/* * msvcrt.dll math functions * * Copyright 2000 Jon Griffiths * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA */ #include "config.h" #include "wine/port.h" #include #define __USE_ISOC9X 1 #define __USE_ISOC99 1 #include #ifdef HAVE_IEEEFP_H #include #endif #include "msvcrt.h" #include "wine/asm.h" #include "wine/debug.h" WINE_DEFAULT_DEBUG_CHANNEL(msvcrt); #ifndef HAVE_FINITEF #define finitef(x) isfinite(x) #endif /* FIXME: Does not work with -NAN and -0. */ #ifndef signbit #define signbit(x) ((x) < 0) #endif #define _DOMAIN 1 /* domain error in argument */ #define _SING 2 /* singularity */ #define _OVERFLOW 3 /* range overflow */ #define _UNDERFLOW 4 /* range underflow */ typedef int (CDECL *MSVCRT_matherr_func)(struct MSVCRT__exception *); typedef double LDOUBLE; /* long double is just a double */ static MSVCRT_matherr_func MSVCRT_default_matherr_func = NULL; static BOOL sse2_supported; static BOOL sse2_enabled; void msvcrt_init_math(void) { sse2_supported = sse2_enabled = IsProcessorFeaturePresent( PF_XMMI64_INSTRUCTIONS_AVAILABLE ); } /********************************************************************* * _matherr (CRTDLL.@) */ int CDECL MSVCRT__matherr(struct MSVCRT__exception *e) { return 0; } static void math_error(int type, const char *name, double arg1, double arg2, double retval) { TRACE("(%d, %s, %g, %g, %g)\n", type, debugstr_a(name), arg1, arg2, retval); if (MSVCRT_default_matherr_func) { struct MSVCRT__exception exception = {type, (char *)name, arg1, arg2, retval}; if (MSVCRT_default_matherr_func(&exception)) return; } switch (type) { case _DOMAIN: *MSVCRT__errno() = MSVCRT_EDOM; break; case _SING: case _OVERFLOW: *MSVCRT__errno() = MSVCRT_ERANGE; break; case _UNDERFLOW: /* don't set errno */ break; default: ERR("Unhandled math error!\n"); } } /********************************************************************* * __setusermatherr (MSVCRT.@) */ void CDECL MSVCRT___setusermatherr(MSVCRT_matherr_func func) { MSVCRT_default_matherr_func = func; TRACE("new matherr handler %p\n", func); } /********************************************************************* * _set_SSE2_enable (MSVCRT.@) */ int CDECL MSVCRT__set_SSE2_enable(int flag) { sse2_enabled = flag && sse2_supported; return sse2_enabled; } #if defined(_WIN64) # if _MSVCR_VER>=140 /********************************************************************* * _get_FMA3_enable (UCRTBASE.@) */ int CDECL MSVCRT__get_FMA3_enable(void) { FIXME("() stub\n"); return 0; } # endif # if _MSVCR_VER>=120 /********************************************************************* * _set_FMA3_enable (MSVCR120.@) */ int CDECL MSVCRT__set_FMA3_enable(int flag) { FIXME("(%x) stub\n", flag); return 0; } # endif #endif #if !defined(__i386__) || _MSVCR_VER>=120 /********************************************************************* * _chgsignf (MSVCRT.@) */ float CDECL MSVCRT__chgsignf( float num ) { /* FIXME: +-infinity,Nan not tested */ return -num; } /********************************************************************* * _copysignf (MSVCRT.@) */ float CDECL MSVCRT__copysignf( float num, float sign ) { if (signbit(sign)) return signbit(num) ? num : -num; return signbit(num) ? -num : num; } /********************************************************************* * _nextafterf (MSVCRT.@) */ float CDECL MSVCRT__nextafterf( float num, float next ) { if (!finitef(num) || !finitef(next)) *MSVCRT__errno() = MSVCRT_EDOM; return nextafterf( num, next ); } /********************************************************************* * _logbf (MSVCRT.@) */ float CDECL MSVCRT__logbf( float num ) { float ret = logbf(num); if (isnan(num)) math_error(_DOMAIN, "_logbf", num, 0, ret); else if (!num) math_error(_SING, "_logbf", num, 0, ret); return ret; } #endif #ifndef __i386__ /********************************************************************* * _finitef (MSVCRT.@) */ int CDECL MSVCRT__finitef( float num ) { return finitef(num) != 0; /* See comment for _isnan() */ } /********************************************************************* * _isnanf (MSVCRT.@) */ INT CDECL MSVCRT__isnanf( float num ) { /* Some implementations return -1 for true(glibc), msvcrt/crtdll return 1. * Do the same, as the result may be used in calculations */ return isnan(num) != 0; } /********************************************************************* * MSVCRT_acosf (MSVCRT.@) */ float CDECL MSVCRT_acosf( float x ) { /* glibc implements acos() as the FPU equivalent of atan2(sqrt(1 - x ^ 2), x). * asin() uses a similar construction. This is bad because as x gets nearer to * 1 the error in the expression "1 - x^2" can get relatively large due to * cancellation. The sqrt() makes things worse. A safer way to calculate * acos() is to use atan2(sqrt((1 - x) * (1 + x)), x). */ float ret = atan2f(sqrtf((1 - x) * (1 + x)), x); if (x < -1.0 || x > 1.0 || !finitef(x)) math_error(_DOMAIN, "acosf", x, 0, ret); return ret; } /********************************************************************* * MSVCRT_asinf (MSVCRT.@) */ float CDECL MSVCRT_asinf( float x ) { float ret = atan2f(x, sqrtf((1 - x) * (1 + x))); if (x < -1.0 || x > 1.0 || !finitef(x)) math_error(_DOMAIN, "asinf", x, 0, ret); return ret; } /********************************************************************* * MSVCRT_atanf (MSVCRT.@) */ float CDECL MSVCRT_atanf( float x ) { float ret = atanf(x); if (!finitef(x)) math_error(_DOMAIN, "atanf", x, 0, ret); return ret; } /********************************************************************* * MSVCRT_atan2f (MSVCRT.@) */ float CDECL MSVCRT_atan2f( float x, float y ) { float ret = atan2f(x, y); if (isnan(x)) math_error(_DOMAIN, "atan2f", x, y, ret); return ret; } /********************************************************************* * MSVCRT_cosf (MSVCRT.@) */ float CDECL MSVCRT_cosf( float x ) { float ret = cosf(x); if (!finitef(x)) math_error(_DOMAIN, "cosf", x, 0, ret); return ret; } /********************************************************************* * MSVCRT_coshf (MSVCRT.@) */ float CDECL MSVCRT_coshf( float x ) { float ret = coshf(x); if (isnan(x)) math_error(_DOMAIN, "coshf", x, 0, ret); return ret; } /********************************************************************* * MSVCRT_expf (MSVCRT.@) */ float CDECL MSVCRT_expf( float x ) { float ret = expf(x); if (isnan(x)) math_error(_DOMAIN, "expf", x, 0, ret); else if (finitef(x) && !ret) math_error(_UNDERFLOW, "expf", x, 0, ret); else if (finitef(x) && !finitef(ret)) math_error(_OVERFLOW, "expf", x, 0, ret); return ret; } /********************************************************************* * MSVCRT_fmodf (MSVCRT.@) */ float CDECL MSVCRT_fmodf( float x, float y ) { float ret = fmodf(x, y); if (!finitef(x) || !finitef(y)) math_error(_DOMAIN, "fmodf", x, 0, ret); return ret; } /********************************************************************* * MSVCRT_logf (MSVCRT.@) */ float CDECL MSVCRT_logf( float x ) { float ret = logf(x); if (x < 0.0) math_error(_DOMAIN, "logf", x, 0, ret); else if (x == 0.0) math_error(_SING, "logf", x, 0, ret); return ret; } /********************************************************************* * MSVCRT_log10f (MSVCRT.@) */ float CDECL MSVCRT_log10f( float x ) { float ret = log10f(x); if (x < 0.0) math_error(_DOMAIN, "log10f", x, 0, ret); else if (x == 0.0) math_error(_SING, "log10f", x, 0, ret); return ret; } /********************************************************************* * MSVCRT_powf (MSVCRT.@) */ float CDECL MSVCRT_powf( float x, float y ) { float z = powf(x,y); if (x < 0 && y != floorf(y)) math_error(_DOMAIN, "powf", x, y, z); else if (!x && finitef(y) && y < 0) math_error(_SING, "powf", x, y, z); else if (finitef(x) && finitef(y) && !finitef(z)) math_error(_OVERFLOW, "powf", x, y, z); else if (x && finitef(x) && finitef(y) && !z) math_error(_UNDERFLOW, "powf", x, y, z); return z; } /********************************************************************* * MSVCRT_sinf (MSVCRT.@) */ float CDECL MSVCRT_sinf( float x ) { float ret = sinf(x); if (!finitef(x)) math_error(_DOMAIN, "sinf", x, 0, ret); return ret; } /********************************************************************* * MSVCRT_sinhf (MSVCRT.@) */ float CDECL MSVCRT_sinhf( float x ) { float ret = sinhf(x); if (isnan(x)) math_error(_DOMAIN, "sinhf", x, 0, ret); return ret; } /********************************************************************* * MSVCRT_sqrtf (MSVCRT.@) */ float CDECL MSVCRT_sqrtf( float x ) { float ret = sqrtf(x); if (x < 0.0) math_error(_DOMAIN, "sqrtf", x, 0, ret); return ret; } /********************************************************************* * MSVCRT_tanf (MSVCRT.@) */ float CDECL MSVCRT_tanf( float x ) { float ret = tanf(x); if (!finitef(x)) math_error(_DOMAIN, "tanf", x, 0, ret); return ret; } /********************************************************************* * MSVCRT_tanhf (MSVCRT.@) */ float CDECL MSVCRT_tanhf( float x ) { float ret = tanhf(x); if (!finitef(x)) math_error(_DOMAIN, "tanhf", x, 0, ret); return ret; } /********************************************************************* * ceilf (MSVCRT.@) */ float CDECL MSVCRT_ceilf( float x ) { return ceilf(x); } /********************************************************************* * fabsf (MSVCRT.@) */ float CDECL MSVCRT_fabsf( float x ) { return fabsf(x); } /********************************************************************* * floorf (MSVCRT.@) */ float CDECL MSVCRT_floorf( float x ) { return floorf(x); } /********************************************************************* * frexpf (MSVCRT.@) */ float CDECL MSVCRT_frexpf( float x, int *exp ) { return frexpf( x, exp ); } /********************************************************************* * modff (MSVCRT.@) */ float CDECL MSVCRT_modff( float x, float *iptr ) { return modff( x, iptr ); } #endif /********************************************************************* * MSVCRT_acos (MSVCRT.@) */ double CDECL MSVCRT_acos( double x ) { /* glibc implements acos() as the FPU equivalent of atan2(sqrt(1 - x ^ 2), x). * asin() uses a similar construction. This is bad because as x gets nearer to * 1 the error in the expression "1 - x^2" can get relatively large due to * cancellation. The sqrt() makes things worse. A safer way to calculate * acos() is to use atan2(sqrt((1 - x) * (1 + x)), x). */ double ret = atan2(sqrt((1 - x) * (1 + x)), x); if (x < -1.0 || x > 1.0 || !isfinite(x)) math_error(_DOMAIN, "acos", x, 0, ret); return ret; } /********************************************************************* * MSVCRT_asin (MSVCRT.@) */ double CDECL MSVCRT_asin( double x ) { double ret = atan2(x, sqrt((1 - x) * (1 + x))); if (x < -1.0 || x > 1.0 || !isfinite(x)) math_error(_DOMAIN, "asin", x, 0, ret); return ret; } /********************************************************************* * MSVCRT_atan (MSVCRT.