/* * Server-side registry management * * Copyright (C) 1999 Alexandre Julliard */ /* To do: * - behavior with deleted keys * - values larger than request buffer * - symbolic links */ #include #include #include #include #include #include "object.h" #include "handle.h" #include "request.h" #include "unicode.h" #include "winbase.h" #include "winerror.h" #include "winreg.h" /* a registry key */ struct key { struct object obj; /* object header */ WCHAR *name; /* key name */ WCHAR *class; /* key class */ struct key *parent; /* parent key */ int last_subkey; /* last in use subkey */ int nb_subkeys; /* count of allocated subkeys */ struct key **subkeys; /* subkeys array */ int last_value; /* last in use value */ int nb_values; /* count of allocated values in array */ struct key_value *values; /* values array */ short flags; /* flags */ short level; /* saving level */ time_t modif; /* last modification time */ }; /* key flags */ #define KEY_VOLATILE 0x0001 /* key is volatile (not saved to disk) */ #define KEY_DELETED 0x0002 /* key has been deleted */ #define KEY_ROOT 0x0004 /* key is a root key */ /* a key value */ struct key_value { WCHAR *name; /* value name */ int type; /* value type */ size_t len; /* value data length in bytes */ void *data; /* pointer to value data */ }; #define MIN_SUBKEYS 8 /* min. number of allocated subkeys per key */ #define MIN_VALUES 8 /* min. number of allocated values per key */ /* the root keys */ #define HKEY_ROOT_FIRST HKEY_CLASSES_ROOT #define HKEY_ROOT_LAST HKEY_DYN_DATA #define NB_ROOT_KEYS (HKEY_ROOT_LAST - HKEY_ROOT_FIRST + 1) #define IS_ROOT_HKEY(h) (((h) >= HKEY_ROOT_FIRST) && ((h) <= HKEY_ROOT_LAST)) static struct key *root_keys[NB_ROOT_KEYS]; static const char * const root_key_names[NB_ROOT_KEYS] = { "HKEY_CLASSES_ROOT", "HKEY_CURRENT_USER", "HKEY_LOCAL_MACHINE", "HKEY_USERS", "HKEY_PERFORMANCE_DATA", "HKEY_CURRENT_CONFIG", "HKEY_DYN_DATA" }; /* keys saving level */ /* current_level is the level that is put into all newly created or modified keys */ /* saving_level is the minimum level that a key needs in order to get saved */ static int current_level; static int saving_level; static int saving_version = 1; /* file format version */ /* information about a file being loaded */ struct file_load_info { FILE *file; /* input file */ char *buffer; /* line buffer */ int len; /* buffer length */ int line; /* current input line */ char *tmp; /* temp buffer to use while parsing input */ int tmplen; /* length of temp buffer */ }; static void key_dump( struct object *obj, int verbose ); static void key_destroy( struct object *obj ); static const struct object_ops key_ops = { sizeof(struct key), /* size */ key_dump, /* dump */ no_add_queue, /* add_queue */ NULL, /* remove_queue */ NULL, /* signaled */ NULL, /* satisfied */ NULL, /* get_poll_events */ NULL, /* poll_event */ no_read_fd, /* get_read_fd */ no_write_fd, /* get_write_fd */ no_flush, /* flush */ no_get_file_info, /* get_file_info */ key_destroy /* destroy */ }; /* * The registry text file format v2 used by this code is similar to the one * used by REGEDIT import/export functionality, with the following differences: * - strings and key names can contain \x escapes for Unicode * - key names use escapes too in order to support Unicode * - the modification time optionally follows the key name * - REG_EXPAND_SZ and REG_MULTI_SZ are saved as strings instead of hex */ static inline char to_hex( char ch ) { if (isdigit(ch)) return ch - '0'; return tolower(ch) - 'a' + 10; } /* dump the full path of a key */ static void dump_path( struct key *key, struct key *base, FILE *f ) { if (key->parent && key != base) { dump_path( key->parent, base, f ); fprintf( f, "\\\\" ); } if (key->name) dump_strW( key->name, strlenW(key->name), f, "[]" ); else /* root key */ { int i; for (i = 0; i < NB_ROOT_KEYS; i++) if (root_keys[i] == key) fprintf( f, "%s", root_key_names[i] ); } } /* dump a value to a text file */ static void dump_value( struct key_value *value, FILE *f ) { int i, count; if (value->name[0]) { fputc( '\"', f ); count = 1 + dump_strW( value->name, strlenW(value->name), f, "\"\"" ); count += fprintf( f, "\"=" ); } else count = fprintf( f, "@=" ); switch(value->type) { case REG_SZ: case REG_EXPAND_SZ: case REG_MULTI_SZ: if (value->type != REG_SZ) fprintf( f, "str(%d):", value->type ); fputc( '\"', f ); if (value->data) dump_strW( (WCHAR *)value->data, value->len / sizeof(WCHAR), f, "\"\"" ); fputc( '\"', f ); break; case REG_DWORD: if (value->len == sizeof(DWORD)) { DWORD dw; memcpy( &dw, value->data, sizeof(DWORD) ); fprintf( f, "dword:%08lx", dw ); break; } /* else fall through */ default: if (value->type == REG_BINARY) count += fprintf( f, "hex:" ); else count += fprintf( f, "hex(%x):", value->type ); for (i = 0; i < value->len; i++) { count += fprintf( f, "%02x", *((unsigned char *)value->data + i) ); if (i < value->len-1) { fputc( ',', f ); if (++count > 76) { fprintf( f, "\\\n " ); count = 2; } } } break; } fputc( '\n', f ); } /* save a registry and all its subkeys to a text file */ static void save_subkeys( struct key *key, struct key *base, FILE *f ) { int i; if (key->flags & KEY_VOLATILE) return; /* save key if it has the proper level, and has either some values or no subkeys */ /* keys with no values but subkeys are saved implicitly by saving the subkeys */ if ((key->level >= saving_level) && ((key->last_value >= 0) || (key->last_subkey == -1))) { fprintf( f, "\n[" ); dump_path( key, base, f ); fprintf( f, "] %ld\n", key->modif ); for (i = 0; i <= key->last_value; i++) dump_value( &key->values[i], f ); } for (i = 0; i <= key->last_subkey; i++) save_subkeys( key->subkeys[i], base, f ); } static void dump_operation( struct key *key, struct key_value *value, const char *op ) { fprintf( stderr, "%s key ", op ); if (key) dump_path( key, NULL, stderr ); else fprintf( stderr, "ERROR" ); if (value) { fprintf( stderr, " value "); dump_value( value, stderr ); } else fprintf( stderr, "\n" ); } static void key_dump( struct object *obj, int verbose ) { struct key *key = (struct key *)obj; assert( obj->ops == &key_ops ); fprintf( stderr, "Key flags=%x ", key->flags ); dump_path( key, NULL, stderr ); fprintf( stderr, "\n" ); } static void key_destroy( struct object *obj ) { int i; struct key *key = (struct key *)obj; assert( obj->ops == &key_ops ); free( key->name ); if (key->class) free( key->class ); for (i = 0; i <= key->last_value; i++) { free( key->values[i].name ); if (key->values[i].data) free( key->values[i].data ); } for (i = 0; i <= key->last_subkey; i++) { key->subkeys[i]->parent = NULL; release_object( key->subkeys[i] ); } } /* duplicate a key path from the request buffer */ /* returns a pointer to a static buffer, so only useable once per request */ static WCHAR *copy_path( const path_t path ) { static WCHAR buffer[MAX_PATH+1]; WCHAR *p = buffer; while (p < buffer + sizeof(buffer) - 1) if (!