temp32a, temp32a_len, temp32b, temp32b_len); d2d_fp_fast_expansion_sum_zeroelim(fin->other, &fin->length, fin->now, fin->length, temp64, temp64_len); swap = fin->now; fin->now = fin->other; fin->other = swap; } if (a->y[0] != 0.0f) { size_t ayt_bct_len, ayt_bctt_len; float ayt_bct[16], ayt_bctt[8]; /* fin += a->y[0] * (ayt_det_bc + bct * 2.0f * a->y[1]) */ d2d_fp_scale_expansion_zeroelim(temp16a, &temp16a_len, ayt_det_bc, ayt_det_bc_len, a->y[0]); d2d_fp_scale_expansion_zeroelim(ayt_bct, &ayt_bct_len, bct, bct_len, a->y[0]); d2d_fp_scale_expansion_zeroelim(temp32a, &temp32a_len, ayt_bct, ayt_bct_len, 2.0f * a->y[1]); d2d_fp_fast_expansion_sum_zeroelim(temp48, &temp48_len, temp16a, temp16a_len, temp32a, temp32a_len); d2d_fp_fast_expansion_sum_zeroelim(fin->other, &fin->length, fin->now, fin->length, temp48, temp48_len); swap = fin->now; fin->now = fin->other; fin->other = swap; /* fin += a->y[0] * (bct * a->y[0] + bctt * (2.0f * a->y[1] + a->y[0])) */ d2d_fp_scale_expansion_zeroelim(temp32a, &temp32a_len, ayt_bct, ayt_bct_len, a->y[0]); d2d_fp_scale_expansion_zeroelim(ayt_bctt, &ayt_bctt_len, bctt, bctt_len, a->y[0]); d2d_fp_scale_expansion_zeroelim(temp16a, &temp16a_len, ayt_bctt, ayt_bctt_len, 2.0f * a->y[1]); d2d_fp_scale_expansion_zeroelim(temp16b, &temp16b_len, ayt_bctt, ayt_bctt_len, a->y[0]); d2d_fp_fast_expansion_sum_zeroelim(temp32b, &temp32b_len, temp16a, temp16a_len, temp16b, temp16b_len); d2d_fp_fast_expansion_sum_zeroelim(temp64, &temp64_len, temp32a, temp32a_len, temp32b, temp32b_len); d2d_fp_fast_expansion_sum_zeroelim(fin->other, &fin->length, fin->now, fin->length, temp64, temp64_len); swap = fin->now; fin->now = fin->other; fin->other = swap; } } /* Determine if point D is inside or outside the circle defined by points A, * B, C. As explained in the paper by Guibas and Stolfi, this is equivalent to * calculating the signed volume of the tetrahedron defined by projecting the * points onto the paraboloid of revolution x = x² + y², * λ:(x, y) → (x, y, x² + y²). I.e., D is inside the cirlce if * * |λ(A) 1| * |λ(B) 1| > 0 * |λ(C) 1| * |λ(D) 1| * * After translating D to the origin, that becomes: * * |λ(A-D)| * |λ(B-D)| > 0 * |λ(C-D)| * * This implementation is based on the paper "Adaptive Precision * Floating-Point Arithmetic and Fast Robust Geometric Predicates" and * associated (Public Domain) code by Jonathan Richard Shewchuk. */ static BOOL d2d_cdt_incircle(const struct d2d_cdt *cdt, size_t a, size_t b, size_t c, size_t d) { static const float err_bound_result = (3.0f + 8.0f * D2D_FP_EPS) * D2D_FP_EPS; static const float err_bound_a = (10.0f + 96.0f * D2D_FP_EPS) * D2D_FP_EPS; static const float err_bound_b = (4.0f + 48.0f * D2D_FP_EPS) * D2D_FP_EPS; static const float err_bound_c = (44.0f + 576.0f * D2D_FP_EPS) * D2D_FP_EPS * D2D_FP_EPS; size_t axt_det_bc_len, ayt_det_bc_len, bxt_det_ca_len, byt_det_ca_len, cxt_det_ab_len, cyt_det_ab_len; float axt_det_bc[8], ayt_det_bc[8], bxt_det_ca[8], byt_det_ca[8], cxt_det_ab[8], cyt_det_ab[8]; float fin1[1152], fin2[1152], temp64[64], sub_det_a[32], sub_det_b[32], sub_det_c[32]; float det_bc[4], det_ca[4], det_ab[4], daz[4], dbz[4], dcz[4], temp2a[2], temp2b[2]; size_t temp64_len, sub_det_a_len, sub_det_b_len, sub_det_c_len; float dbxdcy, dbydcx, dcxday, dcydax, daxdby, daydbx; const D2D1_POINT_2F *p = cdt->vertices; struct d2d_fp_two_vec2 da, db, dc; float permanent, err_bound, det; struct d2d_fp_fin fin; da.x[1] = p[a].x - p[d].x; da.y[1] = p[a].y - p[d].y; db.x[1] = p[b].x - p[d].x; db.y[1] = p[b].y - p[d].y; dc.x[1] = p[c].x - p[d].x; dc.y[1] = p[c].y - p[d].y; daz[3] = da.x[1] * da.x[1] + da.y[1] * da.y[1]; dbxdcy = db.x[1] * dc.y[1]; dbydcx = db.y[1] * dc.x[1]; dbz[3] = db.x[1] * db.x[1] + db.y[1] * db.y[1]; dcxday = dc.x[1] * da.y[1]; dcydax = dc.y[1] * da.x[1]; dcz[3] = dc.x[1] * dc.x[1] + dc.y[1] * dc.y[1]; daxdby = da.x[1] * db.y[1]; daydbx = da.y[1] * db.x[1]; det = daz[3] * (dbxdcy - dbydcx) + dbz[3] * (dcxday - dcydax) + dcz[3] * (daxdby - daydbx); permanent = daz[3] * (fabsf(dbxdcy) + fabsf(dbydcx)) + dbz[3] * (fabsf(dcxday) + fabsf(dcydax)) + dcz[3] * (fabsf(daxdby) + fabsf(daydbx)); err_bound = err_bound_a * permanent; if (det > err_bound || -det > err_bound) return det > 0.0f; fin.now = fin1; fin.other = fin2; d2d_fp_four_det2x2(det_bc, db.x[1], db.y[1], dc.x[1], dc.y[1]); d2d_fp_sub_det3x3(sub_det_a, &sub_det_a_len, &da, det_bc); d2d_fp_four_det2x2(det_ca, dc.x[1], dc.y[1], da.x[1], da.y[1]); d2d_fp_sub_det3x3(sub_det_b, &sub_det_b_len, &db, det_ca); d2d_fp_four_det2x2(det_ab, da.x[1], da.y[1], db.x[1], db.y[1]); d2d_fp_sub_det3x3(sub_det_c, &sub_det_c_len, &dc, det_ab); d2d_fp_fast_expansion_sum_zeroelim(temp64, &temp64_len, sub_det_a, sub_det_a_len, sub_det_b, sub_det_b_len); d2d_fp_fast_expansion_sum_zeroelim(fin.now, &fin.length, temp64, temp64_len, sub_det_c, sub_det_c_len); det = d2d_fp_estimate(fin.now, fin.length); err_bound = err_bound_b * permanent; if (det >= err_bound || -det >= err_bound) return det > 0.0f; d2d_fp_two_diff_tail(&da.x[0], p[a].x, p[d].x, da.x[1]); d2d_fp_two_diff_tail(&da.y[0], p[a].y, p[d].y, da.y[1]); d2d_fp_two_diff_tail(&db.x[0], p[b].x, p[d].x, db.x[1]); d2d_fp_two_diff_tail(&db.y[0], p[b].y, p[d].y, db.y[1]); d2d_fp_two_diff_tail(&dc.x[0], p[c].x, p[d].x, dc.x[1]); d2d_fp_two_diff_tail(&dc.y[0], p[c].y, p[d].y, dc.y[1]); if (da.x[0] == 0.0f && db.x[0] == 0.0f && dc.x[0] == 0.0f && da.y[0] == 0.0f && db.y[0] == 0.0f && dc.y[0] == 0.0f) return det > 0.0f; err_bound = err_bound_c * permanent + err_bound_result * fabsf(det); det += (daz[3] * ((db.x[1] * dc.y[0] + dc.y[1] * db.x[0]) - (db.y[1] * dc.x[0] + dc.x[1] * db.y[0])) + 2.0f * (da.x[1] * da.x[0] + da.y[1] * da.y[0]) * (db.x[1] * dc.y[1] - db.y[1] * dc.x[1])) + (dbz[3] * ((dc.x[1] * da.y[0] + da.y[1] * dc.x[0]) - (dc.y[1] * da.x[0] + da.x[1] * dc.y[0])) + 2.0f * (db.x[1] * db.x[0] + db.y[1] * db.y[0]) * (dc.x[1] * da.y[1] - dc.y[1] * da.x[1])) + (dcz[3] * ((da.x[1] * db.y[0] + db.y[1] * da.x[0]) - (da.y[1] * db.x[0] + db.x[1] * da.y[0])) + 2.0f * (dc.x[1] * dc.x[0] + dc.y[1] * dc.y[0]) * (da.x[1] * db.y[1] - da.y[1] * db.x[1])); if (det >= err_bound || -det >= err_bound) return det > 0.0f; if (db.x[0] != 0.0f || db.y[0] != 0.0f || dc.x[0] != 0.0f || dc.y[0] != 0.0f) { d2d_fp_square(temp2a, da.x[1]); d2d_fp_square(temp2b, da.y[1]); d2d_fp_two_two_sum(daz, temp2a, temp2b); } if (dc.x[0] != 0.0f || dc.y[0] != 0.0f || da.x[0] != 0.0f || da.y[0] != 0.0f) { d2d_fp_square(temp2a, db.x[1]); d2d_fp_square(temp2b, db.y[1]); d2d_fp_two_two_sum(dbz, temp2a, temp2b); } if (da.x[0] != 0.0f || da.y[0] != 0.0f || db.x[0] != 0.0f || db.y[0] != 0.0f) { d2d_fp_square(temp2a, dc.x[1]); d2d_fp_square(temp2b, dc.y[1]); d2d_fp_two_two_sum(dcz, temp2a, temp2b); } if (da.x[0] != 0.0f) d2d_cdt_incircle_refine1(&fin, axt_det_bc, &axt_det_bc_len, det_bc, dc.y[1], dcz, db.y[1], dbz, da.x); if (da.y[0] != 0.0f) d2d_cdt_incircle_refine1(&fin, ayt_det_bc, &ayt_det_bc_len, det_bc, db.x[1], dbz, dc.x[1], dcz, da.y); if (db.x[0] != 0.0f) d2d_cdt_incircle_refine1(&fin, bxt_det_ca, &bxt_det_ca_len, det_ca, da.y[1], daz, dc.y[1], dcz, db.x); if (db.y[0] != 0.0f) d2d_cdt_incircle_refine1(&fin, byt_det_ca, &byt_det_ca_len, det_ca, dc.x[1], dcz, da.x[1], daz, db.y); if (dc.x[0] != 0.0f) d2d_cdt_incircle_refine1(&fin, cxt_det_ab, &cxt_det_ab_len, det_ab, db.y[1], dbz, da.y[1], daz, dc.x); if (dc.y[0] != 0.0f) d2d_cdt_incircle_refine1(&fin, cyt_det_ab, &cyt_det_ab_len, det_ab, da.x[1], daz, db.x[1], dbz, dc.y); if (da.x[0] != 0.0f || da.y[0] != 0.0f) d2d_cdt_incircle_refine2(&fin, &da, &db, dbz, &dc, dcz, axt_det_bc, axt_det_bc_len, ayt_det_bc, ayt_det_bc_len); if (db.x[0] != 0.0f || db.y[0] != 0.0f) d2d_cdt_incircle_refine2(&fin, &db, &dc, dcz, &da, daz, bxt_det_ca, bxt_det_ca_len, byt_det_ca, byt_det_ca_len); if (dc.x[0] != 0.0f || dc.y[0] != 0.0f) d2d_cdt_incircle_refine2(&fin, &dc, &da, daz, &db, dbz, cxt_det_ab, cxt_det_ab_len, cyt_det_ab, cyt_det_ab_len); return fin.now[fin.length - 1] > 0.0f; } static void d2d_cdt_splice(const struct d2d_cdt *cdt, const struct d2d_cdt_edge_ref *a, const struct d2d_cdt_edge_ref *b) { struct d2d_cdt_edge_ref ta, tb, alpha, beta; ta = cdt->edges[a->idx].next[a->r]; tb = cdt->edges[b->idx].next[b->r]; cdt->edges[a->idx].next[a->r] = tb; cdt->edges[b->idx].next[b->r] = ta; d2d_cdt_edge_rot(&alpha, &ta); d2d_cdt_edge_rot(&beta, &tb); ta = cdt->edges[alpha.idx].next[alpha.r]; tb = cdt->edges[beta.idx].next[beta.r]; cdt->edges[alpha.idx].next[alpha.r] = tb; cdt->edges[beta.idx].next[beta.r] = ta; } static BOOL d2d_cdt_create_edge(struct d2d_cdt *cdt, struct d2d_cdt_edge_ref *e) { struct d2d_cdt_edge *edge; if (cdt->free_edge != ~0u) { e->idx = cdt->free_edge; cdt->free_edge = cdt->edges[e->idx].next[D2D_EDGE_NEXT_ORIGIN].idx; } else { if (!d2d_array_reserve((void **)&cdt->edges, &cdt->edges_size, cdt->edge_count + 1, sizeof(*cdt->edges))) { ERR("Failed to grow edges array.