@) */ double CDECL MSVCRT_atan( double x ) { double ret = atan(x); if (isnan(x)) math_error(_DOMAIN, "atan", x, 0, ret); return ret; } /********************************************************************* * MSVCRT_atan2 (MSVCRT.@) */ double CDECL MSVCRT_atan2( double x, double y ) { double ret = atan2(x, y); if (isnan(x)) math_error(_DOMAIN, "atan2", x, y, ret); return ret; } /********************************************************************* * MSVCRT_cos (MSVCRT.@) */ double CDECL MSVCRT_cos( double x ) { double ret = cos(x); if (!isfinite(x)) math_error(_DOMAIN, "cos", x, 0, ret); return ret; } /********************************************************************* * MSVCRT_cosh (MSVCRT.@) */ double CDECL MSVCRT_cosh( double x ) { double ret = cosh(x); if (isnan(x)) math_error(_DOMAIN, "cosh", x, 0, ret); return ret; } /********************************************************************* * MSVCRT_exp (MSVCRT.@) */ double CDECL MSVCRT_exp( double x ) { double ret = exp(x); if (isnan(x)) math_error(_DOMAIN, "exp", x, 0, ret); else if (isfinite(x) && !ret) math_error(_UNDERFLOW, "exp", x, 0, ret); else if (isfinite(x) && !isfinite(ret)) math_error(_OVERFLOW, "exp", x, 0, ret); return ret; } /********************************************************************* * MSVCRT_fmod (MSVCRT.@) */ double CDECL MSVCRT_fmod( double x, double y ) { double ret = fmod(x, y); if (!isfinite(x) || !isfinite(y)) math_error(_DOMAIN, "fmod", x, y, ret); return ret; } /********************************************************************* * MSVCRT_log (MSVCRT.@) */ double CDECL MSVCRT_log( double x ) { double ret = log(x); if (x < 0.0) math_error(_DOMAIN, "log", x, 0, ret); else if (x == 0.0) math_error(_SING, "log", x, 0, ret); return ret; } /********************************************************************* * MSVCRT_log10 (MSVCRT.@) */ double CDECL MSVCRT_log10( double x ) { double ret = log10(x); if (x < 0.0) math_error(_DOMAIN, "log10", x, 0, ret); else if (x == 0.0) math_error(_SING, "log10", x, 0, ret); return ret; } /********************************************************************* * MSVCRT_pow (MSVCRT.@) */ double CDECL MSVCRT_pow( double x, double y ) { double z = pow(x,y); if (x < 0 && y != floor(y)) math_error(_DOMAIN, "pow", x, y, z); else if (!x && isfinite(y) && y < 0) math_error(_SING, "pow", x, y, z); else if (isfinite(x) && isfinite(y) && !isfinite(z)) math_error(_OVERFLOW, "pow", x, y, z); else if (x && isfinite(x) && isfinite(y) && !z) math_error(_UNDERFLOW, "pow", x, y, z); return z; } /********************************************************************* * MSVCRT_sin (MSVCRT.@) */ double CDECL MSVCRT_sin( double x ) { double ret = sin(x); if (!isfinite(x)) math_error(_DOMAIN, "sin", x, 0, ret); return ret; } /********************************************************************* * MSVCRT_sinh (MSVCRT.@) */ double CDECL MSVCRT_sinh( double x ) { double ret = sinh(x); if (isnan(x)) math_error(_DOMAIN, "sinh", x, 0, ret); return ret; } /********************************************************************* * MSVCRT_sqrt (MSVCRT.@) */ double CDECL MSVCRT_sqrt( double x ) { double ret = sqrt(x); if (x < 0.0) math_error(_DOMAIN, "sqrt", x, 0, ret); return ret; } /********************************************************************* * MSVCRT_tan (MSVCRT.@) */ double CDECL MSVCRT_tan( double x ) { double ret = tan(x); if (!isfinite(x)) math_error(_DOMAIN, "tan", x, 0, ret); return ret; } /********************************************************************* * MSVCRT_tanh (MSVCRT.@) */ double CDECL MSVCRT_tanh( double x ) { double ret = tanh(x); if (isnan(x)) math_error(_DOMAIN, "tanh", x, 0, ret); return ret; } #if defined(__GNUC__) && defined(__i386__) #define CREATE_FPU_FUNC1(name, call) \ __ASM_GLOBAL_FUNC(name, \ "pushl %ebp\n\t" \ __ASM_CFI(".cfi_adjust_cfa_offset 4\n\t") \ __ASM_CFI(".cfi_rel_offset %ebp,0\n\t") \ "movl %esp, %ebp\n\t" \ __ASM_CFI(".cfi_def_cfa_register %ebp\n\t") \ "subl $68, %esp\n\t" /* sizeof(double)*8 + sizeof(int) */ \ "fstpl (%esp)\n\t" /* store function argument */ \ "fwait\n\t" \ "movl $1, %ecx\n\t" /* empty FPU stack */ \ "1:\n\t" \ "fxam\n\t" \ "fstsw %ax\n\t" \ "and $0x4500, %ax\n\t" \ "cmp $0x4100, %ax\n\t" \ "je 2f\n\t" \ "fstpl (%esp,%ecx,8)\n\t" \ "fwait\n\t" \ "incl %ecx\n\t" \ "jmp 1b\n\t" \ "2:\n\t" \ "movl %ecx, -4(%ebp)\n\t" \ "call " __ASM_NAME( #call ) "\n\t" \ "movl -4(%ebp), %ecx\n\t" \ "fstpl (%esp)\n\t" /* save result */ \ "3:\n\t" /* restore FPU stack */ \ "decl %ecx\n\t" \ "fldl (%esp,%ecx,8)\n\t" \ "cmpl $0, %ecx\n\t" \ "jne 3b\n\t" \ "leave\n\t" \ __ASM_CFI(".cfi_def_cfa %esp,4\n\t") \ __ASM_CFI(".cfi_same_value %ebp\n\t") \ "ret") #define CREATE_FPU_FUNC2(name, call) \ __ASM_GLOBAL_FUNC(name, \ "pushl %ebp\n\t" \ __ASM_CFI(".cfi_adjust_cfa_offset 4\n\t") \ __ASM_CFI(".cfi_rel_offset %ebp,0\n\t") \ "movl %esp, %ebp\n\t" \ __ASM_CFI(".cfi_def_cfa_register %ebp\n\t") \ "subl $68, %esp\n\t" /* sizeof(double)*8 + sizeof(int) */ \ "fstpl 8(%esp)\n\t" /* store function argument */ \ "fwait\n\t" \ "fstpl (%esp)\n\t" \ "fwait\n\t" \ "movl $2, %ecx\n\t" /* empty FPU stack */ \ "1:\n\t" \ "fxam\n\t" \ "fstsw %ax\n\t" \ "and $0x4500, %ax\n\t" \ "cmp $0x4100, %ax\n\t" \ "je 2f\n\t" \ "fstpl (%esp,%ecx,8)\n\t" \ "fwait\n\t" \ "incl %ecx\n\t" \ "jmp 1b\n\t" \ "2:\n\t" \ "movl %ecx, -4(%ebp)\n\t" \ "call " __ASM_NAME( #call ) "\n\t" \ "movl -4(%ebp), %ecx\n\t" \ "fstpl 8(%esp)\n\t" /* save result */ \ "3:\n\t" /* restore FPU stack */ \ "decl %ecx\n\t" \ "fldl (%esp,%ecx,8)\n\t" \ "cmpl $1, %ecx\n\t" \ "jne 3b\n\t" \ "leave\n\t" \ __ASM_CFI(".cfi_def_cfa %esp,4\n\t") \ __ASM_CFI(".cfi_same_value %ebp\n\t") \ "ret") CREATE_FPU_FUNC1(_CIacos, MSVCRT_acos) CREATE_FPU_FUNC1(_CIasin, MSVCRT_asin) CREATE_FPU_FUNC1(_CIatan, MSVCRT_atan) CREATE_FPU_FUNC2(_CIatan2, MSVCRT_atan2) CREATE_FPU_FUNC1(_CIcos, MSVCRT_cos) CREATE_FPU_FUNC1(_CIcosh, MSVCRT_cosh) CREATE_FPU_FUNC1(_CIexp, MSVCRT_exp) CREATE_FPU_FUNC2(_CIfmod, MSVCRT_fmod) CREATE_FPU_FUNC1(_CIlog, MSVCRT_log) CREATE_FPU_FUNC1(_CIlog10, MSVCRT_log10) CREATE_FPU_FUNC2(_CIpow, MSVCRT_pow) CREATE_FPU_FUNC1(_CIsin, MSVCRT_sin) CREATE_FPU_FUNC1(_CIsinh, MSVCRT_sinh) CREATE_FPU_FUNC1(_CIsqrt, MSVCRT_sqrt) CREATE_FPU_FUNC1(_CItan, MSVCRT_tan) CREATE_FPU_FUNC1(_CItanh, MSVCRT_tanh) __ASM_GLOBAL_FUNC(MSVCRT__ftol, "pushl %ebp\n\t" __ASM_CFI(".cfi_adjust_cfa_offset 4\n\t") __ASM_CFI(".cfi_rel_offset %ebp,0\n\t") "movl %esp, %ebp\n\t" __ASM_CFI(".cfi_def_cfa_register %ebp\n\t") "subl $12, %esp\n\t" /* sizeof(LONGLONG) + 2*sizeof(WORD) */ "fnstcw (%esp)\n\t" "mov (%esp), %ax\n\t" "or $0xc00, %ax\n\t" "mov %ax, 2(%esp)\n\t" "fldcw 2(%esp)\n\t" "fistpq 4(%esp)\n\t" "fldcw (%esp)\n\t" "movl 4(%esp), %eax\n\t" "movl 8(%esp), %edx\n\t" "leave\n\t" __ASM_CFI(".cfi_def_cfa %esp,4\n\t") __ASM_CFI(".cfi_same_value %ebp\n\t") "ret") #endif /* defined(__GNUC__) && defined(__i386__) */ /********************************************************************* * _fpclass (MSVCRT.@) */ int CDECL MSVCRT__fpclass(double num) { #if defined(HAVE_FPCLASS) || defined(fpclass) switch (fpclass( num )) { case FP_SNAN: return MSVCRT__FPCLASS_SNAN; case FP_QNAN: return MSVCRT__FPCLASS_QNAN; case FP_NINF: return MSVCRT__FPCLASS_NINF; case FP_PINF: return MSVCRT__FPCLASS_PINF; case FP_NDENORM: return MSVCRT__FPCLASS_ND; case FP_PDENORM: return MSVCRT__FPCLASS_PD; case FP_NZERO: return MSVCRT__FPCLASS_NZ; case FP_PZERO: return MSVCRT__FPCLASS_PZ; case FP_NNORM: return MSVCRT__FPCLASS_NN; case FP_PNORM: return MSVCRT__FPCLASS_PN; default: return MSVCRT__FPCLASS_PN; } #elif defined (fpclassify) switch (fpclassify( num )) { case FP_NAN: return MSVCRT__FPCLASS_QNAN; case FP_INFINITE: return signbit(num) ? MSVCRT__FPCLASS_NINF : MSVCRT__FPCLASS_PINF; case FP_SUBNORMAL: return signbit(num) ?MSVCRT__FPCLASS_ND : MSVCRT__FPCLASS_PD; case FP_ZERO: return signbit(num) ? MSVCRT__FPCLASS_NZ : MSVCRT__FPCLASS_PZ; } return signbit(num) ? MSVCRT__FPCLASS_NN : MSVCRT__FPCLASS_PN; #else if (!isfinite(num)) return MSVCRT__FPCLASS_QNAN; return num == 0.0 ? MSVCRT__FPCLASS_PZ : (num < 0 ? MSVCRT__FPCLASS_NN : MSVCRT__FPCLASS_PN); #endif } /********************************************************************* * _rotl (MSVCRT.@) */ unsigned int CDECL _rotl(unsigned int num, int shift) { shift &= 31; return (num << shift) | (num >> (32-shift)); } /********************************************************************* * _lrotl (MSVCRT.@) */ MSVCRT_ulong CDECL MSVCRT__lrotl(MSVCRT_ulong num, int shift) { shift &= 0x1f; return (num << shift) | (num >> (32-shift)); } /********************************************************************* * _lrotr (MSVCRT.@) */ MSVCRT_ulong CDECL MSVCRT__lrotr(MSVCRT_ulong num, int shift) { shift &= 0x1f; return (num >> shift) | (num << (32-shift)); } /********************************************************************* * _rotr (MSVCRT.@) */ unsigned int CDECL _rotr(unsigned int num, int shift) { shift &= 0x1f; return (num >> shift) | (num << (32-shift)); } /********************************************************************* * _rotl64 (MSVCRT.@) */ unsigned __int64 CDECL _rotl64(unsigned __int64 num, int shift) { shift &= 63; return (num << shift) | (num >> (64-shift)); } /********************************************************************* * _rotr64 (MSVCRT.@) */ unsigned __int64 CDECL _rotr64(unsigned __int64 num, int shift) { shift &= 63; return (num >> shift) | (num << (64-shift)); } /********************************************************************* * abs (MSVCRT.@) */ int CDECL MSVCRT_abs( int n ) { return n >= 0 ? n : -n; } /********************************************************************* * labs (MSVCRT.@) */ MSVCRT_long CDECL MSVCRT_labs( MSVCRT_long n ) { return n >= 0 ? n : -n; } #if _MSVCR_VER>=100 /********************************************************************* * llabs (MSVCR100.@) */ MSVCRT_longlong CDECL MSVCRT_llabs( MSVCRT_longlong n ) { return n >= 0 ? n : -n; } #endif /********************************************************************* * _abs64 (MSVCRT.@) */ __int64 CDECL _abs64( __int64 n ) { return n >= 0 ? n : -n; } /********************************************************************* * _logb (MSVCRT.@) */ double CDECL MSVCRT__logb(double num) { double ret = logb(num); if (isnan(num)) math_error(_DOMAIN, "_logb", num, 0, ret); else if (!num) math_error(_SING, "_logb", num, 0, ret); return ret; } /********************************************************************* * _hypot (MSVCRT.@) */ double CDECL _hypot(double x, double y) { /* FIXME: errno handling */ return hypot( x, y ); } /********************************************************************* * _hypotf (MSVCRT.@) */ float CDECL MSVCRT__hypotf(float x, float y) { /* FIXME: errno handling */ return hypotf( x, y ); } /********************************************************************* * ceil (MSVCRT.@) */ double CDECL MSVCRT_ceil( double x ) { return ceil(x); } /********************************************************************* * floor (MSVCRT.