(*p++ = *path++)) break; *p = 0; return buffer; } /* return the next token in a given path */ /* returns a pointer to a static buffer, so only useable once per request */ static WCHAR *get_path_token( const WCHAR *initpath, size_t maxlen ) { static const WCHAR *path; static const WCHAR *end; static WCHAR buffer[MAX_PATH+1]; WCHAR *p = buffer; if (initpath) { path = initpath; end = path + maxlen / sizeof(WCHAR); } while ((path < end) && (*path == '\\')) path++; while ((path < end) && (p < buffer + sizeof(buffer) - 1)) { WCHAR ch = *path; if (!ch || (ch == '\\')) break; *p++ = ch; path++; } *p = 0; return buffer; } /* duplicate a Unicode string from the request buffer */ static WCHAR *req_strdupW( const WCHAR *str ) { WCHAR *name; size_t len = get_req_strlenW( str ); if ((name = mem_alloc( (len + 1) * sizeof(WCHAR) )) != NULL) { memcpy( name, str, len * sizeof(WCHAR) ); name[len] = 0; } return name; } /* allocate a key object */ static struct key *alloc_key( const WCHAR *name, time_t modif ) { struct key *key; if ((key = (struct key *)alloc_object( &key_ops, -1 ))) { key->name = NULL; key->class = NULL; key->flags = 0; key->last_subkey = -1; key->nb_subkeys = 0; key->subkeys = NULL; key->nb_values = 0; key->last_value = -1; key->values = NULL; key->level = current_level; key->modif = modif; key->parent = NULL; if (name && !(key->name = strdupW( name ))) { release_object( key ); key = NULL; } } return key; } /* update key modification time */ static void touch_key( struct key *key ) { key->modif = time(NULL); key->level = MAX( key->level, current_level ); } /* try to grow the array of subkeys; return 1 if OK, 0 on error */ static int grow_subkeys( struct key *key ) { struct key **new_subkeys; int nb_subkeys; if (key->nb_subkeys) { nb_subkeys = key->nb_subkeys + (key->nb_subkeys / 2); /* grow by 50% */ if (!(new_subkeys = realloc( key->subkeys, nb_subkeys * sizeof(*new_subkeys) ))) { set_error( ERROR_OUTOFMEMORY ); return 0; } } else { nb_subkeys = MIN_VALUES; if (!(new_subkeys = mem_alloc( nb_subkeys * sizeof(*new_subkeys) ))) return 0; } key->subkeys = new_subkeys; key->nb_subkeys = nb_subkeys; return 1; } /* allocate a subkey for a given key, and return its index */ static struct key *alloc_subkey( struct key *parent, const WCHAR *name, int index, time_t modif ) { struct key *key; int i; if (parent->last_subkey + 1 == parent->nb_subkeys) { /* need to grow the array */ if (!grow_subkeys( parent )) return NULL; } if ((key = alloc_key( name, modif )) != NULL) { key->parent = parent; for (i = ++parent->last_subkey; i > index; i--) parent->subkeys[i] = parent->subkeys[i-1]; parent->subkeys[index] = key; } return key; } /* free a subkey of a given key */ static void free_subkey( struct key *parent, int index ) { struct key *key; int i, nb_subkeys; assert( index >= 0 ); assert( index <= parent->last_subkey ); key = parent->subkeys[index]; for (i = index; i < parent->last_subkey; i++) parent->subkeys[i] = parent->subkeys[i + 1]; parent->last_subkey--; key->flags |= KEY_DELETED; key->parent = NULL; release_object( key ); /* try to shrink the array */ nb_subkeys = key->nb_subkeys; if (nb_subkeys > MIN_SUBKEYS && key->last_subkey < nb_subkeys / 2) { struct key **new_subkeys; nb_subkeys -= nb_subkeys / 3; /* shrink by 33% */ if (nb_subkeys < MIN_SUBKEYS) nb_subkeys = MIN_SUBKEYS; if (!(new_subkeys = realloc( key->subkeys, nb_subkeys * sizeof(*new_subkeys) ))) return; key->subkeys = new_subkeys; key->nb_subkeys = nb_subkeys; } } /* find the named child of a given key and return its index */ static struct key *find_subkey( struct key *key, const WCHAR *name, int *index ) { int i, min, max, res; min = 0; max = key->last_subkey; while (min <= max) { i = (min + max) / 2; if (!(res = strcmpiW( key->subkeys[i]->name, name ))) { *index = i; return key->subkeys[i]; } if (res > 0) max = i - 1; else min = i + 1; } *index = min; /* this is where we should insert it */ return NULL; } /* open a subkey */ static struct key *open_key( struct key *key, const WCHAR *name, size_t maxlen ) { int index; WCHAR *path; path = get_path_token( name, maxlen ); while (*path) { if (!