\n"); return FALSE; } e->idx = cdt->edge_count++; } e->r = 0; edge = &cdt->edges[e->idx]; edge->next[D2D_EDGE_NEXT_ORIGIN] = *e; d2d_cdt_edge_tor(&edge->next[D2D_EDGE_NEXT_ROT], e); d2d_cdt_edge_sym(&edge->next[D2D_EDGE_NEXT_SYM], e); d2d_cdt_edge_rot(&edge->next[D2D_EDGE_NEXT_TOR], e); edge->flags = 0; return TRUE; } static void d2d_cdt_destroy_edge(struct d2d_cdt *cdt, const struct d2d_cdt_edge_ref *e) { struct d2d_cdt_edge_ref next, sym, prev; d2d_cdt_edge_next_origin(cdt, &next, e); if (next.idx != e->idx || next.r != e->r) { d2d_cdt_edge_prev_origin(cdt, &prev, e); d2d_cdt_splice(cdt, e, &prev); } d2d_cdt_edge_sym(&sym, e); d2d_cdt_edge_next_origin(cdt, &next, &sym); if (next.idx != sym.idx || next.r != sym.r) { d2d_cdt_edge_prev_origin(cdt, &prev, &sym); d2d_cdt_splice(cdt, &sym, &prev); } cdt->edges[e->idx].flags |= D2D_CDT_EDGE_FLAG_FREED; cdt->edges[e->idx].next[D2D_EDGE_NEXT_ORIGIN].idx = cdt->free_edge; cdt->free_edge = e->idx; } static BOOL d2d_cdt_connect(struct d2d_cdt *cdt, struct d2d_cdt_edge_ref *e, const struct d2d_cdt_edge_ref *a, const struct d2d_cdt_edge_ref *b) { struct d2d_cdt_edge_ref tmp; if (!d2d_cdt_create_edge(cdt, e)) return FALSE; d2d_cdt_edge_set_origin(cdt, e, d2d_cdt_edge_destination(cdt, a)); d2d_cdt_edge_set_destination(cdt, e, d2d_cdt_edge_origin(cdt, b)); d2d_cdt_edge_next_left(cdt, &tmp, a); d2d_cdt_splice(cdt, e, &tmp); d2d_cdt_edge_sym(&tmp, e); d2d_cdt_splice(cdt, &tmp, b); return TRUE; } static BOOL d2d_cdt_merge(struct d2d_cdt *cdt, struct d2d_cdt_edge_ref *left_outer, struct d2d_cdt_edge_ref *left_inner, struct d2d_cdt_edge_ref *right_inner, struct d2d_cdt_edge_ref *right_outer) { struct d2d_cdt_edge_ref base_edge, tmp; /* Create the base edge between both parts. */ for (;;) { if (d2d_cdt_leftof(cdt, d2d_cdt_edge_origin(cdt, right_inner), left_inner)) { d2d_cdt_edge_next_left(cdt, left_inner, left_inner); } else if (d2d_cdt_rightof(cdt, d2d_cdt_edge_origin(cdt, left_inner), right_inner)) { d2d_cdt_edge_sym(&tmp, right_inner); d2d_cdt_edge_next_origin(cdt, right_inner, &tmp); } else { break; } } d2d_cdt_edge_sym(&tmp, right_inner); if (!d2d_cdt_connect(cdt, &base_edge, &tmp, left_inner)) return FALSE; if (d2d_cdt_edge_origin(cdt, left_inner) == d2d_cdt_edge_origin(cdt, left_outer)) d2d_cdt_edge_sym(left_outer, &base_edge); if (d2d_cdt_edge_origin(cdt, right_inner) == d2d_cdt_edge_origin(cdt, right_outer)) *right_outer = base_edge; for (;;) { struct d2d_cdt_edge_ref left_candidate, right_candidate, sym_base_edge; BOOL left_valid, right_valid; /* Find the left candidate. */ d2d_cdt_edge_sym(&sym_base_edge, &base_edge); d2d_cdt_edge_next_origin(cdt, &left_candidate, &sym_base_edge); if ((left_valid = d2d_cdt_leftof(cdt, d2d_cdt_edge_destination(cdt, &left_candidate), &sym_base_edge))) { d2d_cdt_edge_next_origin(cdt, &tmp, &left_candidate); while (d2d_cdt_edge_destination(cdt, &tmp) != d2d_cdt_edge_destination(cdt, &sym_base_edge) && d2d_cdt_incircle(cdt, d2d_cdt_edge_origin(cdt, &sym_base_edge), d2d_cdt_edge_destination(cdt, &sym_base_edge), d2d_cdt_edge_destination(cdt, &left_candidate), d2d_cdt_edge_destination(cdt, &tmp))) { d2d_cdt_destroy_edge(cdt, &left_candidate); left_candidate = tmp; d2d_cdt_edge_next_origin(cdt, &tmp, &left_candidate); } } d2d_cdt_edge_sym(&left_candidate, &left_candidate); /* Find the right candidate. */ d2d_cdt_edge_prev_origin(cdt, &right_candidate, &base_edge); if ((right_valid = d2d_cdt_rightof(cdt, d2d_cdt_edge_destination(cdt, &right_candidate), &base_edge))) { d2d_cdt_edge_prev_origin(cdt, &tmp, &right_candidate); while (d2d_cdt_edge_destination(cdt, &tmp) != d2d_cdt_edge_destination(cdt, &base_edge) && d2d_cdt_incircle(cdt, d2d_cdt_edge_origin(cdt, &sym_base_edge), d2d_cdt_edge_destination(cdt, &sym_base_edge), d2d_cdt_edge_destination(cdt, &right_candidate), d2d_cdt_edge_destination(cdt, &tmp))) { d2d_cdt_destroy_edge(cdt, &right_candidate); right_candidate = tmp; d2d_cdt_edge_prev_origin(cdt, &tmp, &right_candidate); } } if (!left_valid && !right_valid) break; /* Connect the appropriate candidate with the base edge. */ if (!left_valid || (right_valid && d2d_cdt_incircle(cdt, d2d_cdt_edge_origin(cdt, &left_candidate), d2d_cdt_edge_destination(cdt, &left_candidate), d2d_cdt_edge_origin(cdt, &right_candidate), d2d_cdt_edge_destination(cdt, &right_candidate)))) { if (!d2d_cdt_connect(cdt, &base_edge, &right_candidate, &sym_base_edge)) return FALSE; } else { if (!d2d_cdt_connect(cdt, &base_edge, &sym_base_edge, &left_candidate)) return FALSE; } } return TRUE; } /* Create a Delaunay triangulation from a set of vertices. This is an * implementation of the divide-and-conquer algorithm described by Guibas and * Stolfi. Should be called with at least two vertices. */ static BOOL d2d_cdt_triangulate(struct d2d_cdt *cdt, size_t start_vertex, size_t vertex_count, struct d2d_cdt_edge_ref *left_edge, struct d2d_cdt_edge_ref *right_edge) { struct d2d_cdt_edge_ref left_inner, left_outer, right_inner, right_outer, tmp; size_t cut; /* Only two vertices, create a single edge. */ if (vertex_count == 2) { struct d2d_cdt_edge_ref a; if (!d2d_cdt_create_edge(cdt, &a)) return FALSE; d2d_cdt_edge_set_origin(cdt, &a, start_vertex); d2d_cdt_edge_set_destination(cdt, &a, start_vertex + 1); *left_edge = a; d2d_cdt_edge_sym(right_edge, &a); return TRUE; } /* Three vertices, create a triangle. */ if (vertex_count == 3) { struct d2d_cdt_edge_ref a, b, c; float det; if (!d2d_cdt_create_edge(cdt, &a)) return FALSE; if (!d2d_cdt_create_edge(cdt, &b)) return FALSE; d2d_cdt_edge_sym(&tmp, &a); d2d_cdt_splice(cdt, &tmp, &b); d2d_cdt_edge_set_origin(cdt, &a, start_vertex); d2d_cdt_edge_set_destination(cdt, &a, start_vertex + 1); d2d_cdt_edge_set_origin(cdt, &b, start_vertex + 1); d2d_cdt_edge_set_destination(cdt, &b, start_vertex + 2); det = d2d_cdt_ccw(cdt, start_vertex, start_vertex + 1, start_vertex + 2); if (det != 0.0f && !d2d_cdt_connect(cdt, &c, &b, &a)) return FALSE; if (det < 0.0f) { d2d_cdt_edge_sym(left_edge, &c); *right_edge = c; } else { *left_edge = a; d2d_cdt_edge_sym(right_edge, &b); } return TRUE; } /* More than tree vertices, divide. */ cut = vertex_count / 2; if (!d2d_cdt_triangulate(cdt, start_vertex, cut, &left_outer, &left_inner)) return FALSE; if (!d2d_cdt_triangulate(cdt, start_vertex + cut, vertex_count - cut, &right_inner, &right_outer)) return FALSE; /* Merge the left and right parts. */ if (!d2d_cdt_merge(cdt, &left_outer, &left_inner, &right_inner, &right_outer)) return FALSE; *left_edge = left_outer; *right_edge = right_outer; return TRUE; } static int d2d_cdt_compare_vertices(const void *a, const void *b) { const D2D1_POINT_2F *p0 = a; const D2D1_POINT_2F *p1 = b; float diff = p0->x - p1->x; if (diff == 0.0f) diff = p0->y - p1->y; return diff == 0.0f ? 0 : (diff > 0.0f ? 1 : -1); } /* Determine whether a given point is inside the geometry, using the current * fill mode rule. */ static BOOL d2d_path_geometry_point_inside(const struct d2d_geometry *geometry, const D2D1_POINT_2F *probe, BOOL triangles_only) { const D2D1_POINT_2F *p0, *p1; D2D1_POINT_2F v_p, v_probe; unsigned int score; size_t i, j; for (i = 0, score = 0; i < geometry->u.path.figure_count; ++i) { const struct d2d_figure *figure = &geometry->u.path.figures[i]; if (probe->x < figure->bounds.left || probe->x > figure->bounds.right || probe->y < figure->bounds.top || probe->y > figure->bounds.bottom) continue; p0 = &figure->vertices[figure->vertex_count - 1]; for (j = 0; j < figure->vertex_count; ++j) { if (!triangles_only && figure->vertex_types[j] == D2D_VERTEX_TYPE_NONE) continue; p1 = &figure->vertices[j]; d2d_point_subtract(&v_p, p1, p0); d2d_point_subtract(&v_probe, probe, p0); if ((probe->y < p0->y) != (probe->y < p1->y) && v_probe.x < v_p.x * (v_probe.y / v_p.y)) { if (geometry->u.path.fill_mode == D2D1_FILL_MODE_ALTERNATE || (probe->y < p0->y)) ++score; else --score; } p0 = p1; } } return geometry->u.path.fill_mode == D2D1_FILL_MODE_ALTERNATE ? score & 1 : score; } static BOOL d2d_path_geometry_add_fill_face(struct d2d_geometry *geometry, const struct d2d_cdt *cdt, const struct d2d_cdt_edge_ref *base_edge) { struct d2d_cdt_edge_ref tmp; struct d2d_face *face; D2D1_POINT_2F probe; if (cdt->edges[base_edge->idx].flags & D2D_CDT_EDGE_FLAG_VISITED(base_edge->r)) return TRUE; if (!d2d_array_reserve((void **)&geometry->fill.faces, &geometry->fill.faces_size, geometry->fill.face_count + 1, sizeof(*geometry->fill.faces))) { ERR("Failed to grow faces array.