@) */ double CDECL MSVCRT_floor( double x ) { return floor(x); } /********************************************************************* * fma (MSVCRT.@) */ double CDECL MSVCRT_fma( double x, double y, double z ) { #ifdef HAVE_FMA double w = fma(x, y, z); #else double w = x * y + z; #endif if ((isinf(x) && y == 0) || (x == 0 && isinf(y))) *MSVCRT__errno() = MSVCRT_EDOM; else if (isinf(x) && isinf(z) && x != z) *MSVCRT__errno() = MSVCRT_EDOM; else if (isinf(y) && isinf(z) && y != z) *MSVCRT__errno() = MSVCRT_EDOM; return w; } /********************************************************************* * fmaf (MSVCRT.@) */ float CDECL MSVCRT_fmaf( float x, float y, float z ) { #ifdef HAVE_FMAF float w = fmaf(x, y, z); #else float w = x * y + z; #endif if ((isinf(x) && y == 0) || (x == 0 && isinf(y))) *MSVCRT__errno() = MSVCRT_EDOM; else if (isinf(x) && isinf(z) && x != z) *MSVCRT__errno() = MSVCRT_EDOM; else if (isinf(y) && isinf(z) && y != z) *MSVCRT__errno() = MSVCRT_EDOM; return w; } /********************************************************************* * fabs (MSVCRT.@) */ double CDECL MSVCRT_fabs( double x ) { return fabs(x); } /********************************************************************* * frexp (MSVCRT.@) */ double CDECL MSVCRT_frexp( double x, int *exp ) { return frexp( x, exp ); } /********************************************************************* * modf (MSVCRT.@) */ double CDECL MSVCRT_modf( double x, double *iptr ) { return modf( x, iptr ); } /********************************************************************** * _statusfp2 (MSVCRT.@) * * Not exported by native msvcrt, added in msvcr80. */ #if defined(__i386__) || defined(__x86_64__) void CDECL _statusfp2( unsigned int *x86_sw, unsigned int *sse2_sw ) { #ifdef __GNUC__ unsigned int flags; unsigned long fpword; if (x86_sw) { __asm__ __volatile__( "fstsw %0" : "=m" (fpword) ); flags = 0; if (fpword & 0x1) flags |= MSVCRT__SW_INVALID; if (fpword & 0x2) flags |= MSVCRT__SW_DENORMAL; if (fpword & 0x4) flags |= MSVCRT__SW_ZERODIVIDE; if (fpword & 0x8) flags |= MSVCRT__SW_OVERFLOW; if (fpword & 0x10) flags |= MSVCRT__SW_UNDERFLOW; if (fpword & 0x20) flags |= MSVCRT__SW_INEXACT; *x86_sw = flags; } if (!sse2_sw) return; if (sse2_supported) { __asm__ __volatile__( "stmxcsr %0" : "=m" (fpword) ); flags = 0; if (fpword & 0x1) flags |= MSVCRT__SW_INVALID; if (fpword & 0x2) flags |= MSVCRT__SW_DENORMAL; if (fpword & 0x4) flags |= MSVCRT__SW_ZERODIVIDE; if (fpword & 0x8) flags |= MSVCRT__SW_OVERFLOW; if (fpword & 0x10) flags |= MSVCRT__SW_UNDERFLOW; if (fpword & 0x20) flags |= MSVCRT__SW_INEXACT; *sse2_sw = flags; } else *sse2_sw = 0; #else FIXME( "not implemented\n" ); #endif } #endif /********************************************************************** * _statusfp (MSVCRT.@) */ unsigned int CDECL _statusfp(void) { unsigned int flags = 0; #if defined(__i386__) || defined(__x86_64__) unsigned int x86_sw, sse2_sw; _statusfp2( &x86_sw, &sse2_sw ); /* FIXME: there's no definition for ambiguous status, just return all status bits for now */ flags = x86_sw | sse2_sw; #elif defined(__aarch64__) unsigned long fpsr; __asm__ __volatile__( "mrs %0, fpsr" : "=r" (fpsr) ); if (fpsr & 0x1) flags |= MSVCRT__SW_INVALID; if (fpsr & 0x2) flags |= MSVCRT__SW_ZERODIVIDE; if (fpsr & 0x4) flags |= MSVCRT__SW_OVERFLOW; if (fpsr & 0x8) flags |= MSVCRT__SW_UNDERFLOW; if (fpsr & 0x10) flags |= MSVCRT__SW_INEXACT; if (fpsr & 0x80) flags |= MSVCRT__SW_DENORMAL; #else FIXME( "not implemented\n" ); #endif return flags; } /********************************************************************* * _clearfp (MSVCRT.@) */ unsigned int CDECL _clearfp(void) { unsigned int flags = 0; #if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) unsigned long fpword; __asm__ __volatile__( "fnstsw %0; fnclex" : "=m" (fpword) ); if (fpword & 0x1) flags |= MSVCRT__SW_INVALID; if (fpword & 0x2) flags |= MSVCRT__SW_DENORMAL; if (fpword & 0x4) flags |= MSVCRT__SW_ZERODIVIDE; if (fpword & 0x8) flags |= MSVCRT__SW_OVERFLOW; if (fpword & 0x10) flags |= MSVCRT__SW_UNDERFLOW; if (fpword & 0x20) flags |= MSVCRT__SW_INEXACT; if (sse2_supported) { __asm__ __volatile__( "stmxcsr %0" : "=m" (fpword) ); if (fpword & 0x1) flags |= MSVCRT__SW_INVALID; if (fpword & 0x2) flags |= MSVCRT__SW_DENORMAL; if (fpword & 0x4) flags |= MSVCRT__SW_ZERODIVIDE; if (fpword & 0x8) flags |= MSVCRT__SW_OVERFLOW; if (fpword & 0x10) flags |= MSVCRT__SW_UNDERFLOW; if (fpword & 0x20) flags |= MSVCRT__SW_INEXACT; fpword &= ~0x3f; __asm__ __volatile__( "ldmxcsr %0" : : "m" (fpword) ); } #elif defined(__aarch64__) unsigned long fpsr; __asm__ __volatile__( "mrs %0, fpsr" : "=r" (fpsr) ); if (fpsr & 0x1) flags |= MSVCRT__SW_INVALID; if (fpsr & 0x2) flags |= MSVCRT__SW_ZERODIVIDE; if (fpsr & 0x4) flags |= MSVCRT__SW_OVERFLOW; if (fpsr & 0x8) flags |= MSVCRT__SW_UNDERFLOW; if (fpsr & 0x10) flags |= MSVCRT__SW_INEXACT; if (fpsr & 0x80) flags |= MSVCRT__SW_DENORMAL; fpsr &= ~0x9f; __asm__ __volatile__( "msr fpsr, %0" :: "r" (fpsr) ); #else FIXME( "not implemented\n" ); #endif return flags; } /********************************************************************* * __fpecode (MSVCRT.@) */ int * CDECL __fpecode(void) { return &msvcrt_get_thread_data()->fpecode; } /********************************************************************* * ldexp (MSVCRT.@) */ double CDECL MSVCRT_ldexp(double num, MSVCRT_long exp) { double z = ldexp(num,exp); if (isfinite(num) && !isfinite(z)) math_error(_OVERFLOW, "ldexp", num, exp, z); else if (num && isfinite(num) && !z) math_error(_UNDERFLOW, "ldexp", num, exp, z); else if (z == 0 && signbit(z)) z = 0.0; /* Convert -0 -> +0 */ return z; } /********************************************************************* * _cabs (MSVCRT.@) */ double CDECL MSVCRT__cabs(struct MSVCRT__complex num) { return sqrt(num.x * num.x + num.y * num.y); } /********************************************************************* * _chgsign (MSVCRT.@) */ double CDECL MSVCRT__chgsign(double num) { /* FIXME: +-infinity,Nan not tested */ return -num; } /********************************************************************* * __control87_2 (MSVCR80.@) * * Not exported by native msvcrt, added in msvcr80. */ #ifdef __i386__ int CDECL __control87_2( unsigned int newval, unsigned int mask, unsigned int *x86_cw, unsigned int *sse2_cw ) { #ifdef __GNUC__ unsigned long fpword; unsigned int flags; if (x86_cw) { __asm__ __volatile__( "fstcw %0" : "=m" (fpword) ); /* Convert into mask constants */ flags = 0; if (fpword & 0x1) flags |= MSVCRT__EM_INVALID; if (fpword & 0x2) flags |= MSVCRT__EM_DENORMAL; if (fpword & 0x4) flags |= MSVCRT__EM_ZERODIVIDE; if (fpword & 0x8) flags |= MSVCRT__EM_OVERFLOW; if (fpword & 0x10) flags |= MSVCRT__EM_UNDERFLOW; if (fpword & 0x20) flags |= MSVCRT__EM_INEXACT; switch (fpword & 0xc00) { case 0xc00: flags |= MSVCRT__RC_UP|MSVCRT__RC_DOWN; break; case 0x800: flags |= MSVCRT__RC_UP; break; case 0x400: flags |= MSVCRT__RC_DOWN; break; } switch (fpword & 0x300) { case 0x0: flags |= MSVCRT__PC_24; break; case 0x200: flags |= MSVCRT__PC_53; break; case 0x300: flags |= MSVCRT__PC_64; break; } if (fpword & 0x1000) flags |= MSVCRT__IC_AFFINE; TRACE( "x86 flags=%08x newval=%08x mask=%08x\n", flags, newval, mask ); if (mask) { flags = (flags & ~mask) | (newval & mask); /* Convert (masked) value back to fp word */ fpword = 0; if (flags & MSVCRT__EM_INVALID) fpword |= 0x1; if (flags & MSVCRT__EM_DENORMAL) fpword |= 0x2; if (flags & MSVCRT__EM_ZERODIVIDE) fpword |= 0x4; if (flags & MSVCRT__EM_OVERFLOW) fpword |= 0x8; if (flags & MSVCRT__EM_UNDERFLOW) fpword |= 0x10; if (flags & MSVCRT__EM_INEXACT) fpword |= 0x20; switch (flags & MSVCRT__MCW_RC) { case MSVCRT__RC_UP|MSVCRT__RC_DOWN: fpword |= 0xc00; break; case MSVCRT__RC_UP: fpword |= 0x800; break; case MSVCRT__RC_DOWN: fpword |= 0x400; break; } switch (flags & MSVCRT__MCW_PC) { case MSVCRT__PC_64: fpword |= 0x300; break; case MSVCRT__PC_53: fpword |= 0x200; break; case MSVCRT__PC_24: fpword |= 0x0; break; } if (flags & MSVCRT__IC_AFFINE) fpword |= 0x1000; __asm__ __volatile__( "fldcw %0" : : "m" (fpword) ); } *x86_cw = flags; } if (!sse2_cw) return 1; if (sse2_supported) { __asm__ __volatile__( "stmxcsr %0" : "=m" (fpword) ); /* Convert into mask constants */ flags = 0; if (fpword & 0x80) flags |= MSVCRT__EM_INVALID; if (fpword & 0x100) flags |= MSVCRT__EM_DENORMAL; if (fpword & 0x200) flags |= MSVCRT__EM_ZERODIVIDE; if (fpword & 0x400) flags |= MSVCRT__EM_OVERFLOW; if (fpword & 0x800) flags |= MSVCRT__EM_UNDERFLOW; if (fpword & 0x1000) flags |= MSVCRT__EM_INEXACT; switch (fpword & 0x6000) { case 0x6000: flags |= MSVCRT__RC_UP|MSVCRT__RC_DOWN; break; case 0x4000: flags |= MSVCRT__RC_UP; break; case 0x2000: flags |= MSVCRT__RC_DOWN; break; } switch (fpword & 0x8040) { case 0x0040: flags |= MSVCRT__DN_FLUSH_OPERANDS_SAVE_RESULTS; break; case 0x8000: flags |= MSVCRT__DN_SAVE_OPERANDS_FLUSH_RESULTS; break; case 0x8040: flags |= MSVCRT__DN_FLUSH; break; } TRACE( "sse2 flags=%08x newval=%08x mask=%08x\n", flags, newval, mask ); if (mask) { flags = (flags & ~mask) | (newval & mask); /* Convert (masked) value back to fp word */ fpword = 0; if (flags & MSVCRT__EM_INVALID) fpword |= 0x80; if (flags & MSVCRT__EM_DENORMAL) fpword |= 0x100; if (flags & MSVCRT__EM_ZERODIVIDE) fpword |= 0x200; if (flags & MSVCRT__EM_OVERFLOW) fpword |= 0x400; if (flags & MSVCRT__EM_UNDERFLOW) fpword |= 0x800; if (flags & MSVCRT__EM_INEXACT) fpword |= 0x1000; switch (flags & MSVCRT__MCW_RC) { case MSVCRT__RC_UP|MSVCRT__RC_DOWN: fpword |= 0x6000; break; case MSVCRT__RC_UP: fpword |= 0x4000; break; case MSVCRT__RC_DOWN: fpword |= 0x2000; break; } switch (flags & MSVCRT__MCW_DN) { case MSVCRT__DN_FLUSH_OPERANDS_SAVE_RESULTS: fpword |= 0x0040; break; case MSVCRT__DN_SAVE_OPERANDS_FLUSH_RESULTS: fpword |= 0x8000; break; case MSVCRT__DN_FLUSH: fpword |= 0x8040; break; } __asm__ __volatile__( "ldmxcsr %0" : : "m" (fpword) ); } *sse2_cw = flags; } else *sse2_cw = 0; return 1; #else FIXME( "not implemented\n" ); return 0; #endif } #endif /********************************************************************* * _control87 (MSVCRT.