\n"); return FALSE; } face = &geometry->fill.faces[geometry->fill.face_count]; /* It may seem tempting to use the center of the face as probe origin, but * multiplying by powers of two works much better for preserving accuracy. */ tmp = *base_edge; cdt->edges[tmp.idx].flags |= D2D_CDT_EDGE_FLAG_VISITED(tmp.r); face->v[0] = d2d_cdt_edge_origin(cdt, &tmp); probe.x = cdt->vertices[d2d_cdt_edge_origin(cdt, &tmp)].x * 0.25f; probe.y = cdt->vertices[d2d_cdt_edge_origin(cdt, &tmp)].y * 0.25f; d2d_cdt_edge_next_left(cdt, &tmp, &tmp); cdt->edges[tmp.idx].flags |= D2D_CDT_EDGE_FLAG_VISITED(tmp.r); face->v[1] = d2d_cdt_edge_origin(cdt, &tmp); probe.x += cdt->vertices[d2d_cdt_edge_origin(cdt, &tmp)].x * 0.25f; probe.y += cdt->vertices[d2d_cdt_edge_origin(cdt, &tmp)].y * 0.25f; d2d_cdt_edge_next_left(cdt, &tmp, &tmp); cdt->edges[tmp.idx].flags |= D2D_CDT_EDGE_FLAG_VISITED(tmp.r); face->v[2] = d2d_cdt_edge_origin(cdt, &tmp); probe.x += cdt->vertices[d2d_cdt_edge_origin(cdt, &tmp)].x * 0.50f; probe.y += cdt->vertices[d2d_cdt_edge_origin(cdt, &tmp)].y * 0.50f; if (d2d_cdt_leftof(cdt, face->v[2], base_edge) && d2d_path_geometry_point_inside(geometry, &probe, TRUE)) ++geometry->fill.face_count; return TRUE; } static BOOL d2d_cdt_generate_faces(const struct d2d_cdt *cdt, struct d2d_geometry *geometry) { struct d2d_cdt_edge_ref base_edge; size_t i; for (i = 0; i < cdt->edge_count; ++i) { if (cdt->edges[i].flags & D2D_CDT_EDGE_FLAG_FREED) continue; base_edge.idx = i; base_edge.r = 0; if (!d2d_path_geometry_add_fill_face(geometry, cdt, &base_edge)) goto fail; d2d_cdt_edge_sym(&base_edge, &base_edge); if (!d2d_path_geometry_add_fill_face(geometry, cdt, &base_edge)) goto fail; } return TRUE; fail: HeapFree(GetProcessHeap(), 0, geometry->fill.faces); geometry->fill.faces = NULL; geometry->fill.faces_size = 0; geometry->fill.face_count = 0; return FALSE; } static BOOL d2d_cdt_fixup(struct d2d_cdt *cdt, const struct d2d_cdt_edge_ref *base_edge) { struct d2d_cdt_edge_ref candidate, next, new_base; unsigned int count = 0; d2d_cdt_edge_next_left(cdt, &next, base_edge); if (next.idx == base_edge->idx) { ERR("Degenerate face.\n"); return FALSE; } candidate = next; while (d2d_cdt_edge_destination(cdt, &next) != d2d_cdt_edge_origin(cdt, base_edge)) { if (d2d_cdt_incircle(cdt, d2d_cdt_edge_origin(cdt, base_edge), d2d_cdt_edge_destination(cdt, base_edge), d2d_cdt_edge_destination(cdt, &candidate), d2d_cdt_edge_destination(cdt, &next))) candidate = next; d2d_cdt_edge_next_left(cdt, &next, &next); ++count; } if (count > 1) { d2d_cdt_edge_next_left(cdt, &next, &candidate); if (d2d_cdt_edge_destination(cdt, &next) == d2d_cdt_edge_origin(cdt, base_edge)) d2d_cdt_edge_next_left(cdt, &next, base_edge); else next = *base_edge; if (!d2d_cdt_connect(cdt, &new_base, &candidate, &next)) return FALSE; if (!d2d_cdt_fixup(cdt, &new_base)) return FALSE; d2d_cdt_edge_sym(&new_base, &new_base); if (!d2d_cdt_fixup(cdt, &new_base)) return FALSE; } return TRUE; } static void d2d_cdt_cut_edges(struct d2d_cdt *cdt, struct d2d_cdt_edge_ref *end_edge, const struct d2d_cdt_edge_ref *base_edge, size_t start_vertex, size_t end_vertex) { struct d2d_cdt_edge_ref next; float ccw; d2d_cdt_edge_next_left(cdt, &next, base_edge); if (d2d_cdt_edge_destination(cdt, &next) == end_vertex) { *end_edge = next; return; } ccw = d2d_cdt_ccw(cdt, d2d_cdt_edge_destination(cdt, &next), end_vertex, start_vertex); if (ccw == 0.0f) { *end_edge = next; return; } if (ccw > 0.0f) d2d_cdt_edge_next_left(cdt, &next, &next); d2d_cdt_edge_sym(&next, &next); d2d_cdt_cut_edges(cdt, end_edge, &next, start_vertex, end_vertex); d2d_cdt_destroy_edge(cdt, &next); } static BOOL d2d_cdt_insert_segment(struct d2d_cdt *cdt, struct d2d_geometry *geometry, const struct d2d_cdt_edge_ref *origin, struct d2d_cdt_edge_ref *edge, size_t end_vertex) { struct d2d_cdt_edge_ref base_edge, current, new_origin, next, target; size_t current_destination, current_origin; for (current = *origin;; current = next) { d2d_cdt_edge_next_origin(cdt, &next, ¤t); current_destination = d2d_cdt_edge_destination(cdt, ¤t); if (current_destination == end_vertex) { d2d_cdt_edge_sym(edge, ¤t); return TRUE; } current_origin = d2d_cdt_edge_origin(cdt, ¤t); if (d2d_cdt_ccw(cdt, end_vertex, current_origin, current_destination) == 0.0f && (cdt->vertices[current_destination].x > cdt->vertices[current_origin].x) == (cdt->vertices[end_vertex].x > cdt->vertices[current_origin].x) && (cdt->vertices[current_destination].y > cdt->vertices[current_origin].y) == (cdt->vertices[end_vertex].y > cdt->vertices[current_origin].y)) { d2d_cdt_edge_sym(&new_origin, ¤t); return d2d_cdt_insert_segment(cdt, geometry, &new_origin, edge, end_vertex); } if (d2d_cdt_rightof(cdt, end_vertex, &next) && d2d_cdt_leftof(cdt, end_vertex, ¤t)) { d2d_cdt_edge_next_left(cdt, &base_edge, ¤t); d2d_cdt_edge_sym(&base_edge, &base_edge); d2d_cdt_cut_edges(cdt, &target, &base_edge, d2d_cdt_edge_origin(cdt, origin), end_vertex); d2d_cdt_destroy_edge(cdt, &base_edge); if (!d2d_cdt_connect(cdt, &base_edge, &target, ¤t)) return FALSE; *edge = base_edge; if (!d2d_cdt_fixup(cdt, &base_edge)) return FALSE; d2d_cdt_edge_sym(&base_edge, &base_edge); if (!d2d_cdt_fixup(cdt, &base_edge)) return FALSE; if (d2d_cdt_edge_origin(cdt, edge) == end_vertex) return TRUE; new_origin = *edge; return d2d_cdt_insert_segment(cdt, geometry, &new_origin, edge, end_vertex); } if (next.idx == origin->idx) { ERR("Triangle not found.\n"); return FALSE; } } } static BOOL d2d_cdt_insert_segments(struct d2d_cdt *cdt, struct d2d_geometry *geometry) { size_t start_vertex, end_vertex, i, j, k; struct d2d_cdt_edge_ref edge, new_edge; const struct d2d_figure *figure; const D2D1_POINT_2F *p; BOOL found; for (i = 0; i < geometry->u.path.figure_count; ++i) { figure = &geometry->u.path.figures[i]; p = bsearch(&figure->vertices[figure->vertex_count - 1], cdt->vertices, geometry->fill.vertex_count, sizeof(*p), d2d_cdt_compare_vertices); start_vertex = p - cdt->vertices; for (k = 0, found = FALSE; k < cdt->edge_count; ++k) { if (cdt->edges[k].flags & D2D_CDT_EDGE_FLAG_FREED) continue; edge.idx = k; edge.r = 0; if (d2d_cdt_edge_origin(cdt, &edge) == start_vertex) { found = TRUE; break; } d2d_cdt_edge_sym(&edge, &edge); if (d2d_cdt_edge_origin(cdt, &edge) == start_vertex) { found = TRUE; break; } } if (!found) { ERR("Edge not found.\n"); return FALSE; } for (j = 0; j < figure->vertex_count; start_vertex = end_vertex, ++j) { p = bsearch(&figure->vertices[j], cdt->vertices, geometry->fill.vertex_count, sizeof(*p), d2d_cdt_compare_vertices); end_vertex = p - cdt->vertices; if (start_vertex == end_vertex) continue; if (!d2d_cdt_insert_segment(cdt, geometry, &edge, &new_edge, end_vertex)) return FALSE; edge = new_edge; } } return TRUE; } static BOOL d2d_geometry_intersections_add(struct d2d_geometry_intersections *i, size_t figure_idx, size_t segment_idx, float t, D2D1_POINT_2F p) { struct d2d_geometry_intersection *intersection; if (!d2d_array_reserve((void **)&i->intersections, &i->intersections_size, i->intersection_count + 1, sizeof(*i->intersections))) { ERR("Failed to grow intersections array.\n"); return FALSE; } intersection = &i->intersections[i->intersection_count++]; intersection->figure_idx = figure_idx; intersection->segment_idx = segment_idx; intersection->t = t; intersection->p = p; return TRUE; } static int d2d_geometry_intersections_compare(const void *a, const void *b) { const struct d2d_geometry_intersection *i0 = a; const struct d2d_geometry_intersection *i1 = b; if (i0->figure_idx != i1->figure_idx) return i0->figure_idx - i1->figure_idx; if (i0->segment_idx != i1->segment_idx) return i0->segment_idx - i1->segment_idx; if (i0->t != i1->t) return i0->t > i1->t ? 1 : -1; return 0; } /* Intersect the geometry's segments with themselves. This uses the * straightforward approach of testing everything against everything, but * there certainly exist more scalable algorithms for this. */ /* FIXME: Beziers can't currently self-intersect. */ static BOOL d2d_geometry_intersect_self(struct d2d_geometry *geometry) { D2D1_POINT_2F p0, p1, q0, q1, v_p, v_q, v_qp, intersection; struct d2d_geometry_intersections intersections = {0}; struct d2d_figure *figure_p, *figure_q; size_t i, j, k, l, max_l; BOOL ret = FALSE; float s, t, det; for (i = 0; i < geometry->u.path.figure_count; ++i) { figure_p = &geometry->u.path.figures[i]; p0 = figure_p->vertices[figure_p->vertex_count - 1]; for (k = 0; k < figure_p->vertex_count; p0 = p1, ++k) { p1 = figure_p->vertices[k]; d2d_point_subtract(&v_p, &p1, &p0); for (j = 0; j < i || (j == i && k); ++j) { figure_q = &geometry->u.path.figures[j]; if (figure_p->bounds.left > figure_q->bounds.right || figure_q->bounds.left > figure_p->bounds.right || figure_p->bounds.top > figure_q->bounds.bottom || figure_q->bounds.top > figure_p->bounds.bottom) continue; max_l = j == i ? k - 1 : figure_q->vertex_count; q0 = figure_q->vertices[figure_q->vertex_count - 1]; for (l = 0; l < max_l; q0 = q1, ++l) { q1 = figure_q->vertices[l]; d2d_point_subtract(&v_q, &q1, &q0); d2d_point_subtract(&v_qp, &p0, &q0); det = v_p.x * v_q.y - v_p.y * v_q.x; if (det == 0.0f) continue; s = (v_q.x * v_qp.y - v_q.y * v_qp.x) / det; t = (v_p.x * v_qp.y - v_p.y * v_qp.x) / det; if (s < 0.0f || s > 1.0f || t < 0.0f || t > 1.0f) continue; intersection.x = p0.x + v_p.x * s; intersection.y = p0.y + v_p.y * s; if (t > 0.0f && t < 1.0f && !d2d_geometry_intersections_add(&intersections, j, l, t, intersection)) goto done; if (s > 0.0f && s < 1.0f && !d2d_geometry_intersections_add(&intersections, i, k, s, intersection)) goto done; } } } } qsort(intersections.intersections, intersections.intersection_count, sizeof(*intersections.intersections), d2d_geometry_intersections_compare); for (i = 0; i < intersections.intersection_count; ++i) { const struct d2d_geometry_intersection *inter = &intersections.intersections[i]; if (!i || inter->figure_idx != intersections.intersections[i - 1].figure_idx) j = 0; if (!d2d_figure_insert_vertex(&geometry->u.path.figures[inter->figure_idx], inter->segment_idx + j, inter->p)) goto done; ++j; } ret = TRUE; done: HeapFree(GetProcessHeap(), 0, intersections.intersections); return ret; } static HRESULT d2d_path_geometry_triangulate(struct d2d_geometry *geometry) { struct d2d_cdt_edge_ref left_edge, right_edge; size_t vertex_count, i, j; struct d2d_cdt cdt = {0}; D2D1_POINT_2F *vertices; for (i = 0, vertex_count = 0; i < geometry->u.path.figure_count; ++i) { vertex_count += geometry->u.path.figures[i].vertex_count; } if (vertex_count < 3) { WARN("Geometry has %lu vertices.\n", (long)vertex_count); return S_OK; } if (!(vertices = HeapAlloc(GetProcessHeap(), 0, vertex_count * sizeof(*vertices)))) return E_OUTOFMEMORY; for (i = 0, j = 0; i < geometry->u.path.figure_count; ++i) { memcpy(&vertices[j], geometry->u.path.figures[i].vertices, geometry->u.path.figures[i].vertex_count * sizeof(*vertices)); j += geometry->u.path.figures[i].vertex_count; } /* Sort vertices, eliminate duplicates. */ qsort(vertices, vertex_count, sizeof(*vertices), d2d_cdt_compare_vertices); for (i = 1; i < vertex_count; ++i) { if (!memcmp(&vertices[i - 1], &vertices[i], sizeof(*vertices))) { --vertex_count; memmove(&vertices[i], &vertices[i + 1], (vertex_count - i) * sizeof(*vertices)); --i; } } geometry->fill.vertices = vertices; geometry->fill.vertex_count = vertex_count; cdt.free_edge = ~0u; cdt.vertices = vertices; if (!d2d_cdt_triangulate(&cdt, 0, vertex_count, &left_edge, &right_edge)) goto fail; if (!d2d_cdt_insert_segments(&cdt, geometry)) goto fail; if (!d2d_cdt_generate_faces(&cdt, geometry)) goto fail; HeapFree(GetProcessHeap(), 0, cdt.edges); return S_OK; fail: geometry->fill.vertices = NULL; geometry->fill.vertex_count = 0; HeapFree(GetProcessHeap(), 0, vertices); HeapFree(GetProcessHeap(), 0, cdt.edges); return E_FAIL; } static BOOL d2d_path_geometry_add_figure(struct d2d_geometry *geometry) { struct d2d_figure *figure; if (!d2d_array_reserve((void **)&geometry->u.path.figures, &geometry->u.path.figures_size, geometry->u.path.figure_count + 1, sizeof(*geometry->u.path.figures))) { ERR("Failed to grow figures array.\n"); return FALSE; } figure = &geometry->u.path.figures[geometry->u.path.figure_count]; memset(figure, 0, sizeof(*figure)); figure->bounds.left = FLT_MAX; figure->bounds.top = FLT_MAX; figure->bounds.right = -FLT_MAX; figure->bounds.bottom = -FLT_MAX; ++geometry->u.path.figure_count; return TRUE; } static void d2d_geometry_cleanup(struct d2d_geometry *geometry) { HeapFree(GetProcessHeap(), 0, geometry->fill.bezier_vertices); HeapFree(GetProcessHeap(), 0, geometry->fill.faces); HeapFree(GetProcessHeap(), 0, geometry->fill.vertices); ID2D1Factory_Release(geometry->factory); } static void d2d_geometry_init(struct d2d_geometry *geometry, ID2D1Factory *factory, const D2D1_MATRIX_3X2_F *transform, const struct ID2D1GeometryVtbl *vtbl) { geometry->ID2D1Geometry_iface.lpVtbl = vtbl; geometry->refcount = 1; ID2D1Factory_AddRef(geometry->factory = factory); geometry->transform = *transform; } static inline struct d2d_geometry *impl_from_ID2D1GeometrySink(ID2D1GeometrySink *iface) { return CONTAINING_RECORD(iface, struct d2d_geometry, u.path.ID2D1GeometrySink_iface); } static HRESULT STDMETHODCALLTYPE d2d_geometry_sink_QueryInterface(ID2D1GeometrySink *iface, REFIID iid, void **out) { TRACE("iface %p, iid %s, out %p.\n", iface, debugstr_guid(iid), out); if (IsEqualGUID(iid, &IID_ID2D1GeometrySink) || IsEqualGUID(iid, &IID_ID2D1SimplifiedGeometrySink) || IsEqualGUID(iid, &IID_IUnknown)) { ID2D1GeometrySink_AddRef(iface); *out = iface; return S_OK; } WARN("%s not implemented, returning E_NOINTERFACE.\n", debugstr_guid(iid)); *out = NULL; return E_NOINTERFACE; } static ULONG STDMETHODCALLTYPE d2d_geometry_sink_AddRef(ID2D1GeometrySink *iface) { struct d2d_geometry *geometry = impl_from_ID2D1GeometrySink(iface); TRACE("iface %p.\n", iface); return ID2D1Geometry_AddRef(&geometry->ID2D1Geometry_iface); } static ULONG STDMETHODCALLTYPE d2d_geometry_sink_Release(ID2D1GeometrySink *iface) { struct d2d_geometry *geometry = impl_from_ID2D1GeometrySink(iface); TRACE("iface %p.\n", iface); return ID2D1Geometry_Release(&geometry->ID2D1Geometry_iface); } static void STDMETHODCALLTYPE d2d_geometry_sink_SetFillMode(ID2D1GeometrySink *iface, D2D1_FILL_MODE mode) { struct d2d_geometry *geometry = impl_from_ID2D1GeometrySink(iface); TRACE("iface %p, mode %#x.\n", iface, mode); geometry->u.path.fill_mode = mode; } static void STDMETHODCALLTYPE d2d_geometry_sink_SetSegmentFlags(ID2D1GeometrySink *iface, D2D1_PATH_SEGMENT flags) { FIXME("iface %p, flags %#x stub!\n", iface, flags); } static void STDMETHODCALLTYPE d2d_geometry_sink_BeginFigure(ID2D1GeometrySink *iface, D2D1_POINT_2F start_point, D2D1_FIGURE_BEGIN figure_begin) { struct d2d_geometry *geometry = impl_from_ID2D1GeometrySink(iface); TRACE("iface %p, start_point {%.8e, %.8e}, figure_begin %#x.\n", iface, start_point.x, start_point.y, figure_begin); if (geometry->u.path.state != D2D_GEOMETRY_STATE_OPEN) { geometry->u.path.state = D2D_GEOMETRY_STATE_ERROR; return; } if (figure_begin != D2D1_FIGURE_BEGIN_FILLED) FIXME("Ignoring figure_begin %#x.\n", figure_begin); if (!d2d_path_geometry_add_figure(geometry)) { ERR("Failed to add figure.\n"); geometry->u.path.state = D2D_GEOMETRY_STATE_ERROR; return; } if (!d2d_figure_add_vertex(&geometry->u.path.figures[geometry->u.path.figure_count - 1], start_point)) { ERR("Failed to add vertex.\n"); geometry->u.path.state = D2D_GEOMETRY_STATE_ERROR; return; } geometry->u.path.state = D2D_GEOMETRY_STATE_FIGURE; ++geometry->u.path.segment_count; } static void STDMETHODCALLTYPE d2d_geometry_sink_AddLines(ID2D1GeometrySink *iface, const D2D1_POINT_2F *points, UINT32 count) { struct d2d_geometry *geometry = impl_from_ID2D1GeometrySink(iface); struct d2d_figure *figure = &geometry->u.path.figures[geometry->u.path.figure_count - 1]; unsigned int i; TRACE("iface %p, points %p, count %u.\n", iface, points, count); if (geometry->u.path.state != D2D_GEOMETRY_STATE_FIGURE) { geometry->u.path.state = D2D_GEOMETRY_STATE_ERROR; return; } for (i = 0; i < count; ++i) { figure->vertex_types[figure->vertex_count - 1] = D2D_VERTEX_TYPE_LINE; if (!d2d_figure_add_vertex(figure, points[i])) { ERR("Failed to add vertex.\n"); return; } } geometry->u.path.segment_count += count; } static void STDMETHODCALLTYPE d2d_geometry_sink_AddBeziers(ID2D1GeometrySink *iface, const D2D1_BEZIER_SEGMENT *beziers, UINT32 count) { struct d2d_geometry *geometry = impl_from_ID2D1GeometrySink(iface); struct d2d_figure *figure = &geometry->u.path.figures[geometry->u.path.figure_count - 1]; D2D1_POINT_2F p; unsigned int i; TRACE("iface %p, beziers %p, count %u.\n", iface, beziers, count); if (geometry->u.path.state != D2D_GEOMETRY_STATE_FIGURE) { geometry->u.path.state = D2D_GEOMETRY_STATE_ERROR; return; } for (i = 0; i < count; ++i) { /* FIXME: This tries to approximate a cubic bezier with a quadratic one. */ p.x = (beziers[i].point1.x + beziers[i].point2.x) * 0.75f; p.y = (beziers[i].point1.y + beziers[i].point2.y) * 0.75f; p.x -= (figure->vertices[figure->vertex_count - 1].x + beziers[i].point3.x) * 0.25f; p.y -= (figure->vertices[figure->vertex_count - 1].y + beziers[i].point3.y) * 0.25f; figure->vertex_types[figure->vertex_count - 1] = D2D_VERTEX_TYPE_BEZIER; if (!d2d_figure_add_bezier_control(figure, &p)) { ERR("Failed to add bezier control.