@) */ unsigned int CDECL _control87(unsigned int newval, unsigned int mask) { unsigned int flags = 0; #ifdef __i386__ unsigned int sse2_cw; __control87_2( newval, mask, &flags, &sse2_cw ); if ((flags ^ sse2_cw) & (MSVCRT__MCW_EM | MSVCRT__MCW_RC)) flags |= MSVCRT__EM_AMBIGUOUS; #elif defined(__x86_64__) unsigned long fpword; __asm__ __volatile__( "stmxcsr %0" : "=m" (fpword) ); if (fpword & 0x80) flags |= MSVCRT__EM_INVALID; if (fpword & 0x100) flags |= MSVCRT__EM_DENORMAL; if (fpword & 0x200) flags |= MSVCRT__EM_ZERODIVIDE; if (fpword & 0x400) flags |= MSVCRT__EM_OVERFLOW; if (fpword & 0x800) flags |= MSVCRT__EM_UNDERFLOW; if (fpword & 0x1000) flags |= MSVCRT__EM_INEXACT; switch (fpword & 0x6000) { case 0x6000: flags |= MSVCRT__RC_CHOP; break; case 0x4000: flags |= MSVCRT__RC_UP; break; case 0x2000: flags |= MSVCRT__RC_DOWN; break; } switch (fpword & 0x8040) { case 0x0040: flags |= MSVCRT__DN_FLUSH_OPERANDS_SAVE_RESULTS; break; case 0x8000: flags |= MSVCRT__DN_SAVE_OPERANDS_FLUSH_RESULTS; break; case 0x8040: flags |= MSVCRT__DN_FLUSH; break; } flags = (flags & ~mask) | (newval & mask); fpword = 0; if (flags & MSVCRT__EM_INVALID) fpword |= 0x80; if (flags & MSVCRT__EM_DENORMAL) fpword |= 0x100; if (flags & MSVCRT__EM_ZERODIVIDE) fpword |= 0x200; if (flags & MSVCRT__EM_OVERFLOW) fpword |= 0x400; if (flags & MSVCRT__EM_UNDERFLOW) fpword |= 0x800; if (flags & MSVCRT__EM_INEXACT) fpword |= 0x1000; switch (flags & MSVCRT__MCW_RC) { case MSVCRT__RC_CHOP: fpword |= 0x6000; break; case MSVCRT__RC_UP: fpword |= 0x4000; break; case MSVCRT__RC_DOWN: fpword |= 0x2000; break; } switch (flags & MSVCRT__MCW_DN) { case MSVCRT__DN_FLUSH_OPERANDS_SAVE_RESULTS: fpword |= 0x0040; break; case MSVCRT__DN_SAVE_OPERANDS_FLUSH_RESULTS: fpword |= 0x8000; break; case MSVCRT__DN_FLUSH: fpword |= 0x8040; break; } __asm__ __volatile__( "ldmxcsr %0" :: "m" (fpword) ); #elif defined(__aarch64__) unsigned long fpcr; __asm__ __volatile__( "mrs %0, fpcr" : "=r" (fpcr) ); if (!(fpcr & 0x100)) flags |= MSVCRT__EM_INVALID; if (!(fpcr & 0x200)) flags |= MSVCRT__EM_ZERODIVIDE; if (!(fpcr & 0x400)) flags |= MSVCRT__EM_OVERFLOW; if (!(fpcr & 0x800)) flags |= MSVCRT__EM_UNDERFLOW; if (!(fpcr & 0x1000)) flags |= MSVCRT__EM_INEXACT; if (!(fpcr & 0x8000)) flags |= MSVCRT__EM_DENORMAL; switch (fpcr & 0xc00000) { case 0x400000: flags |= MSVCRT__RC_UP; break; case 0x800000: flags |= MSVCRT__RC_DOWN; break; case 0xc00000: flags |= MSVCRT__RC_CHOP; break; } flags = (flags & ~mask) | (newval & mask); fpcr &= ~0xc09f00ul; if (!(flags & MSVCRT__EM_INVALID)) fpcr |= 0x100; if (!(flags & MSVCRT__EM_ZERODIVIDE)) fpcr |= 0x200; if (!(flags & MSVCRT__EM_OVERFLOW)) fpcr |= 0x400; if (!(flags & MSVCRT__EM_UNDERFLOW)) fpcr |= 0x800; if (!(flags & MSVCRT__EM_INEXACT)) fpcr |= 0x1000; if (!(flags & MSVCRT__EM_DENORMAL)) fpcr |= 0x8000; switch (flags & MSVCRT__MCW_RC) { case MSVCRT__RC_CHOP: fpcr |= 0xc00000; break; case MSVCRT__RC_UP: fpcr |= 0x400000; break; case MSVCRT__RC_DOWN: fpcr |= 0x800000; break; } __asm__ __volatile__( "msr fpcr, %0" :: "r" (fpcr) ); #else FIXME( "not implemented\n" ); #endif return flags; } /********************************************************************* * _controlfp (MSVCRT.@) */ unsigned int CDECL _controlfp(unsigned int newval, unsigned int mask) { return _control87( newval, mask & ~MSVCRT__EM_DENORMAL ); } /********************************************************************* * _set_controlfp (MSVCRT.@) */ void CDECL _set_controlfp( unsigned int newval, unsigned int mask ) { _controlfp( newval, mask ); } /********************************************************************* * _controlfp_s (MSVCRT.@) */ int CDECL _controlfp_s(unsigned int *cur, unsigned int newval, unsigned int mask) { static const unsigned int all_flags = (MSVCRT__MCW_EM | MSVCRT__MCW_IC | MSVCRT__MCW_RC | MSVCRT__MCW_PC | MSVCRT__MCW_DN); unsigned int val; if (!MSVCRT_CHECK_PMT( !(newval & mask & ~all_flags) )) { if (cur) *cur = _controlfp( 0, 0 ); /* retrieve it anyway */ return MSVCRT_EINVAL; } val = _controlfp( newval, mask ); if (cur) *cur = val; return 0; } #if _MSVCR_VER>=120 /********************************************************************* * fegetenv (MSVCR120.@) */ int CDECL MSVCRT_fegetenv(MSVCRT_fenv_t *env) { env->control = _controlfp(0, 0) & (MSVCRT__EM_INEXACT | MSVCRT__EM_UNDERFLOW | MSVCRT__EM_OVERFLOW | MSVCRT__EM_ZERODIVIDE | MSVCRT__EM_INVALID); env->status = _statusfp(); return 0; } #endif #if _MSVCR_VER>=140 /********************************************************************* * __fpe_flt_rounds (UCRTBASE.@) */ int CDECL __fpe_flt_rounds(void) { unsigned int fpc = _controlfp(0, 0) & MSVCRT__RC_CHOP; TRACE("()\n"); switch(fpc) { case MSVCRT__RC_CHOP: return 0; case MSVCRT__RC_NEAR: return 1; case MSVCRT__RC_UP: return 2; default: return 3; } } #endif #if _MSVCR_VER>=120 /********************************************************************* * fegetround (MSVCR120.@) */ int CDECL MSVCRT_fegetround(void) { return _controlfp(0, 0) & MSVCRT__RC_CHOP; } /********************************************************************* * fesetround (MSVCR120.@) */ int CDECL MSVCRT_fesetround(int round_mode) { if (round_mode & (~MSVCRT__RC_CHOP)) return 1; _controlfp(round_mode, MSVCRT__RC_CHOP); return 0; } #endif /* _MSVCR_VER>=120 */ /********************************************************************* * _copysign (MSVCRT.@) */ double CDECL MSVCRT__copysign(double num, double sign) { if (signbit(sign)) return signbit(num) ? num : -num; return signbit(num) ? -num : num; } /********************************************************************* * _finite (MSVCRT.@) */ int CDECL MSVCRT__finite(double num) { return isfinite(num) != 0; /* See comment for _isnan() */ } /********************************************************************* * _fpreset (MSVCRT.@) */ void CDECL _fpreset(void) { #if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) const unsigned int x86_cw = 0x27f; __asm__ __volatile__( "fninit; fldcw %0" : : "m" (x86_cw) ); if (sse2_supported) { const unsigned long sse2_cw = 0x1f80; __asm__ __volatile__( "ldmxcsr %0" : : "m" (sse2_cw) ); } #else FIXME( "not implemented\n" ); #endif } #if _MSVCR_VER>=120 /********************************************************************* * fesetenv (MSVCR120.@) */ int CDECL MSVCRT_fesetenv(const MSVCRT_fenv_t *env) { #if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) struct { WORD control_word; WORD unused1; WORD status_word; WORD unused2; WORD tag_word; WORD unused3; DWORD instruction_pointer; WORD code_segment; WORD unused4; DWORD operand_addr; WORD data_segment; WORD unused5; } fenv; TRACE( "(%p)\n", env ); if (!env->control && !env->status) { _fpreset(); return 0; } __asm__ __volatile__( "fnstenv %0" : "=m" (fenv) ); fenv.control_word &= ~0x3d; if (env->control & MSVCRT__EM_INVALID) fenv.control_word |= 0x1; if (env->control & MSVCRT__EM_ZERODIVIDE) fenv.control_word |= 0x4; if (env->control & MSVCRT__EM_OVERFLOW) fenv.control_word |= 0x8; if (env->control & MSVCRT__EM_UNDERFLOW) fenv.control_word |= 0x10; if (env->control & MSVCRT__EM_INEXACT) fenv.control_word |= 0x20; fenv.status_word &= ~0x3d; if (env->status & MSVCRT__SW_INVALID) fenv.status_word |= 0x1; if (env->status & MSVCRT__SW_ZERODIVIDE) fenv.status_word |= 0x4; if (env->status & MSVCRT__SW_OVERFLOW) fenv.status_word |= 0x8; if (env->status & MSVCRT__SW_UNDERFLOW) fenv.status_word |= 0x10; if (env->status & MSVCRT__SW_INEXACT) fenv.status_word |= 0x20; __asm__ __volatile__( "fldenv %0" : : "m" (fenv) : "st", "st(1)", "st(2)", "st(3)", "st(4)", "st(5)", "st(6)", "st(7)" ); if (sse2_supported) { DWORD fpword; __asm__ __volatile__( "stmxcsr %0" : "=m" (fpword) ); fpword &= ~0x1e80; if (env->control & MSVCRT__EM_INVALID) fpword |= 0x80; if (env->control & MSVCRT__EM_ZERODIVIDE) fpword |= 0x200; if (env->control & MSVCRT__EM_OVERFLOW) fpword |= 0x400; if (env->control & MSVCRT__EM_UNDERFLOW) fpword |= 0x800; if (env->control & MSVCRT__EM_INEXACT) fpword |= 0x1000; __asm__ __volatile__( "ldmxcsr %0" : : "m" (fpword) ); } return 0; #else FIXME( "not implemented\n" ); #endif return 1; } #endif /********************************************************************* * _isnan (MSVCRT.@) */ INT CDECL MSVCRT__isnan(double num) { /* Some implementations return -1 for true(glibc), msvcrt/crtdll return 1. * Do the same, as the result may be used in calculations */ return isnan(num) != 0; } /********************************************************************* * _j0 (MSVCRT.@) */ double CDECL MSVCRT__j0(double num) { /* FIXME: errno handling */ #ifdef HAVE_J0 return j0(num); #else FIXME("not implemented\n"); return 0; #endif } /********************************************************************* * _j1 (MSVCRT.@) */ double CDECL MSVCRT__j1(double num) { /* FIXME: errno handling */ #ifdef HAVE_J1 return j1(num); #else FIXME("not implemented\n"); return 0; #endif } /********************************************************************* * _jn (MSVCRT.@) */ double CDECL MSVCRT__jn(int n, double num) { /* FIXME: errno handling */ #ifdef HAVE_JN return jn(n, num); #else FIXME("not implemented\n"); return 0; #endif } /********************************************************************* * _y0 (MSVCRT.@) */ double CDECL MSVCRT__y0(double num) { double retval; if (!isfinite(num)) *MSVCRT__errno() = MSVCRT_EDOM; #ifdef HAVE_Y0 retval = y0(num); if (MSVCRT__fpclass(retval) == MSVCRT__FPCLASS_NINF) { *MSVCRT__errno() = MSVCRT_EDOM; retval = NAN; } #else FIXME("not implemented\n"); retval = 0; #endif return retval; } /********************************************************************* * _y1 (MSVCRT.@) */ double CDECL MSVCRT__y1(double num) { double retval; if (!isfinite(num)) *MSVCRT__errno() = MSVCRT_EDOM; #ifdef HAVE_Y1 retval = y1(num); if (MSVCRT__fpclass(retval) == MSVCRT__FPCLASS_NINF) { *MSVCRT__errno() = MSVCRT_EDOM; retval = NAN; } #else FIXME("not implemented\n"); retval = 0; #endif return retval; } /********************************************************************* * _yn (MSVCRT.@) */ double CDECL MSVCRT__yn(int order, double num) { double retval; if (!isfinite(num)) *MSVCRT__errno() = MSVCRT_EDOM; #ifdef HAVE_YN retval = yn(order,num); if (MSVCRT__fpclass(retval) == MSVCRT__FPCLASS_NINF) { *MSVCRT__errno() = MSVCRT_EDOM; retval = NAN; } #else FIXME("not implemented\n"); retval = 0; #endif return retval; } #if _MSVCR_VER>=120 /********************************************************************* * _nearbyint (MSVCR120.@) */ double CDECL MSVCRT_nearbyint(double num) { #ifdef HAVE_NEARBYINT return nearbyint(num); #else return num >= 0 ? floor(num + 0.5) : ceil(num - 0.5); #endif } /********************************************************************* * _nearbyintf (MSVCR120.@) */ float CDECL MSVCRT_nearbyintf(float num) { #ifdef HAVE_NEARBYINTF return nearbyintf(num); #else return MSVCRT_nearbyint(num); #endif } /********************************************************************* * nexttoward (MSVCR120.@) */ double CDECL MSVCRT_nexttoward(double num, double next) { #ifdef HAVE_NEXTTOWARD double ret = nexttoward(num, next); if (!(MSVCRT__fpclass(ret) & (MSVCRT__FPCLASS_PN | MSVCRT__FPCLASS_NN | MSVCRT__FPCLASS_SNAN | MSVCRT__FPCLASS_QNAN)) && !isinf(num)) { *MSVCRT__errno() = MSVCRT_ERANGE; } return ret; #else FIXME("not implemented\n"); return 0; #endif } /********************************************************************* * nexttowardf (MSVCR120.@) */ float CDECL MSVCRT_nexttowardf(float num, double next) { #ifdef HAVE_NEXTTOWARDF float ret = nexttowardf(num, next); if (!