\n"); geometry->u.path.state = D2D_GEOMETRY_STATE_ERROR; return; } if (!d2d_figure_add_vertex(figure, beziers[i].point3)) { ERR("Failed to add bezier vertex.\n"); geometry->u.path.state = D2D_GEOMETRY_STATE_ERROR; return; } } geometry->u.path.segment_count += count; } static void STDMETHODCALLTYPE d2d_geometry_sink_EndFigure(ID2D1GeometrySink *iface, D2D1_FIGURE_END figure_end) { struct d2d_geometry *geometry = impl_from_ID2D1GeometrySink(iface); struct d2d_figure *figure; TRACE("iface %p, figure_end %#x.\n", iface, figure_end); if (geometry->u.path.state != D2D_GEOMETRY_STATE_FIGURE) { geometry->u.path.state = D2D_GEOMETRY_STATE_ERROR; return; } figure = &geometry->u.path.figures[geometry->u.path.figure_count - 1]; figure->vertex_types[figure->vertex_count - 1] = D2D_VERTEX_TYPE_LINE; if (figure_end != D2D1_FIGURE_END_CLOSED) FIXME("Ignoring figure_end %#x.\n", figure_end); geometry->u.path.state = D2D_GEOMETRY_STATE_OPEN; } static void d2d_path_geometry_free_figures(struct d2d_geometry *geometry) { size_t i; if (!geometry->u.path.figures) return; for (i = 0; i < geometry->u.path.figure_count; ++i) { HeapFree(GetProcessHeap(), 0, geometry->u.path.figures[i].bezier_controls); HeapFree(GetProcessHeap(), 0, geometry->u.path.figures[i].vertices); } HeapFree(GetProcessHeap(), 0, geometry->u.path.figures); geometry->u.path.figures = NULL; geometry->u.path.figures_size = 0; } static HRESULT d2d_geometry_resolve_beziers(struct d2d_geometry *geometry) { size_t bezier_idx, control_idx, i, j; for (i = 0; i < geometry->u.path.figure_count; ++i) { geometry->fill.bezier_vertex_count += 3 * geometry->u.path.figures[i].bezier_control_count; } if (!(geometry->fill.bezier_vertices = HeapAlloc(GetProcessHeap(), 0, geometry->fill.bezier_vertex_count * sizeof(*geometry->fill.bezier_vertices)))) { ERR("Failed to allocate bezier vertices array.\n"); geometry->fill.bezier_vertex_count = 0; return E_OUTOFMEMORY; } for (i = 0, bezier_idx = 0; i < geometry->u.path.figure_count; ++i) { struct d2d_figure *figure = &geometry->u.path.figures[i]; if (figure->bezier_control_count) { for (j = 0, control_idx = 0; j < figure->vertex_count; ++j) { const D2D1_POINT_2F *p0, *p1, *p2; struct d2d_bezier_vertex *b; float sign = -1.0f; if (figure->vertex_types[j] != D2D_VERTEX_TYPE_BEZIER) continue; b = &geometry->fill.bezier_vertices[bezier_idx * 3]; p0 = &figure->vertices[j]; p1 = &figure->bezier_controls[control_idx++]; if (d2d_path_geometry_point_inside(geometry, p1, FALSE)) { sign = 1.0f; d2d_figure_insert_vertex(figure, j + 1, *p1); ++j; } if (j == figure->vertex_count - 1) p2 = &figure->vertices[0]; else p2 = &figure->vertices[j + 1]; d2d_bezier_vertex_set(&b[0], p0, 0.0f, 0.0f, sign); d2d_bezier_vertex_set(&b[1], p1, 0.5f, 0.0f, sign); d2d_bezier_vertex_set(&b[2], p2, 1.0f, 1.0f, sign); ++bezier_idx; } } } return TRUE; } static HRESULT STDMETHODCALLTYPE d2d_geometry_sink_Close(ID2D1GeometrySink *iface) { struct d2d_geometry *geometry = impl_from_ID2D1GeometrySink(iface); HRESULT hr = E_FAIL; TRACE("iface %p.\n", iface); if (geometry->u.path.state != D2D_GEOMETRY_STATE_OPEN) { if (geometry->u.path.state != D2D_GEOMETRY_STATE_CLOSED) geometry->u.path.state = D2D_GEOMETRY_STATE_ERROR; return D2DERR_WRONG_STATE; } geometry->u.path.state = D2D_GEOMETRY_STATE_CLOSED; if (!d2d_geometry_intersect_self(geometry)) goto done; if (FAILED(hr = d2d_geometry_resolve_beziers(geometry))) goto done; if (FAILED(hr = d2d_path_geometry_triangulate(geometry))) goto done; done: if (FAILED(hr)) { HeapFree(GetProcessHeap(), 0, geometry->fill.bezier_vertices); geometry->fill.bezier_vertex_count = 0; d2d_path_geometry_free_figures(geometry); geometry->u.path.state = D2D_GEOMETRY_STATE_ERROR; } return hr; } static void STDMETHODCALLTYPE d2d_geometry_sink_AddLine(ID2D1GeometrySink *iface, D2D1_POINT_2F point) { TRACE("iface %p, point {%.8e, %.8e}.\n", iface, point.x, point.y); d2d_geometry_sink_AddLines(iface, &point, 1); } static void STDMETHODCALLTYPE d2d_geometry_sink_AddBezier(ID2D1GeometrySink *iface, const D2D1_BEZIER_SEGMENT *bezier) { TRACE("iface %p, bezier %p.\n", iface, bezier); d2d_geometry_sink_AddBeziers(iface, bezier, 1); } static void STDMETHODCALLTYPE d2d_geometry_sink_AddQuadraticBezier(ID2D1GeometrySink *iface, const D2D1_QUADRATIC_BEZIER_SEGMENT *bezier) { TRACE("iface %p, bezier %p.\n", iface, bezier); ID2D1GeometrySink_AddQuadraticBeziers(iface, bezier, 1); } static void STDMETHODCALLTYPE d2d_geometry_sink_AddQuadraticBeziers(ID2D1GeometrySink *iface, const D2D1_QUADRATIC_BEZIER_SEGMENT *beziers, UINT32 bezier_count) { struct d2d_geometry *geometry = impl_from_ID2D1GeometrySink(iface); struct d2d_figure *figure = &geometry->u.path.figures[geometry->u.path.figure_count - 1]; unsigned int i; TRACE("iface %p, beziers %p, bezier_count %u.\n", iface, beziers, bezier_count); if (geometry->u.path.state != D2D_GEOMETRY_STATE_FIGURE) { geometry->u.path.state = D2D_GEOMETRY_STATE_ERROR; return; } for (i = 0; i < bezier_count; ++i) { figure->vertex_types[figure->vertex_count - 1] = D2D_VERTEX_TYPE_BEZIER; if (!d2d_figure_add_bezier_control(figure, &beziers[i].point1)) { ERR("Failed to add bezier.\n"); geometry->u.path.state = D2D_GEOMETRY_STATE_ERROR; return; } if (!d2d_figure_add_vertex(figure, beziers[i].point2)) { ERR("Failed to add bezier vertex.\n"); geometry->u.path.state = D2D_GEOMETRY_STATE_ERROR; return; } } geometry->u.path.segment_count += bezier_count; } static void STDMETHODCALLTYPE d2d_geometry_sink_AddArc(ID2D1GeometrySink *iface, const D2D1_ARC_SEGMENT *arc) { struct d2d_geometry *geometry = impl_from_ID2D1GeometrySink(iface); FIXME("iface %p, arc %p stub!\n", iface, arc); if (geometry->u.path.state != D2D_GEOMETRY_STATE_FIGURE) { geometry->u.path.state = D2D_GEOMETRY_STATE_ERROR; return; } if (!d2d_figure_add_vertex(&geometry->u.path.figures[geometry->u.path.figure_count - 1], arc->point)) { ERR("Failed to add vertex.\n"); return; } ++geometry->u.path.segment_count; } static const struct ID2D1GeometrySinkVtbl d2d_geometry_sink_vtbl = { d2d_geometry_sink_QueryInterface, d2d_geometry_sink_AddRef, d2d_geometry_sink_Release, d2d_geometry_sink_SetFillMode, d2d_geometry_sink_SetSegmentFlags, d2d_geometry_sink_BeginFigure, d2d_geometry_sink_AddLines, d2d_geometry_sink_AddBeziers, d2d_geometry_sink_EndFigure, d2d_geometry_sink_Close, d2d_geometry_sink_AddLine, d2d_geometry_sink_AddBezier, d2d_geometry_sink_AddQuadraticBezier, d2d_geometry_sink_AddQuadraticBeziers, d2d_geometry_sink_AddArc, }; static inline struct d2d_geometry *impl_from_ID2D1PathGeometry(ID2D1PathGeometry *iface) { return CONTAINING_RECORD(iface, struct d2d_geometry, ID2D1Geometry_iface); } static HRESULT STDMETHODCALLTYPE d2d_path_geometry_QueryInterface(ID2D1PathGeometry *iface, REFIID iid, void **out) { TRACE("iface %p, iid %s, out %p.\n", iface, debugstr_guid(iid), out); if (IsEqualGUID(iid, &IID_ID2D1PathGeometry) || IsEqualGUID(iid, &IID_ID2D1Geometry) || IsEqualGUID(iid, &IID_ID2D1Resource) || IsEqualGUID(iid, &IID_IUnknown)) { ID2D1PathGeometry_AddRef(iface); *out = iface; return S_OK; } WARN("%s not implemented, returning E_NOINTERFACE.\n", debugstr_guid(iid)); *out = NULL; return E_NOINTERFACE; } static ULONG STDMETHODCALLTYPE d2d_path_geometry_AddRef(ID2D1PathGeometry *iface) { struct d2d_geometry *geometry = impl_from_ID2D1PathGeometry(iface); ULONG refcount = InterlockedIncrement(&geometry->refcount); TRACE("%p increasing refcount to %u.\n", iface, refcount); return refcount; } static ULONG STDMETHODCALLTYPE d2d_path_geometry_Release(ID2D1PathGeometry *iface) { struct d2d_geometry *geometry = impl_from_ID2D1PathGeometry(iface); ULONG refcount = InterlockedDecrement(&geometry->refcount); TRACE("%p decreasing refcount to %u.\n", iface, refcount); if (!refcount) { d2d_path_geometry_free_figures(geometry); d2d_geometry_cleanup(geometry); HeapFree(GetProcessHeap(), 0, geometry); } return refcount; } static void STDMETHODCALLTYPE d2d_path_geometry_GetFactory(ID2D1PathGeometry *iface, ID2D1Factory **factory) { struct d2d_geometry *geometry = impl_from_ID2D1PathGeometry(iface); TRACE("iface %p, factory %p.\n", iface, factory); ID2D1Factory_AddRef(*factory = geometry->factory); } static HRESULT STDMETHODCALLTYPE d2d_path_geometry_GetBounds(ID2D1PathGeometry *iface, const D2D1_MATRIX_3X2_F *transform, D2D1_RECT_F *bounds) { FIXME("iface %p, transform %p, bounds %p stub!\n", iface, transform, bounds); return E_NOTIMPL; } static HRESULT STDMETHODCALLTYPE d2d_path_geometry_GetWidenedBounds(ID2D1PathGeometry *iface, float stroke_width, ID2D1StrokeStyle *stroke_style, const D2D1_MATRIX_3X2_F *transform, float tolerance, D2D1_RECT_F *bounds) { FIXME("iface %p, stroke_width %.8e, stroke_style %p, transform %p, tolerance %.8e, bounds %p stub!\n", iface, stroke_width, stroke_style, transform, tolerance, bounds); return E_NOTIMPL; } static HRESULT STDMETHODCALLTYPE d2d_path_geometry_StrokeContainsPoint(ID2D1PathGeometry *iface, D2D1_POINT_2F point, float stroke_width, ID2D1StrokeStyle *stroke_style, const D2D1_MATRIX_3X2_F *transform, float tolerance, BOOL *contains) { FIXME("iface %p, point {%.8e, %.8e}, stroke_width %.8e, stroke_style %p, " "transform %p, tolerance %.8e, contains %p stub!\n", iface, point.x, point.y, stroke_width, stroke_style, transform, tolerance, contains); return E_NOTIMPL; } static HRESULT STDMETHODCALLTYPE d2d_path_geometry_FillContainsPoint(ID2D1PathGeometry *iface, D2D1_POINT_2F point, const D2D1_MATRIX_3X2_F *transform, float tolerance, BOOL *contains) { struct d2d_geometry *geometry = impl_from_ID2D1PathGeometry(iface); D2D1_MATRIX_3X2_F g_i; TRACE("iface %p, point {%.8e, %.8e}, transform %p, tolerance %.8e, contains %p.\n", iface, point.x, point.y, transform, tolerance, contains); if (transform) { if (!d2d_matrix_invert(&g_i, transform)) return D2DERR_UNSUPPORTED_OPERATION; d2d_point_transform(&point, &g_i, point.x, point.y); } *contains = !!d2d_path_geometry_point_inside(geometry, &point, FALSE); TRACE("-> %#x.\n", *contains); return S_OK; } static HRESULT STDMETHODCALLTYPE d2d_path_geometry_CompareWithGeometry(ID2D1PathGeometry *iface, ID2D1Geometry *geometry, const D2D1_MATRIX_3X2_F *transform, float tolerance, D2D1_GEOMETRY_RELATION *relation) { FIXME("iface %p, geometry %p, transform %p, tolerance %.8e, relation %p stub!\n", iface, geometry, transform, tolerance, relation); return E_NOTIMPL; } static HRESULT STDMETHODCALLTYPE d2d_path_geometry_Simplify(ID2D1PathGeometry *iface, D2D1_GEOMETRY_SIMPLIFICATION_OPTION option, const D2D1_MATRIX_3X2_F *transform, float tolerance, ID2D1SimplifiedGeometrySink *sink) { FIXME("iface %p, option %#x, transform %p, tolerance %.8e, sink %p stub!\n", iface, option, transform, tolerance, sink); return E_NOTIMPL; } static HRESULT STDMETHODCALLTYPE d2d_path_geometry_Tessellate(ID2D1PathGeometry *iface, const D2D1_MATRIX_3X2_F *transform, float tolerance, ID2D1TessellationSink *sink) { FIXME("iface %p, transform %p, tolerance %.8e, sink %p stub!\n", iface, transform, tolerance, sink); return E_NOTIMPL; } static HRESULT STDMETHODCALLTYPE d2d_path_geometry_CombineWithGeometry(ID2D1PathGeometry *iface, ID2D1Geometry *geometry, D2D1_COMBINE_MODE combine_mode, const D2D1_MATRIX_3X2_F *transform, float tolerance, ID2D1SimplifiedGeometrySink *sink) { FIXME("iface %p, geometry %p, combine_mode %#x, transform %p, tolerance %.8e, sink %p stub!\n", iface, geometry, combine_mode, transform, tolerance, sink); return E_NOTIMPL; } static HRESULT STDMETHODCALLTYPE d2d_path_geometry_Outline(ID2D1PathGeometry *iface, const D2D1_MATRIX_3X2_F *transform, float tolerance, ID2D1SimplifiedGeometrySink *sink) { FIXME("iface %p, transform %p, tolerance %.8e, sink %p stub!\n", iface, transform, tolerance, sink); return E_NOTIMPL; } static HRESULT STDMETHODCALLTYPE d2d_path_geometry_ComputeArea(ID2D1PathGeometry *iface, const D2D1_MATRIX_3X2_F *transform, float tolerance, float *area) { FIXME("iface %p, transform %p, tolerance %.8e, area %p stub!\n", iface, transform, tolerance, area); return E_NOTIMPL; } static HRESULT STDMETHODCALLTYPE d2d_path_geometry_ComputeLength(ID2D1PathGeometry *iface, const D2D1_MATRIX_3X2_F *transform, float tolerance, float *length) { FIXME("iface %p, transform %p, tolerance %.8e, length %p stub!\n", iface, transform, tolerance, length); return E_NOTIMPL; } static HRESULT STDMETHODCALLTYPE d2d_path_geometry_ComputePointAtLength(ID2D1PathGeometry *iface, float length, const D2D1_MATRIX_3X2_F *transform, float tolerance, D2D1_POINT_2F *point, D2D1_POINT_2F *tangent) { FIXME("iface %p, length %.8e, transform %p, tolerance %.8e, point %p, tangent %p stub!\n", iface, length, transform, tolerance, point, tangent); return E_NOTIMPL; } static HRESULT STDMETHODCALLTYPE d2d_path_geometry_Widen(ID2D1PathGeometry *iface, float stroke_width, ID2D1StrokeStyle *stroke_style, const D2D1_MATRIX_3X2_F *transform, float tolerance, ID2D1SimplifiedGeometrySink *sink) { FIXME("iface %p, stroke_width %.8e, stroke_style %p, transform %p, tolerance %.8e, sink %p stub!\n", iface, stroke_width, stroke_style, transform, tolerance, sink); return E_NOTIMPL; } static HRESULT STDMETHODCALLTYPE d2d_path_geometry_Open(ID2D1PathGeometry *iface, ID2D1GeometrySink **sink) { struct d2d_geometry *geometry = impl_from_ID2D1PathGeometry(iface); TRACE("iface %p, sink %p.\n", iface, sink); if (geometry->u.path.state != D2D_GEOMETRY_STATE_INITIAL) return D2DERR_WRONG_STATE; *sink = &geometry->u.path.ID2D1GeometrySink_iface; ID2D1GeometrySink_AddRef(*sink); geometry->u.path.state = D2D_GEOMETRY_STATE_OPEN; return S_OK; } static HRESULT STDMETHODCALLTYPE d2d_path_geometry_Stream(ID2D1PathGeometry *iface, ID2D1GeometrySink *sink) { FIXME("iface %p, sink %p stub!\n", iface, sink); return E_NOTIMPL; } static HRESULT STDMETHODCALLTYPE d2d_path_geometry_GetSegmentCount(ID2D1PathGeometry *iface, UINT32 *count) { struct d2d_geometry *geometry = impl_from_ID2D1PathGeometry(iface); TRACE("iface %p, count %p.\n", iface, count); if (geometry->u.path.state != D2D_GEOMETRY_STATE_CLOSED) return D2DERR_WRONG_STATE; *count = geometry->u.path.segment_count; return S_OK; } static HRESULT STDMETHODCALLTYPE d2d_path_geometry_GetFigureCount(ID2D1PathGeometry *iface, UINT32 *count) { struct d2d_geometry *geometry = impl_from_ID2D1PathGeometry(iface); TRACE("iface %p, count %p.\n", iface, count); if (geometry->u.path.state != D2D_GEOMETRY_STATE_CLOSED) return D2DERR_WRONG_STATE; *count = geometry->u.path.figure_count; return S_OK; } static const struct ID2D1PathGeometryVtbl d2d_path_geometry_vtbl = { d2d_path_geometry_QueryInterface, d2d_path_geometry_AddRef, d2d_path_geometry_Release, d2d_path_geometry_GetFactory, d2d_path_geometry_GetBounds, d2d_path_geometry_GetWidenedBounds, d2d_path_geometry_StrokeContainsPoint, d2d_path_geometry_FillContainsPoint, d2d_path_geometry_CompareWithGeometry, d2d_path_geometry_Simplify, d2d_path_geometry_Tessellate, d2d_path_geometry_CombineWithGeometry, d2d_path_geometry_Outline, d2d_path_geometry_ComputeArea, d2d_path_geometry_ComputeLength, d2d_path_geometry_ComputePointAtLength, d2d_path_geometry_Widen, d2d_path_geometry_Open, d2d_path_geometry_Stream, d2d_path_geometry_GetSegmentCount, d2d_path_geometry_GetFigureCount, }; void d2d_path_geometry_init(struct d2d_geometry *geometry, ID2D1Factory *factory) { d2d_geometry_init(geometry, factory, &identity, (ID2D1GeometryVtbl *)&d2d_path_geometry_vtbl); geometry->u.path.ID2D1GeometrySink_iface.lpVtbl = &d2d_geometry_sink_vtbl; } static inline struct d2d_geometry *impl_from_ID2D1RectangleGeometry(ID2D1RectangleGeometry *iface) { return CONTAINING_RECORD(iface, struct d2d_geometry, ID2D1Geometry_iface); } static HRESULT STDMETHODCALLTYPE d2d_rectangle_geometry_QueryInterface(ID2D1RectangleGeometry *iface, REFIID iid, void **out) { TRACE("iface %p, iid %s, out %p.\n", iface, debugstr_guid(iid), out); if (IsEqualGUID(iid, &IID_ID2D1RectangleGeometry) || IsEqualGUID(iid, &IID_ID2D1Geometry) || IsEqualGUID(iid, &IID_ID2D1Resource) || IsEqualGUID(iid, &IID_IUnknown)) { ID2D1RectangleGeometry_AddRef(iface); *out = iface; return S_OK; } WARN("%s not implemented, returning E_NOINTERFACE.\n", debugstr_guid(iid)); *out = NULL; return E_NOINTERFACE; } static ULONG STDMETHODCALLTYPE d2d_rectangle_geometry_AddRef(ID2D1RectangleGeometry *iface) { struct d2d_geometry *geometry = impl_from_ID2D1RectangleGeometry(iface); ULONG refcount = InterlockedIncrement(&geometry->refcount); TRACE("%p increasing refcount to %u.\n", iface, refcount); return refcount; } static ULONG STDMETHODCALLTYPE d2d_rectangle_geometry_Release(ID2D1RectangleGeometry *iface) { struct d2d_geometry *geometry = impl_from_ID2D1RectangleGeometry(iface); ULONG refcount = InterlockedDecrement(&geometry->refcount); TRACE("%p decreasing refcount to %u.\n", iface, refcount); if (!refcount) { d2d_geometry_cleanup(geometry); HeapFree(GetProcessHeap(), 0, geometry); } return refcount; } static void STDMETHODCALLTYPE d2d_rectangle_geometry_GetFactory(ID2D1RectangleGeometry *iface, ID2D1Factory **factory) { struct d2d_geometry *geometry = impl_from_ID2D1RectangleGeometry(iface); TRACE("iface %p, factory %p.