(MSVCRT__fpclass(ret) & (MSVCRT__FPCLASS_PN | MSVCRT__FPCLASS_NN | MSVCRT__FPCLASS_SNAN | MSVCRT__FPCLASS_QNAN)) && !isinf(num)) { *MSVCRT__errno() = MSVCRT_ERANGE; } return ret; #else FIXME("not implemented\n"); return 0; #endif } #endif /* _MSVCR_VER>=120 */ /********************************************************************* * _nextafter (MSVCRT.@) */ double CDECL MSVCRT__nextafter(double num, double next) { double retval; if (!isfinite(num) || !isfinite(next)) *MSVCRT__errno() = MSVCRT_EDOM; retval = nextafter(num,next); return retval; } /********************************************************************* * _ecvt (MSVCRT.@) */ char * CDECL MSVCRT__ecvt( double number, int ndigits, int *decpt, int *sign ) { int prec, len; thread_data_t *data = msvcrt_get_thread_data(); /* FIXME: check better for overflow (native supports over 300 chars) */ ndigits = min( ndigits, 80 - 7); /* 7 : space for dec point, 1 for "e", * 4 for exponent and one for * terminating '\0' */ if (!data->efcvt_buffer) data->efcvt_buffer = MSVCRT_malloc( 80 ); /* ought to be enough */ if( number < 0) { *sign = TRUE; number = -number; } else *sign = FALSE; /* handle cases with zero ndigits or less */ prec = ndigits; if( prec < 1) prec = 2; len = snprintf(data->efcvt_buffer, 80, "%.*le", prec - 1, number); /* take the decimal "point away */ if( prec != 1) memmove( data->efcvt_buffer + 1, data->efcvt_buffer + 2, len - 1 ); /* take the exponential "e" out */ data->efcvt_buffer[ prec] = '\0'; /* read the exponent */ sscanf( data->efcvt_buffer + prec + 1, "%d", decpt); (*decpt)++; /* adjust for some border cases */ if( data->efcvt_buffer[0] == '0')/* value is zero */ *decpt = 0; /* handle cases with zero ndigits or less */ if( ndigits < 1){ if( data->efcvt_buffer[ 0] >= '5') (*decpt)++; data->efcvt_buffer[ 0] = '\0'; } TRACE("out=\"%s\"\n",data->efcvt_buffer); return data->efcvt_buffer; } /********************************************************************* * _ecvt_s (MSVCRT.@) */ int CDECL MSVCRT__ecvt_s( char *buffer, MSVCRT_size_t length, double number, int ndigits, int *decpt, int *sign ) { int prec, len; char *result; const char infret[] = "1#INF"; if (!MSVCRT_CHECK_PMT(buffer != NULL)) return MSVCRT_EINVAL; if (!MSVCRT_CHECK_PMT(decpt != NULL)) return MSVCRT_EINVAL; if (!MSVCRT_CHECK_PMT(sign != NULL)) return MSVCRT_EINVAL; if (!MSVCRT_CHECK_PMT_ERR( length > 2, MSVCRT_ERANGE )) return MSVCRT_ERANGE; if (!MSVCRT_CHECK_PMT_ERR(ndigits < (int)length - 1, MSVCRT_ERANGE )) return MSVCRT_ERANGE; /* special case - inf */ if(number == HUGE_VAL || number == -HUGE_VAL) { memset(buffer, '0', ndigits); memcpy(buffer, infret, min(ndigits, sizeof(infret) - 1 ) ); buffer[ndigits] = '\0'; (*decpt) = 1; if(number == -HUGE_VAL) (*sign) = 1; else (*sign) = 0; return 0; } /* handle cases with zero ndigits or less */ prec = ndigits; if( prec < 1) prec = 2; result = MSVCRT_malloc(prec + 7); if( number < 0) { *sign = TRUE; number = -number; } else *sign = FALSE; len = snprintf(result, prec + 7, "%.*le", prec - 1, number); /* take the decimal "point away */ if( prec != 1) memmove( result + 1, result + 2, len - 1 ); /* take the exponential "e" out */ result[ prec] = '\0'; /* read the exponent */ sscanf( result + prec + 1, "%d", decpt); (*decpt)++; /* adjust for some border cases */ if( result[0] == '0')/* value is zero */ *decpt = 0; /* handle cases with zero ndigits or less */ if( ndigits < 1){ if( result[ 0] >= '5') (*decpt)++; result[ 0] = '\0'; } memcpy( buffer, result, max(ndigits + 1, 1) ); MSVCRT_free( result ); return 0; } /*********************************************************************** * _fcvt (MSVCRT.@) */ char * CDECL MSVCRT__fcvt( double number, int ndigits, int *decpt, int *sign ) { thread_data_t *data = msvcrt_get_thread_data(); int stop, dec1, dec2; char *ptr1, *ptr2, *first; char buf[80]; /* ought to be enough */ if (!data->efcvt_buffer) data->efcvt_buffer = MSVCRT_malloc( 80 ); /* ought to be enough */ if (number < 0) { *sign = 1; number = -number; } else *sign = 0; stop = snprintf(buf, 80, "%.*f", ndigits < 0 ? 0 : ndigits, number); ptr1 = buf; ptr2 = data->efcvt_buffer; first = NULL; dec1 = 0; dec2 = 0; /* For numbers below the requested resolution, work out where the decimal point will be rather than finding it in the string */ if (number < 1.0 && number > 0.0) { dec2 = log10(number + 1e-10); if (-dec2 <= ndigits) dec2 = 0; } /* If requested digits is zero or less, we will need to truncate * the returned string */ if (ndigits < 1) { stop += ndigits; } while (*ptr1 == '0') ptr1++; /* Skip leading zeroes */ while (*ptr1 != '\0' && *ptr1 != '.') { if (!first) first = ptr2; if ((ptr1 - buf) < stop) { *ptr2++ = *ptr1++; } else { ptr1++; } dec1++; } if (ndigits > 0) { ptr1++; if (!first) { while (*ptr1 == '0') { /* Process leading zeroes */ *ptr2++ = *ptr1++; dec1--; } } while (*ptr1 != '\0') { if (!first) first = ptr2; *ptr2++ = *ptr1++; } } *ptr2 = '\0'; /* We never found a non-zero digit, then our number is either * smaller than the requested precision, or 0.0 */ if (!first) { if (number > 0.0) { first = ptr2; } else { first = data->efcvt_buffer; dec1 = 0; } } *decpt = dec2 ? dec2 : dec1; return first; } /*********************************************************************** * _fcvt_s (MSVCRT.@) */ int CDECL MSVCRT__fcvt_s(char* outbuffer, MSVCRT_size_t size, double number, int ndigits, int *decpt, int *sign) { int stop, dec1, dec2; char *ptr1, *ptr2, *first; char buf[80]; /* ought to be enough */ if (!outbuffer || !decpt || !sign || size == 0) { *MSVCRT__errno() = MSVCRT_EINVAL; return MSVCRT_EINVAL; } if (number < 0) { *sign = 1; number = -number; } else *sign = 0; stop = snprintf(buf, 80, "%.*f", ndigits < 0 ? 0 : ndigits, number); ptr1 = buf; ptr2 = outbuffer; first = NULL; dec1 = 0; dec2 = 0; /* For numbers below the requested resolution, work out where the decimal point will be rather than finding it in the string */ if (number < 1.0 && number > 0.0) { dec2 = log10(number + 1e-10); if (-dec2 <= ndigits) dec2 = 0; } /* If requested digits is zero or less, we will need to truncate * the returned string */ if (ndigits < 1) { stop += ndigits; } while (*ptr1 == '0') ptr1++; /* Skip leading zeroes */ while (*ptr1 != '\0' && *ptr1 != '.') { if (!first) first = ptr2; if ((ptr1 - buf) < stop) { if (size > 1) { *ptr2++ = *ptr1++; size--; } } else { ptr1++; } dec1++; } if (ndigits > 0) { ptr1++; if (!first) { while (*ptr1 == '0') { /* Process leading zeroes */ if (number == 0.0 && size > 1) { *ptr2++ = '0'; size--; } ptr1++; dec1--; } } while (*ptr1 != '\0') { if (!first) first = ptr2; if (size > 1) { *ptr2++ = *ptr1++; size--; } } } *ptr2 = '\0'; /* We never found a non-zero digit, then our number is either * smaller than the requested precision, or 0.0 */ if (!first && (number <= 0.0)) dec1 = 0; *decpt = dec2 ? dec2 : dec1; return 0; } /*********************************************************************** * _gcvt (MSVCRT.@) */ char * CDECL MSVCRT__gcvt( double number, int ndigit, char *buff ) { if(!buff) { *MSVCRT__errno() = MSVCRT_EINVAL; return NULL; } if(ndigit < 0) { *MSVCRT__errno() = MSVCRT_ERANGE; return NULL; } MSVCRT_sprintf(buff, "%.*g", ndigit, number); return buff; } /*********************************************************************** * _gcvt_s (MSVCRT.@) */ int CDECL MSVCRT__gcvt_s(char *buff, MSVCRT_size_t size, double number, int digits) { int len; if(!buff) { *MSVCRT__errno() = MSVCRT_EINVAL; return MSVCRT_EINVAL; } if( digits<0 || digits>=size) { if(size) buff[0] = '\0'; *MSVCRT__errno() = MSVCRT_ERANGE; return MSVCRT_ERANGE; } len = MSVCRT__scprintf("%.*g", digits, number); if(len > size) { buff[0] = '\0'; *MSVCRT__errno() = MSVCRT_ERANGE; return MSVCRT_ERANGE; } MSVCRT_sprintf(buff, "%.*g", digits, number); return 0; } #include /* div_t, ldiv_t */ /********************************************************************* * div (MSVCRT.@) * VERSION * [i386] Windows binary compatible - returns the struct in eax/edx. */ #ifdef __i386__ unsigned __int64 CDECL MSVCRT_div(int num, int denom) { div_t dt = div(num,denom); return ((unsigned __int64)dt.rem << 32) | (unsigned int)dt.quot; } #else /********************************************************************* * div (MSVCRT.@) * VERSION * [!i386] Non-x86 can't run win32 apps so we don't need binary compatibility */ MSVCRT_div_t CDECL MSVCRT_div(int num, int denom) { div_t dt = div(num,denom); MSVCRT_div_t ret; ret.quot = dt.quot; ret.rem = dt.rem; return ret; } #endif /* ifdef __i386__ */ /********************************************************************* * ldiv (MSVCRT.@) * VERSION * [i386] Windows binary compatible - returns the struct in eax/edx. */ #ifdef __i386__ unsigned __int64 CDECL MSVCRT_ldiv(MSVCRT_long num, MSVCRT_long denom) { ldiv_t ldt = ldiv(num,denom); return ((unsigned __int64)ldt.rem << 32) | (MSVCRT_ulong)ldt.quot; } #else /********************************************************************* * ldiv (MSVCRT.@) * VERSION * [!i386] Non-x86 can't run win32 apps so we don't need binary compatibility */ MSVCRT_ldiv_t CDECL MSVCRT_ldiv(MSVCRT_long num, MSVCRT_long denom) { ldiv_t result = ldiv(num,denom); MSVCRT_ldiv_t ret; ret.quot = result.quot; ret.rem = result.rem; return ret; } #endif /* ifdef __i386__ */ #if _MSVCR_VER>=100 /********************************************************************* * lldiv (MSVCR100.@) */ MSVCRT_lldiv_t* CDECL MSVCRT_lldiv(MSVCRT_lldiv_t *ret, MSVCRT_longlong num, MSVCRT_longlong denom) { ret->quot = num / denom; ret->rem = num % denom; return ret; } #endif #ifdef __i386__ /********************************************************************* * _adjust_fdiv (MSVCRT.@) * Used by the MSVC compiler to work around the Pentium FDIV bug. */ int MSVCRT__adjust_fdiv = 0; /*********************************************************************** * _adj_fdiv_m16i (MSVCRT.@) * * NOTE * I _think_ this function is intended to work around the Pentium * fdiv bug. */ void __stdcall _adj_fdiv_m16i( short arg ) { TRACE("(): stub\n"); } /*********************************************************************** * _adj_fdiv_m32 (MSVCRT.@) * * NOTE * I _think_ this function is intended to work around the Pentium * fdiv bug. */ void __stdcall _adj_fdiv_m32( unsigned int arg ) { TRACE("(): stub\n"); } /*********************************************************************** * _adj_fdiv_m32i (MSVCRT.@) * * NOTE * I _think_ this function is intended to work around the Pentium * fdiv bug. */ void __stdcall _adj_fdiv_m32i( int arg ) { TRACE("(): stub\n"); } /*********************************************************************** * _adj_fdiv_m64 (MSVCRT.@) * * NOTE * I _think_ this function is intended to work around the Pentium * fdiv bug. */ void __stdcall _adj_fdiv_m64( unsigned __int64 arg ) { TRACE("(): stub\n"); } /*********************************************************************** * _adj_fdiv_r (MSVCRT.