\n", iface, factory); ID2D1Factory_AddRef(*factory = geometry->factory); } static HRESULT STDMETHODCALLTYPE d2d_rectangle_geometry_GetBounds(ID2D1RectangleGeometry *iface, const D2D1_MATRIX_3X2_F *transform, D2D1_RECT_F *bounds) { FIXME("iface %p, transform %p, bounds %p stub!\n", iface, transform, bounds); return E_NOTIMPL; } static HRESULT STDMETHODCALLTYPE d2d_rectangle_geometry_GetWidenedBounds(ID2D1RectangleGeometry *iface, float stroke_width, ID2D1StrokeStyle *stroke_style, const D2D1_MATRIX_3X2_F *transform, float tolerance, D2D1_RECT_F *bounds) { FIXME("iface %p, stroke_width %.8e, stroke_style %p, transform %p, tolerance %.8e, bounds %p stub!\n", iface, stroke_width, stroke_style, transform, tolerance, bounds); return E_NOTIMPL; } static HRESULT STDMETHODCALLTYPE d2d_rectangle_geometry_StrokeContainsPoint(ID2D1RectangleGeometry *iface, D2D1_POINT_2F point, float stroke_width, ID2D1StrokeStyle *stroke_style, const D2D1_MATRIX_3X2_F *transform, float tolerance, BOOL *contains) { FIXME("iface %p, point {%.8e, %.8e}, stroke_width %.8e, stroke_style %p, " "transform %p, tolerance %.8e, contains %p stub!\n", iface, point.x, point.y, stroke_width, stroke_style, transform, tolerance, contains); return E_NOTIMPL; } static HRESULT STDMETHODCALLTYPE d2d_rectangle_geometry_FillContainsPoint(ID2D1RectangleGeometry *iface, D2D1_POINT_2F point, const D2D1_MATRIX_3X2_F *transform, float tolerance, BOOL *contains) { struct d2d_geometry *geometry = impl_from_ID2D1RectangleGeometry(iface); D2D1_RECT_F *rect = &geometry->u.rectangle.rect; float dx, dy; TRACE("iface %p, point {%.8e, %.8e}, transform %p, tolerance %.8e, contains %p.\n", iface, point.x, point.y, transform, tolerance, contains); if (transform) { D2D1_MATRIX_3X2_F g_i; if (!d2d_matrix_invert(&g_i, transform)) return D2DERR_UNSUPPORTED_OPERATION; d2d_point_transform(&point, &g_i, point.x, point.y); } if (tolerance == 0.0f) tolerance = D2D1_DEFAULT_FLATTENING_TOLERANCE; dx = max(fabsf((rect->right + rect->left) / 2.0f - point.x) - (rect->right - rect->left) / 2.0f, 0.0f); dy = max(fabsf((rect->bottom + rect->top) / 2.0f - point.y) - (rect->bottom - rect->top) / 2.0f, 0.0f); *contains = tolerance * tolerance > (dx * dx + dy * dy); return S_OK; } static HRESULT STDMETHODCALLTYPE d2d_rectangle_geometry_CompareWithGeometry(ID2D1RectangleGeometry *iface, ID2D1Geometry *geometry, const D2D1_MATRIX_3X2_F *transform, float tolerance, D2D1_GEOMETRY_RELATION *relation) { FIXME("iface %p, geometry %p, transform %p, tolerance %.8e, relation %p stub!\n", iface, geometry, transform, tolerance, relation); return E_NOTIMPL; } static HRESULT STDMETHODCALLTYPE d2d_rectangle_geometry_Simplify(ID2D1RectangleGeometry *iface, D2D1_GEOMETRY_SIMPLIFICATION_OPTION option, const D2D1_MATRIX_3X2_F *transform, float tolerance, ID2D1SimplifiedGeometrySink *sink) { FIXME("iface %p, option %#x, transform %p, tolerance %.8e, sink %p stub!\n", iface, option, transform, tolerance, sink); return E_NOTIMPL; } static HRESULT STDMETHODCALLTYPE d2d_rectangle_geometry_Tessellate(ID2D1RectangleGeometry *iface, const D2D1_MATRIX_3X2_F *transform, float tolerance, ID2D1TessellationSink *sink) { FIXME("iface %p, transform %p, tolerance %.8e, sink %p stub!\n", iface, transform, tolerance, sink); return E_NOTIMPL; } static HRESULT STDMETHODCALLTYPE d2d_rectangle_geometry_CombineWithGeometry(ID2D1RectangleGeometry *iface, ID2D1Geometry *geometry, D2D1_COMBINE_MODE combine_mode, const D2D1_MATRIX_3X2_F *transform, float tolerance, ID2D1SimplifiedGeometrySink *sink) { FIXME("iface %p, geometry %p, combine_mode %#x, transform %p, tolerance %.8e, sink %p stub!\n", iface, geometry, combine_mode, transform, tolerance, sink); return E_NOTIMPL; } static HRESULT STDMETHODCALLTYPE d2d_rectangle_geometry_Outline(ID2D1RectangleGeometry *iface, const D2D1_MATRIX_3X2_F *transform, float tolerance, ID2D1SimplifiedGeometrySink *sink) { FIXME("iface %p, transform %p, tolerance %.8e, sink %p stub!\n", iface, transform, tolerance, sink); return E_NOTIMPL; } static HRESULT STDMETHODCALLTYPE d2d_rectangle_geometry_ComputeArea(ID2D1RectangleGeometry *iface, const D2D1_MATRIX_3X2_F *transform, float tolerance, float *area) { FIXME("iface %p, transform %p, tolerance %.8e, area %p stub!\n", iface, transform, tolerance, area); return E_NOTIMPL; } static HRESULT STDMETHODCALLTYPE d2d_rectangle_geometry_ComputeLength(ID2D1RectangleGeometry *iface, const D2D1_MATRIX_3X2_F *transform, float tolerance, float *length) { FIXME("iface %p, transform %p, tolerance %.8e, length %p stub!\n", iface, transform, tolerance, length); return E_NOTIMPL; } static HRESULT STDMETHODCALLTYPE d2d_rectangle_geometry_ComputePointAtLength(ID2D1RectangleGeometry *iface, float length, const D2D1_MATRIX_3X2_F *transform, float tolerance, D2D1_POINT_2F *point, D2D1_POINT_2F *tangent) { FIXME("iface %p, length %.8e, transform %p, tolerance %.8e, point %p, tangent %p stub!\n", iface, length, transform, tolerance, point, tangent); return E_NOTIMPL; } static HRESULT STDMETHODCALLTYPE d2d_rectangle_geometry_Widen(ID2D1RectangleGeometry *iface, float stroke_width, ID2D1StrokeStyle *stroke_style, const D2D1_MATRIX_3X2_F *transform, float tolerance, ID2D1SimplifiedGeometrySink *sink) { FIXME("iface %p, stroke_width %.8e, stroke_style %p, transform %p, tolerance %.8e, sink %p stub!\n", iface, stroke_width, stroke_style, transform, tolerance, sink); return E_NOTIMPL; } static void STDMETHODCALLTYPE d2d_rectangle_geometry_GetRect(ID2D1RectangleGeometry *iface, D2D1_RECT_F *rect) { struct d2d_geometry *geometry = impl_from_ID2D1RectangleGeometry(iface); TRACE("iface %p, rect %p.\n", iface, rect); *rect = geometry->u.rectangle.rect; } static const struct ID2D1RectangleGeometryVtbl d2d_rectangle_geometry_vtbl = { d2d_rectangle_geometry_QueryInterface, d2d_rectangle_geometry_AddRef, d2d_rectangle_geometry_Release, d2d_rectangle_geometry_GetFactory, d2d_rectangle_geometry_GetBounds, d2d_rectangle_geometry_GetWidenedBounds, d2d_rectangle_geometry_StrokeContainsPoint, d2d_rectangle_geometry_FillContainsPoint, d2d_rectangle_geometry_CompareWithGeometry, d2d_rectangle_geometry_Simplify, d2d_rectangle_geometry_Tessellate, d2d_rectangle_geometry_CombineWithGeometry, d2d_rectangle_geometry_Outline, d2d_rectangle_geometry_ComputeArea, d2d_rectangle_geometry_ComputeLength, d2d_rectangle_geometry_ComputePointAtLength, d2d_rectangle_geometry_Widen, d2d_rectangle_geometry_GetRect, }; HRESULT d2d_rectangle_geometry_init(struct d2d_geometry *geometry, ID2D1Factory *factory, const D2D1_RECT_F *rect) { d2d_geometry_init(geometry, factory, &identity, (ID2D1GeometryVtbl *)&d2d_rectangle_geometry_vtbl); geometry->u.rectangle.rect = *rect; if (!(geometry->fill.vertices = HeapAlloc(GetProcessHeap(), 0, 4 * sizeof(*geometry->fill.vertices)))) { d2d_geometry_cleanup(geometry); return E_OUTOFMEMORY; } geometry->fill.vertex_count = 4; if (!d2d_array_reserve((void **)&geometry->fill.faces, &geometry->fill.faces_size, 2, sizeof(*geometry->fill.faces))) { d2d_geometry_cleanup(geometry); return E_OUTOFMEMORY; } geometry->fill.face_count = 2; geometry->fill.vertices[0].x = min(rect->left, rect->right); geometry->fill.vertices[0].y = min(rect->top, rect->bottom); geometry->fill.vertices[1].x = min(rect->left, rect->right); geometry->fill.vertices[1].y = max(rect->top, rect->bottom); geometry->fill.vertices[2].x = max(rect->left, rect->right); geometry->fill.vertices[2].y = min(rect->top, rect->bottom); geometry->fill.vertices[3].x = max(rect->left, rect->right); geometry->fill.vertices[3].y = max(rect->top, rect->bottom); geometry->fill.faces[0].v[0] = 0; geometry->fill.faces[0].v[1] = 2; geometry->fill.faces[0].v[2] = 1; geometry->fill.faces[1].v[0] = 1; geometry->fill.faces[1].v[1] = 2; geometry->fill.faces[1].v[2] = 3; return S_OK; } static inline struct d2d_geometry *impl_from_ID2D1TransformedGeometry(ID2D1TransformedGeometry *iface) { return CONTAINING_RECORD(iface, struct d2d_geometry, ID2D1Geometry_iface); } static HRESULT STDMETHODCALLTYPE d2d_transformed_geometry_QueryInterface(ID2D1TransformedGeometry *iface, REFIID iid, void **out) { TRACE("iface %p, iid %s, out %p.\n", iface, debugstr_guid(iid), out); if (IsEqualGUID(iid, &IID_ID2D1TransformedGeometry) || IsEqualGUID(iid, &IID_ID2D1Geometry) || IsEqualGUID(iid, &IID_ID2D1Resource) || IsEqualGUID(iid, &IID_IUnknown)) { ID2D1TransformedGeometry_AddRef(iface); *out = iface; return S_OK; } WARN("%s not implemented, returning E_NOINTERFACE.\n", debugstr_guid(iid)); *out = NULL; return E_NOINTERFACE; } static ULONG STDMETHODCALLTYPE d2d_transformed_geometry_AddRef(ID2D1TransformedGeometry *iface) { struct d2d_geometry *geometry = impl_from_ID2D1TransformedGeometry(iface); ULONG refcount = InterlockedIncrement(&geometry->refcount); TRACE("%p increasing refcount to %u.