@) * FIXME * This function is likely to have the wrong number of arguments. * * NOTE * I _think_ this function is intended to work around the Pentium * fdiv bug. */ void _adj_fdiv_r(void) { TRACE("(): stub\n"); } /*********************************************************************** * _adj_fdivr_m16i (MSVCRT.@) * * NOTE * I _think_ this function is intended to work around the Pentium * fdiv bug. */ void __stdcall _adj_fdivr_m16i( short arg ) { TRACE("(): stub\n"); } /*********************************************************************** * _adj_fdivr_m32 (MSVCRT.@) * * NOTE * I _think_ this function is intended to work around the Pentium * fdiv bug. */ void __stdcall _adj_fdivr_m32( unsigned int arg ) { TRACE("(): stub\n"); } /*********************************************************************** * _adj_fdivr_m32i (MSVCRT.@) * * NOTE * I _think_ this function is intended to work around the Pentium * fdiv bug. */ void __stdcall _adj_fdivr_m32i( int arg ) { TRACE("(): stub\n"); } /*********************************************************************** * _adj_fdivr_m64 (MSVCRT.@) * * NOTE * I _think_ this function is intended to work around the Pentium * fdiv bug. */ void __stdcall _adj_fdivr_m64( unsigned __int64 arg ) { TRACE("(): stub\n"); } /*********************************************************************** * _adj_fpatan (MSVCRT.@) * FIXME * This function is likely to have the wrong number of arguments. * * NOTE * I _think_ this function is intended to work around the Pentium * fdiv bug. */ void _adj_fpatan(void) { TRACE("(): stub\n"); } /*********************************************************************** * _adj_fprem (MSVCRT.@) * FIXME * This function is likely to have the wrong number of arguments. * * NOTE * I _think_ this function is intended to work around the Pentium * fdiv bug. */ void _adj_fprem(void) { TRACE("(): stub\n"); } /*********************************************************************** * _adj_fprem1 (MSVCRT.@) * FIXME * This function is likely to have the wrong number of arguments. * * NOTE * I _think_ this function is intended to work around the Pentium * fdiv bug. */ void _adj_fprem1(void) { TRACE("(): stub\n"); } /*********************************************************************** * _adj_fptan (MSVCRT.@) * FIXME * This function is likely to have the wrong number of arguments. * * NOTE * I _think_ this function is intended to work around the Pentium * fdiv bug. */ void _adj_fptan(void) { TRACE("(): stub\n"); } /*********************************************************************** * _safe_fdiv (MSVCRT.@) * FIXME * This function is likely to have the wrong number of arguments. * * NOTE * I _think_ this function is intended to work around the Pentium * fdiv bug. */ void _safe_fdiv(void) { TRACE("(): stub\n"); } /*********************************************************************** * _safe_fdivr (MSVCRT.@) * FIXME * This function is likely to have the wrong number of arguments. * * NOTE * I _think_ this function is intended to work around the Pentium * fdiv bug. */ void _safe_fdivr(void) { TRACE("(): stub\n"); } /*********************************************************************** * _safe_fprem (MSVCRT.@) * FIXME * This function is likely to have the wrong number of arguments. * * NOTE * I _think_ this function is intended to work around the Pentium * fdiv bug. */ void _safe_fprem(void) { TRACE("(): stub\n"); } /*********************************************************************** * _safe_fprem1 (MSVCRT.@) * * FIXME * This function is likely to have the wrong number of arguments. * * NOTE * I _think_ this function is intended to work around the Pentium * fdiv bug. */ void _safe_fprem1(void) { TRACE("(): stub\n"); } /*********************************************************************** * __libm_sse2_acos (MSVCRT.@) */ void __cdecl MSVCRT___libm_sse2_acos(void) { double d; __asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) ); d = acos( d ); __asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) ); } /*********************************************************************** * __libm_sse2_acosf (MSVCRT.@) */ void __cdecl MSVCRT___libm_sse2_acosf(void) { float f; __asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) ); f = acosf( f ); __asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) ); } /*********************************************************************** * __libm_sse2_asin (MSVCRT.@) */ void __cdecl MSVCRT___libm_sse2_asin(void) { double d; __asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) ); d = asin( d ); __asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) ); } /*********************************************************************** * __libm_sse2_asinf (MSVCRT.@) */ void __cdecl MSVCRT___libm_sse2_asinf(void) { float f; __asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) ); f = asinf( f ); __asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) ); } /*********************************************************************** * __libm_sse2_atan (MSVCRT.@) */ void __cdecl MSVCRT___libm_sse2_atan(void) { double d; __asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) ); d = atan( d ); __asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) ); } /*********************************************************************** * __libm_sse2_atan2 (MSVCRT.@) */ void __cdecl MSVCRT___libm_sse2_atan2(void) { double d1, d2; __asm__ __volatile__( "movq %%xmm0,%0; movq %%xmm1,%1 " : "=m" (d1), "=m" (d2) ); d1 = atan2( d1, d2 ); __asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d1) ); } /*********************************************************************** * __libm_sse2_atanf (MSVCRT.@) */ void __cdecl MSVCRT___libm_sse2_atanf(void) { float f; __asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) ); f = atanf( f ); __asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) ); } /*********************************************************************** * __libm_sse2_cos (MSVCRT.@) */ void __cdecl MSVCRT___libm_sse2_cos(void) { double d; __asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) ); d = cos( d ); __asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) ); } /*********************************************************************** * __libm_sse2_cosf (MSVCRT.@) */ void __cdecl MSVCRT___libm_sse2_cosf(void) { float f; __asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) ); f = cosf( f ); __asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) ); } /*********************************************************************** * __libm_sse2_exp (MSVCRT.@) */ void __cdecl MSVCRT___libm_sse2_exp(void) { double d; __asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) ); d = exp( d ); __asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) ); } /*********************************************************************** * __libm_sse2_expf (MSVCRT.@) */ void __cdecl MSVCRT___libm_sse2_expf(void) { float f; __asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) ); f = expf( f ); __asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) ); } /*********************************************************************** * __libm_sse2_log (MSVCRT.@) */ void __cdecl MSVCRT___libm_sse2_log(void) { double d; __asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) ); d = log( d ); __asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) ); } /*********************************************************************** * __libm_sse2_log10 (MSVCRT.@) */ void __cdecl MSVCRT___libm_sse2_log10(void) { double d; __asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) ); d = log10( d ); __asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) ); } /*********************************************************************** * __libm_sse2_log10f (MSVCRT.@) */ void __cdecl MSVCRT___libm_sse2_log10f(void) { float f; __asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) ); f = log10f( f ); __asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) ); } /*********************************************************************** * __libm_sse2_logf (MSVCRT.@) */ void __cdecl MSVCRT___libm_sse2_logf(void) { float f; __asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) ); f = logf( f ); __asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) ); } /*********************************************************************** * __libm_sse2_pow (MSVCRT.@) */ void __cdecl MSVCRT___libm_sse2_pow(void) { double d1, d2; __asm__ __volatile__( "movq %%xmm0,%0; movq %%xmm1,%1 " : "=m" (d1), "=m" (d2) ); d1 = pow( d1, d2 ); __asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d1) ); } /*********************************************************************** * __libm_sse2_powf (MSVCRT.@) */ void __cdecl MSVCRT___libm_sse2_powf(void) { float f1, f2; __asm__ __volatile__( "movd %%xmm0,%0; movd %%xmm1,%1" : "=g" (f1), "=g" (f2) ); f1 = powf( f1, f2 ); __asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f1) ); } /*********************************************************************** * __libm_sse2_sin (MSVCRT.@) */ void __cdecl MSVCRT___libm_sse2_sin(void) { double d; __asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) ); d = sin( d ); __asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) ); } /*********************************************************************** * __libm_sse2_sinf (MSVCRT.@) */ void __cdecl MSVCRT___libm_sse2_sinf(void) { float f; __asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) ); f = sinf( f ); __asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) ); } /*********************************************************************** * __libm_sse2_tan (MSVCRT.@) */ void __cdecl MSVCRT___libm_sse2_tan(void) { double d; __asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) ); d = tan( d ); __asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) ); } /*********************************************************************** * __libm_sse2_tanf (MSVCRT.@) */ void __cdecl MSVCRT___libm_sse2_tanf(void) { float f; __asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) ); f = tanf( f ); __asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) ); } /*********************************************************************** * __libm_sse2_sqrt_precise (MSVCR110.@) */ void __cdecl MSVCRT___libm_sse2_sqrt_precise(void) { double d; __asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) ); d = sqrt( d ); __asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) ); } #endif /* __i386__ */ /********************************************************************* * cbrt (MSVCR120.@) */ double CDECL MSVCR120_cbrt(double x) { #ifdef HAVE_CBRT return cbrt(x); #else return x < 0 ? -pow(-x, 1.0 / 3.0) : pow(x, 1.0 / 3.0); #endif } /********************************************************************* * cbrtf (MSVCR120.