\n", iface, refcount); return refcount; } static ULONG STDMETHODCALLTYPE d2d_transformed_geometry_Release(ID2D1TransformedGeometry *iface) { struct d2d_geometry *geometry = impl_from_ID2D1TransformedGeometry(iface); ULONG refcount = InterlockedDecrement(&geometry->refcount); TRACE("%p decreasing refcount to %u.\n", iface, refcount); if (!refcount) { geometry->fill.bezier_vertices = NULL; geometry->fill.faces = NULL; geometry->fill.vertices = NULL; ID2D1Geometry_Release(geometry->u.transformed.src_geometry); d2d_geometry_cleanup(geometry); HeapFree(GetProcessHeap(), 0, geometry); } return refcount; } static void STDMETHODCALLTYPE d2d_transformed_geometry_GetFactory(ID2D1TransformedGeometry *iface, ID2D1Factory **factory) { struct d2d_geometry *geometry = impl_from_ID2D1TransformedGeometry(iface); TRACE("iface %p, factory %p.\n", iface, factory); ID2D1Factory_AddRef(*factory = geometry->factory); } static HRESULT STDMETHODCALLTYPE d2d_transformed_geometry_GetBounds(ID2D1TransformedGeometry *iface, const D2D1_MATRIX_3X2_F *transform, D2D1_RECT_F *bounds) { FIXME("iface %p, transform %p, bounds %p stub!\n", iface, transform, bounds); return E_NOTIMPL; } static HRESULT STDMETHODCALLTYPE d2d_transformed_geometry_GetWidenedBounds(ID2D1TransformedGeometry *iface, float stroke_width, ID2D1StrokeStyle *stroke_style, const D2D1_MATRIX_3X2_F *transform, float tolerance, D2D1_RECT_F *bounds) { FIXME("iface %p, stroke_width %.8e, stroke_style %p, transform %p, tolerance %.8e, bounds %p stub!\n", iface, stroke_width, stroke_style, transform, tolerance, bounds); return E_NOTIMPL; } static HRESULT STDMETHODCALLTYPE d2d_transformed_geometry_StrokeContainsPoint(ID2D1TransformedGeometry *iface, D2D1_POINT_2F point, float stroke_width, ID2D1StrokeStyle *stroke_style, const D2D1_MATRIX_3X2_F *transform, float tolerance, BOOL *contains) { struct d2d_geometry *geometry = impl_from_ID2D1TransformedGeometry(iface); D2D1_MATRIX_3X2_F g; TRACE("iface %p, point {%.8e, %.8e}, stroke_width %.8e, stroke_style %p, " "transform %p, tolerance %.8e, contains %p.\n", iface, point.x, point.y, stroke_width, stroke_style, transform, tolerance, contains); g = geometry->transform; if (transform) d2d_matrix_multiply(&g, transform); return ID2D1Geometry_StrokeContainsPoint(geometry->u.transformed.src_geometry, point, stroke_width, stroke_style, &g, tolerance, contains); } static HRESULT STDMETHODCALLTYPE d2d_transformed_geometry_FillContainsPoint(ID2D1TransformedGeometry *iface, D2D1_POINT_2F point, const D2D1_MATRIX_3X2_F *transform, float tolerance, BOOL *contains) { struct d2d_geometry *geometry = impl_from_ID2D1TransformedGeometry(iface); D2D1_MATRIX_3X2_F g; TRACE("iface %p, point {%.8e, %.8e}, transform %p, tolerance %.8e, contains %p.\n", iface, point.x, point.y, transform, tolerance, contains); g = geometry->transform; if (transform) d2d_matrix_multiply(&g, transform); return ID2D1Geometry_FillContainsPoint(geometry->u.transformed.src_geometry, point, &g, tolerance, contains); } static HRESULT STDMETHODCALLTYPE d2d_transformed_geometry_CompareWithGeometry(ID2D1TransformedGeometry *iface, ID2D1Geometry *geometry, const D2D1_MATRIX_3X2_F *transform, float tolerance, D2D1_GEOMETRY_RELATION *relation) { FIXME("iface %p, geometry %p, transform %p, tolerance %.8e, relation %p stub!\n", iface, geometry, transform, tolerance, relation); return E_NOTIMPL; } static HRESULT STDMETHODCALLTYPE d2d_transformed_geometry_Simplify(ID2D1TransformedGeometry *iface, D2D1_GEOMETRY_SIMPLIFICATION_OPTION option, const D2D1_MATRIX_3X2_F *transform, float tolerance, ID2D1SimplifiedGeometrySink *sink) { FIXME("iface %p, option %#x, transform %p, tolerance %.8e, sink %p stub!\n", iface, option, transform, tolerance, sink); return E_NOTIMPL; } static HRESULT STDMETHODCALLTYPE d2d_transformed_geometry_Tessellate(ID2D1TransformedGeometry *iface, const D2D1_MATRIX_3X2_F *transform, float tolerance, ID2D1TessellationSink *sink) { FIXME("iface %p, transform %p, tolerance %.8e, sink %p stub!\n", iface, transform, tolerance, sink); return E_NOTIMPL; } static HRESULT STDMETHODCALLTYPE d2d_transformed_geometry_CombineWithGeometry(ID2D1TransformedGeometry *iface, ID2D1Geometry *geometry, D2D1_COMBINE_MODE combine_mode, const D2D1_MATRIX_3X2_F *transform, float tolerance, ID2D1SimplifiedGeometrySink *sink) { FIXME("iface %p, geometry %p, combine_mode %#x, transform %p, tolerance %.8e, sink %p stub!\n", iface, geometry, combine_mode, transform, tolerance, sink); return E_NOTIMPL; } static HRESULT STDMETHODCALLTYPE d2d_transformed_geometry_Outline(ID2D1TransformedGeometry *iface, const D2D1_MATRIX_3X2_F *transform, float tolerance, ID2D1SimplifiedGeometrySink *sink) { FIXME("iface %p, transform %p, tolerance %.8e, sink %p stub!\n", iface, transform, tolerance, sink); return E_NOTIMPL; } static HRESULT STDMETHODCALLTYPE d2d_transformed_geometry_ComputeArea(ID2D1TransformedGeometry *iface, const D2D1_MATRIX_3X2_F *transform, float tolerance, float *area) { FIXME("iface %p, transform %p, tolerance %.8e, area %p stub!\n", iface, transform, tolerance, area); return E_NOTIMPL; } static HRESULT STDMETHODCALLTYPE d2d_transformed_geometry_ComputeLength(ID2D1TransformedGeometry *iface, const D2D1_MATRIX_3X2_F *transform, float tolerance, float *length) { FIXME("iface %p, transform %p, tolerance %.8e, length %p stub!\n", iface, transform, tolerance, length); return E_NOTIMPL; } static HRESULT STDMETHODCALLTYPE d2d_transformed_geometry_ComputePointAtLength(ID2D1TransformedGeometry *iface, float length, const D2D1_MATRIX_3X2_F *transform, float tolerance, D2D1_POINT_2F *point, D2D1_POINT_2F *tangent) { FIXME("iface %p, length %.8e, transform %p, tolerance %.8e, point %p, tangent %p stub!\n", iface, length, transform, tolerance, point, tangent); return E_NOTIMPL; } static HRESULT STDMETHODCALLTYPE d2d_transformed_geometry_Widen(ID2D1TransformedGeometry *iface, float stroke_width, ID2D1StrokeStyle *stroke_style, const D2D1_MATRIX_3X2_F *transform, float tolerance, ID2D1SimplifiedGeometrySink *sink) { FIXME("iface %p, stroke_width %.8e, stroke_style %p, transform %p, tolerance %.8e, sink %p stub!\n", iface, stroke_width, stroke_style, transform, tolerance, sink); return E_NOTIMPL; } static void STDMETHODCALLTYPE d2d_transformed_geometry_GetSourceGeometry(ID2D1TransformedGeometry *iface, ID2D1Geometry **src_geometry) { struct d2d_geometry *geometry = impl_from_ID2D1TransformedGeometry(iface); TRACE("iface %p, src_geometry %p.\n", iface, src_geometry); ID2D1Geometry_AddRef(*src_geometry = geometry->u.transformed.src_geometry); } static void STDMETHODCALLTYPE d2d_transformed_geometry_GetTransform(ID2D1TransformedGeometry *iface, D2D1_MATRIX_3X2_F *transform) { struct d2d_geometry *geometry = impl_from_ID2D1TransformedGeometry(iface); TRACE("iface %p, transform %p.\n", iface, transform); *transform = geometry->transform; } static const struct ID2D1TransformedGeometryVtbl d2d_transformed_geometry_vtbl = { d2d_transformed_geometry_QueryInterface, d2d_transformed_geometry_AddRef, d2d_transformed_geometry_Release, d2d_transformed_geometry_GetFactory, d2d_transformed_geometry_GetBounds, d2d_transformed_geometry_GetWidenedBounds, d2d_transformed_geometry_StrokeContainsPoint, d2d_transformed_geometry_FillContainsPoint, d2d_transformed_geometry_CompareWithGeometry, d2d_transformed_geometry_Simplify, d2d_transformed_geometry_Tessellate, d2d_transformed_geometry_CombineWithGeometry, d2d_transformed_geometry_Outline, d2d_transformed_geometry_ComputeArea, d2d_transformed_geometry_ComputeLength, d2d_transformed_geometry_ComputePointAtLength, d2d_transformed_geometry_Widen, d2d_transformed_geometry_GetSourceGeometry, d2d_transformed_geometry_GetTransform, }; void d2d_transformed_geometry_init(struct d2d_geometry *geometry, ID2D1Factory *factory, ID2D1Geometry *src_geometry, const D2D_MATRIX_3X2_F *transform) { struct d2d_geometry *src_impl; d2d_geometry_init(geometry, factory, transform, (ID2D1GeometryVtbl *)&d2d_transformed_geometry_vtbl); ID2D1Geometry_AddRef(geometry->u.transformed.src_geometry = src_geometry); src_impl = unsafe_impl_from_ID2D1Geometry(src_geometry); geometry->fill = src_impl->fill; } struct d2d_geometry *unsafe_impl_from_ID2D1Geometry(ID2D1Geometry *iface) { if (!iface) return NULL; assert(iface->lpVtbl == (const ID2D1GeometryVtbl *)&d2d_path_geometry_vtbl || iface->lpVtbl == (const ID2D1GeometryVtbl *)&d2d_rectangle_geometry_vtbl || iface->lpVtbl == (const ID2D1GeometryVtbl *)&d2d_transformed_geometry_vtbl); return CONTAINING_RECORD(iface, struct d2d_geometry, ID2D1Geometry_iface); }