@) */ float CDECL MSVCR120_cbrtf(float x) { #ifdef HAVE_CBRTF return cbrtf(x); #else return MSVCR120_cbrt(x); #endif } /********************************************************************* * cbrtl (MSVCR120.@) */ LDOUBLE CDECL MSVCR120_cbrtl(LDOUBLE x) { return MSVCR120_cbrt(x); } /********************************************************************* * exp2 (MSVCR120.@) */ double CDECL MSVCR120_exp2(double x) { #ifdef HAVE_EXP2 double ret = exp2(x); #else double ret = pow(2, x); #endif if (isfinite(x) && !isfinite(ret)) *MSVCRT__errno() = MSVCRT_ERANGE; return ret; } /********************************************************************* * exp2f (MSVCR120.@) */ float CDECL MSVCR120_exp2f(float x) { #ifdef HAVE_EXP2F float ret = exp2f(x); if (finitef(x) && !finitef(ret)) *MSVCRT__errno() = MSVCRT_ERANGE; return ret; #else return MSVCR120_exp2(x); #endif } /********************************************************************* * exp2l (MSVCR120.@) */ LDOUBLE CDECL MSVCR120_exp2l(LDOUBLE x) { return MSVCR120_exp2(x); } /********************************************************************* * expm1 (MSVCR120.@) */ double CDECL MSVCR120_expm1(double x) { #ifdef HAVE_EXPM1 double ret = expm1(x); #else double ret = exp(x) - 1; #endif if (isfinite(x) && !isfinite(ret)) *MSVCRT__errno() = MSVCRT_ERANGE; return ret; } /********************************************************************* * expm1f (MSVCR120.@) */ float CDECL MSVCR120_expm1f(float x) { #ifdef HAVE_EXPM1F float ret = expm1f(x); #else float ret = exp(x) - 1; #endif if (finitef(x) && !finitef(ret)) *MSVCRT__errno() = MSVCRT_ERANGE; return ret; } /********************************************************************* * expm1l (MSVCR120.@) */ LDOUBLE CDECL MSVCR120_expm1l(LDOUBLE x) { return MSVCR120_expm1(x); } /********************************************************************* * log1p (MSVCR120.@) */ double CDECL MSVCR120_log1p(double x) { if (x < -1) *MSVCRT__errno() = MSVCRT_EDOM; else if (x == -1) *MSVCRT__errno() = MSVCRT_ERANGE; #ifdef HAVE_LOG1P return log1p(x); #else return log(1 + x); #endif } /********************************************************************* * log1pf (MSVCR120.@) */ float CDECL MSVCR120_log1pf(float x) { if (x < -1) *MSVCRT__errno() = MSVCRT_EDOM; else if (x == -1) *MSVCRT__errno() = MSVCRT_ERANGE; #ifdef HAVE_LOG1PF return log1pf(x); #else return log(1 + x); #endif } /********************************************************************* * log1pl (MSVCR120.@) */ LDOUBLE CDECL MSVCR120_log1pl(LDOUBLE x) { return MSVCR120_log1p(x); } /********************************************************************* * log2 (MSVCR120.@) */ double CDECL MSVCR120_log2(double x) { if (x < 0) *MSVCRT__errno() = MSVCRT_EDOM; else if (x == 0) *MSVCRT__errno() = MSVCRT_ERANGE; #ifdef HAVE_LOG2 return log2(x); #else return log(x) / log(2); #endif } /********************************************************************* * log2f (MSVCR120.@) */ float CDECL MSVCR120_log2f(float x) { #ifdef HAVE_LOG2F if (x < 0) *MSVCRT__errno() = MSVCRT_EDOM; else if (x == 0) *MSVCRT__errno() = MSVCRT_ERANGE; return log2f(x); #else return MSVCR120_log2(x); #endif } /********************************************************************* * log2l (MSVCR120.@) */ LDOUBLE CDECL MSVCR120_log2l(LDOUBLE x) { return MSVCR120_log2(x); } /********************************************************************* * rint (MSVCR120.@) */ double CDECL MSVCR120_rint(double x) { return rint(x); } /********************************************************************* * rintf (MSVCR120.@) */ float CDECL MSVCR120_rintf(float x) { return rintf(x); } /********************************************************************* * rintl (MSVCR120.@) */ LDOUBLE CDECL MSVCR120_rintl(LDOUBLE x) { return MSVCR120_rint(x); } /********************************************************************* * lrint (MSVCR120.@) */ MSVCRT_long CDECL MSVCR120_lrint(double x) { return lrint(x); } /********************************************************************* * lrintf (MSVCR120.@) */ MSVCRT_long CDECL MSVCR120_lrintf(float x) { return lrintf(x); } /********************************************************************* * lrintl (MSVCR120.@) */ MSVCRT_long CDECL MSVCR120_lrintl(LDOUBLE x) { return MSVCR120_lrint(x); } /********************************************************************* * llrint (MSVCR120.@) */ MSVCRT_longlong CDECL MSVCR120_llrint(double x) { return llrint(x); } /********************************************************************* * llrintf (MSVCR120.@) */ MSVCRT_longlong CDECL MSVCR120_llrintf(float x) { return llrintf(x); } /********************************************************************* * rintl (MSVCR120.@) */ MSVCRT_longlong CDECL MSVCR120_llrintl(LDOUBLE x) { return MSVCR120_llrint(x); } #if _MSVCR_VER>=120 /********************************************************************* * round (MSVCR120.@) */ double CDECL MSVCR120_round(double x) { #ifdef HAVE_ROUND return round(x); #else return MSVCR120_rint(x); #endif } /********************************************************************* * roundf (MSVCR120.@) */ float CDECL MSVCR120_roundf(float x) { #ifdef HAVE_ROUNDF return roundf(x); #else return MSVCR120_round(x); #endif } /********************************************************************* * roundl (MSVCR120.@) */ LDOUBLE CDECL MSVCR120_roundl(LDOUBLE x) { return MSVCR120_round(x); } /********************************************************************* * lround (MSVCR120.@) */ MSVCRT_long CDECL MSVCR120_lround(double x) { #ifdef HAVE_LROUND return lround(x); #else return MSVCR120_round(x); #endif } /********************************************************************* * lroundf (MSVCR120.@) */ MSVCRT_long CDECL MSVCR120_lroundf(float x) { #ifdef HAVE_LROUNDF return lroundf(x); #else return MSVCR120_lround(x); #endif } /********************************************************************* * lroundl (MSVCR120.@) */ MSVCRT_long CDECL MSVCR120_lroundl(LDOUBLE x) { return MSVCR120_lround(x); } /********************************************************************* * llround (MSVCR120.@) */ MSVCRT_longlong CDECL MSVCR120_llround(double x) { #ifdef HAVE_LLROUND return llround(x); #else return MSVCR120_round(x); #endif } /********************************************************************* * llroundf (MSVCR120.@) */ MSVCRT_longlong CDECL MSVCR120_llroundf(float x) { #ifdef HAVE_LLROUNDF return llroundf(x); #else return MSVCR120_llround(x); #endif } /********************************************************************* * roundl (MSVCR120.@) */ MSVCRT_longlong CDECL MSVCR120_llroundl(LDOUBLE x) { return MSVCR120_llround(x); } /********************************************************************* * trunc (MSVCR120.@) */ double CDECL MSVCR120_trunc(double x) { #ifdef HAVE_TRUNC return trunc(x); #else return (x > 0) ? floor(x) : ceil(x); #endif } /********************************************************************* * truncf (MSVCR120.@) */ float CDECL MSVCR120_truncf(float x) { #ifdef HAVE_TRUNCF return truncf(x); #else return MSVCR120_trunc(x); #endif } /********************************************************************* * truncl (MSVCR120.@) */ LDOUBLE CDECL MSVCR120_truncl(LDOUBLE x) { return MSVCR120_trunc(x); } /********************************************************************* * _dclass (MSVCR120.@) */ short CDECL MSVCR120__dclass(double x) { switch (MSVCRT__fpclass(x)) { case MSVCRT__FPCLASS_QNAN: case MSVCRT__FPCLASS_SNAN: return MSVCRT_FP_NAN; case MSVCRT__FPCLASS_NINF: case MSVCRT__FPCLASS_PINF: return MSVCRT_FP_INFINITE; case MSVCRT__FPCLASS_ND: case MSVCRT__FPCLASS_PD: return MSVCRT_FP_SUBNORMAL; case MSVCRT__FPCLASS_NN: case MSVCRT__FPCLASS_PN: default: return MSVCRT_FP_NORMAL; case MSVCRT__FPCLASS_NZ: case MSVCRT__FPCLASS_PZ: return MSVCRT_FP_ZERO; } } /********************************************************************* * _fdclass (MSVCR120.@) */ short CDECL MSVCR120__fdclass(float x) { return MSVCR120__dclass(x); } /********************************************************************* * _ldclass (MSVCR120.@) */ short CDECL MSVCR120__ldclass(LDOUBLE x) { return MSVCR120__dclass(x); } /********************************************************************* * _dtest (MSVCR120.@) */ short CDECL MSVCR120__dtest(double *x) { return MSVCR120__dclass(*x); } /********************************************************************* * _fdtest (MSVCR120.@) */ short CDECL MSVCR120__fdtest(float *x) { return MSVCR120__dclass(*x); } /********************************************************************* * _ldtest (MSVCR120.@) */ short CDECL MSVCR120__ldtest(LDOUBLE *x) { return MSVCR120__dclass(*x); } /********************************************************************* * erf (MSVCR120.@) */ double CDECL MSVCR120_erf(double x) { #ifdef HAVE_ERF return erf(x); #else /* Abramowitz and Stegun approximation, maximum error: 1.5*10^-7 */ double t, y; int sign = signbit(x); if (sign) x = -x; t = 1 / (1 + 0.3275911 * x); y = ((((1.061405429*t - 1.453152027)*t + 1.421413741)*t - 0.284496736)*t + 0.254829592)*t; y = 1.0 - y*exp(-x*x); return sign ? -y : y; #endif } /********************************************************************* * erff (MSVCR120.@) */ float CDECL MSVCR120_erff(float x) { #ifdef HAVE_ERFF return erff(x); #else return MSVCR120_erf(x); #endif } /********************************************************************* * erfl (MSVCR120.@) */ LDOUBLE CDECL MSVCR120_erfl(LDOUBLE x) { return MSVCR120_erf(x); } /********************************************************************* * erfc (MSVCR120.@) */ double CDECL MSVCR120_erfc(double x) { #ifdef HAVE_ERFC return erfc(x); #else return 1 - MSVCR120_erf(x); #endif } /********************************************************************* * erfcf (MSVCR120.@) */ float CDECL MSVCR120_erfcf(float x) { #ifdef HAVE_ERFCF return erfcf(x); #else return MSVCR120_erfc(x); #endif } /********************************************************************* * erfcl (MSVCR120.@) */ LDOUBLE CDECL MSVCR120_erfcl(LDOUBLE x) { return MSVCR120_erfc(x); } /********************************************************************* * fmaxf (MSVCR120.@) */ float CDECL MSVCR120_fmaxf(float x, float y) { if(isnan(x)) return y; if(isnan(y)) return x; if(x==0 && y==0) return signbit(x) ? y : x; return xy ? x-y : 0; } /********************************************************************* * fdim (MSVCR120.@) */ double CDECL MSVCR120_fdim(double x, double y) { if(isnan(x)) return x; if(isnan(y)) return y; return x>y ? x-y : 0; } /********************************************************************* * _fdsign (MSVCR120.@) */ int CDECL MSVCR120__fdsign(float x) { return signbit(x) ? 0x8000 : 0; } /********************************************************************* * _dsign (MSVCR120.@) */ int CDECL MSVCR120__dsign(double x) { return signbit(x) ? 0x8000 : 0; } /********************************************************************* * _dpcomp (MSVCR120.@) */ int CDECL MSVCR120__dpcomp(double x, double y) { if(isnan(x) || isnan(y)) return 0; if(x == y) return 2; return x < y ? 1 : 4; } /********************************************************************* * _fdpcomp (MSVCR120.@) */ int CDECL MSVCR120__fdpcomp(float x, float y) { return MSVCR120__dpcomp(x, y); } /********************************************************************* * fminf (MSVCR120.@) */ float CDECL MSVCR120_fminf(float x, float y) { if(isnan(x)) return y; if(isnan(y)) return x; if(x==0 && y==0) return signbit(x) ? x : y; return x 0) return log(2) + log(x); else return -log(2) - log(-x); } return log(x + sqrt(x*x+1)); #endif } /********************************************************************* * asinhf (MSVCR120.@) */ float CDECL MSVCR120_asinhf(float x) { #ifdef HAVE_ASINHF return asinhf(x); #else return MSVCR120_asinh(x); #endif } /********************************************************************* * asinhl (MSVCR120.@) */ LDOUBLE CDECL MSVCR120_asinhl(LDOUBLE x) { return MSVCR120_asinh(x); } /********************************************************************* * acosh (MSVCR120.@) */ double CDECL MSVCR120_acosh(double x) { if (x < 1) *MSVCRT__errno() = MSVCRT_EDOM; #ifdef HAVE_ACOSH return acosh(x); #else if (x < 1) { MSVCRT_fenv_t env; MSVCRT_fegetenv(&env); env.status |= MSVCRT__SW_INVALID; MSVCRT_fesetenv(&env); return NAN; } if (!isfinite(x*x)) return log(2) + log(x); return log(x + sqrt(x*x-1)); #endif } /********************************************************************* * acoshf (MSVCR120.@) */ float CDECL MSVCR120_acoshf(float x) { #ifdef HAVE_ACOSHF if (x < 1) *MSVCRT__errno() = MSVCRT_EDOM; return acoshf(x); #else return MSVCR120_acosh(x); #endif } /********************************************************************* * acoshl (MSVCR120.@) */ LDOUBLE CDECL MSVCR120_acoshl(LDOUBLE x) { return MSVCR120_acosh(x); } /********************************************************************* * atanh (MSVCR120.@) */ double CDECL MSVCR120_atanh(double x) { double ret; if (x > 1 || x < -1) { MSVCRT_fenv_t env; *MSVCRT__errno() = MSVCRT_EDOM; /* on Linux atanh returns -NAN in this case */ MSVCRT_fegetenv(&env); env.status |= MSVCRT__SW_INVALID; MSVCRT_fesetenv(&env); return NAN; } #ifdef HAVE_ATANH ret = atanh(x); #else if (-1e-6 < x && x < 1e-6) ret = x + x*x*x/3; else ret = (log(1+x) - log(1-x)) / 2; #endif if (!isfinite(ret)) *MSVCRT__errno() = MSVCRT_ERANGE; return ret; } /********************************************************************* * atanhf (MSVCR120.@) */ float CDECL MSVCR120_atanhf(float x) { #ifdef HAVE_ATANHF float ret; if (x > 1 || x < -1) { MSVCRT_fenv_t env; *MSVCRT__errno() = MSVCRT_EDOM; MSVCRT_fegetenv(&env); env.status |= MSVCRT__SW_INVALID; MSVCRT_fesetenv(&env); return NAN; } ret = atanhf(x); if (!finitef(ret)) *MSVCRT__errno() = MSVCRT_ERANGE; return ret; #else return MSVCR120_atanh(x); #endif } /********************************************************************* * atanhl (MSVCR120.@) */ LDOUBLE CDECL MSVCR120_atanhl(LDOUBLE x) { return MSVCR120_atanh(x); } #endif /* _MSVCR_VER>=120 */ /********************************************************************* * _scalb (MSVCRT.@) * scalbn (MSVCR120.@) * scalbln (MSVCR120.@) */ double CDECL MSVCRT__scalb(double num, MSVCRT_long power) { return MSVCRT_ldexp(num, power); } /********************************************************************* * _scalbf (MSVCRT.@) * scalbnf (MSVCR120.@) * scalblnf (MSVCR120.@) */ float CDECL MSVCRT__scalbf(float num, MSVCRT_long power) { return MSVCRT_ldexp(num, power); } #if _MSVCR_VER>=120 /********************************************************************* * scalbnl (MSVCR120.@) * scalblnl (MSVCR120.@) */ LDOUBLE CDECL MSVCR120_scalbnl(LDOUBLE num, MSVCRT_long power) { return MSVCRT__scalb(num, power); } /********************************************************************* * remainder (MSVCR120.@) */ double CDECL MSVCR120_remainder(double x, double y) { #ifdef HAVE_REMAINDER /* this matches 64-bit Windows. 32-bit Windows is slightly different */ if(!finite(x)) *MSVCRT__errno() = MSVCRT_EDOM; if(isnan(y) || y==0.0) *MSVCRT__errno() = MSVCRT_EDOM; return remainder(x, y); #else FIXME( "not implemented\n" ); return 0.0; #endif } /********************************************************************* * remainderf (MSVCR120.@) */ float CDECL MSVCR120_remainderf(float x, float y) { #ifdef HAVE_REMAINDERF /* this matches 64-bit Windows. 32-bit Windows is slightly different */ if(!finitef(x)) *MSVCRT__errno() = MSVCRT_EDOM; if(isnan(y) || y==0.0f) *MSVCRT__errno() = MSVCRT_EDOM; return remainderf(x, y); #else FIXME( "not implemented\n" ); return 0.0f; #endif } /********************************************************************* * remainderl (MSVCR120.@) */ LDOUBLE CDECL MSVCR120_remainderl(LDOUBLE x, LDOUBLE y) { return MSVCR120_remainder(x, y); } /********************************************************************* * remquo (MSVCR120.@) */ double CDECL MSVCR120_remquo(double x, double y, int *quo) { #ifdef HAVE_REMQUO if(!finite(x)) *MSVCRT__errno() = MSVCRT_EDOM; if(isnan(y) || y==0.0) *MSVCRT__errno() = MSVCRT_EDOM; return remquo(x, y, quo); #else FIXME( "not implemented\n" ); return 0.0; #endif } /********************************************************************* * remquof (MSVCR120.@) */ float CDECL MSVCR120_remquof(float x, float y, int *quo) { #ifdef HAVE_REMQUOF if(!finitef(x)) *MSVCRT__errno() = MSVCRT_EDOM; if(isnan(y) || y==0.0f) *MSVCRT__errno() = MSVCRT_EDOM; return remquof(x, y, quo); #else FIXME( "not implemented\n" ); return 0.0f; #endif } /********************************************************************* * remquol (MSVCR120.@) */ LDOUBLE CDECL MSVCR120_remquol(LDOUBLE x, LDOUBLE y, int *quo) { return MSVCR120_remquo(x, y, quo); } /********************************************************************* * lgamma (MSVCR120.@) */ double CDECL MSVCR120_lgamma(double x) { #ifdef HAVE_LGAMMA return lgamma(x); #else FIXME( "not implemented\n" ); return 0.0; #endif } /********************************************************************* * lgammaf (MSVCR120.@) */ float CDECL MSVCR120_lgammaf(float x) { #ifdef HAVE_LGAMMAF return lgammaf(x); #else FIXME( "not implemented\n" ); return 0.0f; #endif } /********************************************************************* * lgammal (MSVCR120.@) */ LDOUBLE CDECL MSVCR120_lgammal(LDOUBLE x) { return MSVCR120_lgamma(x); } /********************************************************************* * tgamma (MSVCR120.@) */ double CDECL MSVCR120_tgamma(double x) { #ifdef HAVE_TGAMMA if(x==0.0) *MSVCRT__errno() = MSVCRT_ERANGE; if(x<0.0f) { double integral; if (modf(x, &integral) == 0) *MSVCRT__errno() = MSVCRT_EDOM; } return tgamma(x); #else FIXME( "not implemented\n" ); return 0.0; #endif } /********************************************************************* * tgammaf (MSVCR120.@) */ float CDECL MSVCR120_tgammaf(float x) { #ifdef HAVE_TGAMMAF if(x==0.0f) *MSVCRT__errno() = MSVCRT_ERANGE; if(x<0.0f) { float integral; if (modff(x, &integral) == 0) *MSVCRT__errno() = MSVCRT_EDOM; } return tgammaf(x); #else FIXME( "not implemented\n" ); return 0.0f; #endif } /********************************************************************* * nan (MSVCR120.@) */ double CDECL MSVCR120_nan(const char *tagp) { /* Windows ignores input (MSDN) */ return NAN; } /********************************************************************* * nanf (MSVCR120.@) */ float CDECL MSVCR120_nanf(const char *tagp) { return NAN; } /********************************************************************* * _except1 (MSVCR120.@) * TODO: * - find meaning of ignored cw and operation bits * - unk parameter */ double CDECL _except1(DWORD fpe, _FP_OPERATION_CODE op, double arg, double res, DWORD cw, void *unk) { ULONG_PTR exception_arg; DWORD exception = 0; MSVCRT_fenv_t env; DWORD fpword = 0; WORD operation; TRACE("(%x %x %lf %lf %x %p)\n", fpe, op, arg, res, cw, unk); #ifdef _WIN64 cw = ((cw >> 7) & 0x3f) | ((cw >> 3) & 0xc00); #endif operation = op << 5; exception_arg = (ULONG_PTR)&operation; MSVCRT_fegetenv(&env); if (fpe & 0x1) { /* overflow */ if ((fpe == 0x1 && (cw & 0x8)) || (fpe==0x11 && (cw & 0x28))) { /* 32-bit version also sets SW_INEXACT here */ env.status |= MSVCRT__SW_OVERFLOW; if (fpe & 0x10) env.status |= MSVCRT__SW_INEXACT; res = signbit(res) ? -INFINITY : INFINITY; } else { exception = EXCEPTION_FLT_OVERFLOW; } } else if (fpe & 0x2) { /* underflow */ if ((fpe == 0x2 && (cw & 0x10)) || (fpe==0x12 && (cw & 0x30))) { env.status |= MSVCRT__SW_UNDERFLOW; if (fpe & 0x10) env.status |= MSVCRT__SW_INEXACT; res = signbit(res) ? -0.0 : 0.0; } else { exception = EXCEPTION_FLT_UNDERFLOW; } } else if (fpe & 0x4) { /* zerodivide */ if ((fpe == 0x4 && (cw & 0x4)) || (fpe==0x14 && (cw & 0x24))) { env.status |= MSVCRT__SW_ZERODIVIDE; if (fpe & 0x10) env.status |= MSVCRT__SW_INEXACT; } else { exception = EXCEPTION_FLT_DIVIDE_BY_ZERO; } } else if (fpe & 0x8) { /* invalid */ if (fpe == 0x8 && (cw & 0x1)) { env.status |= MSVCRT__SW_INVALID; } else { exception = EXCEPTION_FLT_INVALID_OPERATION; } } else if (fpe & 0x10) { /* inexact */ if (fpe == 0x10 && (cw & 0x20)) { env.status |= MSVCRT__SW_INEXACT; } else { exception = EXCEPTION_FLT_INEXACT_RESULT; } } if (exception) env.status = 0; MSVCRT_fesetenv(&env); if (exception) RaiseException(exception, 0, 1, &exception_arg); if (cw & 0x1) fpword |= MSVCRT__EM_INVALID; if (cw & 0x2) fpword |= MSVCRT__EM_DENORMAL; if (cw & 0x4) fpword |= MSVCRT__EM_ZERODIVIDE; if (cw & 0x8) fpword |= MSVCRT__EM_OVERFLOW; if (cw & 0x10) fpword |= MSVCRT__EM_UNDERFLOW; if (cw & 0x20) fpword |= MSVCRT__EM_INEXACT; switch (cw & 0xc00) { case 0xc00: fpword |= MSVCRT__RC_UP|MSVCRT__RC_DOWN; break; case 0x800: fpword |= MSVCRT__RC_UP; break; case 0x400: fpword |= MSVCRT__RC_DOWN; break; } switch (cw & 0x300) { case 0x0: fpword |= MSVCRT__PC_24; break; case 0x200: fpword |= MSVCRT__PC_53; break; case 0x300: fpword |= MSVCRT__PC_64; break; } if (cw & 0x1000) fpword |= MSVCRT__IC_AFFINE; _control87(fpword, 0xffffffff); return res; } _Dcomplex* CDECL MSVCR120__Cbuild(_Dcomplex *ret, double r, double i) { ret->x = r; ret->y = i; return ret; } double CDECL MSVCR120_creal(_Dcomplex z) { return z.x; } int CDECL MSVCR120_ilogb(double x) { if (!x) return MSVCRT_FP_ILOGB0; if (isnan(x)) return MSVCRT_FP_ILOGBNAN; if (isinf(x)) return MSVCRT_INT_MAX; #ifdef HAVE_ILOGB return ilogb(x); #else return logb(x); #endif } int CDECL MSVCR120_ilogbf(float x) { if (!x) return MSVCRT_FP_ILOGB0; if (isnan(x)) return MSVCRT_FP_ILOGBNAN; if (isinf(x)) return MSVCRT_INT_MAX; #ifdef HAVE_ILOGBF return ilogbf(x); #else return logbf(x); #endif } int CDECL MSVCR120_ilogbl(LDOUBLE x) { return MSVCR120_ilogb(x); } #endif /* _MSVCR_VER>=120 */