(key = find_subkey( key, path, &index ))) { set_error( ERROR_FILE_NOT_FOUND ); break; } path = get_path_token( NULL, 0 ); } if (debug_level > 1) dump_operation( key, NULL, "Open" ); if (key) grab_object( key ); return key; } /* create a subkey */ static struct key *create_key( struct key *key, const WCHAR *name, size_t maxlen, WCHAR *class, unsigned int options, time_t modif, int *created ) { struct key *base; int base_idx, index, flags = 0; WCHAR *path; if (key->flags & KEY_DELETED) /* we cannot create a subkey under a deleted key */ { set_error( ERROR_KEY_DELETED ); return NULL; } if (options & REG_OPTION_VOLATILE) flags |= KEY_VOLATILE; else if (key->flags & KEY_VOLATILE) { set_error( ERROR_CHILD_MUST_BE_VOLATILE ); return NULL; } path = get_path_token( name, maxlen ); *created = 0; while (*path) { struct key *subkey; if (!(subkey = find_subkey( key, path, &index ))) break; key = subkey; path = get_path_token( NULL, 0 ); } /* create the remaining part */ if (!*path) goto done; *created = 1; base = key; base_idx = index; key = alloc_subkey( key, path, index, modif ); while (key) { key->flags |= flags; path = get_path_token( NULL, 0 ); if (!*path) goto done; /* we know the index is always 0 in a new key */ key = alloc_subkey( key, path, 0, modif ); } if (base_idx != -1) free_subkey( base, base_idx ); return NULL; done: if (debug_level > 1) dump_operation( key, NULL, "Create" ); if (class) key->class = strdupW(class); grab_object( key ); return key; } /* find a subkey of a given key by its index */ static void enum_key( struct key *parent, int index, WCHAR *name, WCHAR *class, time_t *modif ) { struct key *key; if ((index < 0) || (index > parent->last_subkey)) set_error( ERROR_NO_MORE_ITEMS ); else { key = parent->subkeys[index]; *modif = key->modif; strcpyW( name, key->name ); if (key->class) strcpyW( class, key->class ); /* FIXME: length */ else *class = 0; if (debug_level > 1) dump_operation( key, NULL, "Enum" ); } } /* query information about a key */ static void query_key( struct key *key, struct query_key_info_request *req ) { int i, len; int max_subkey = 0, max_class = 0; int max_value = 0, max_data = 0; for (i = 0; i <= key->last_subkey; i++) { struct key *subkey = key->subkeys[i]; len = strlenW( subkey->name ); if (len > max_subkey) max_subkey = len; if (!subkey->class) continue; len = strlenW( subkey->class ); if (len > max_class) max_class = len; } for (i = 0; i <= key->last_value; i++) { len = strlenW( key->values[i].name ); if (len > max_value) max_value = len; len = key->values[i].len; if (len > max_data) max_data = len; } req->subkeys = key->last_subkey + 1; req->max_subkey = max_subkey; req->max_class = max_class; req->values = key->last_value + 1; req->max_value = max_value; req->max_data = max_data; req->modif = key->modif; strcpyW( req->name, key->name); if (key->class) strcpyW( req->class, key->class ); /* FIXME: length */ else req->class[0] = 0; if (debug_level > 1) dump_operation( key, NULL, "Query" ); } /* delete a key and its values */ static void delete_key( struct key *key, const WCHAR *name, size_t maxlen ) { int index; struct key *parent; WCHAR *path; path = get_path_token( name, maxlen ); if (!*path) { /* deleting this key, must find parent and index */ if (key->flags & KEY_ROOT) { set_error( ERROR_ACCESS_DENIED ); return; } if (!(parent = key->parent) || (key->flags & KEY_DELETED)) { set_error( ERROR_KEY_DELETED ); return; } for (index = 0; index <= parent->last_subkey; index++) if (parent->subkeys[index] == key) break; assert( index <= parent->last_subkey ); } else while (*path) { parent = key; if (!(key = find_subkey( parent, path, &index ))) { set_error( ERROR_FILE_NOT_FOUND ); return; } path = get_path_token( NULL, 0 ); } /* we can only delete a key that has no subkeys (FIXME) */ if ((key->flags & KEY_ROOT) || (key->last_subkey >= 0)) { set_error( ERROR_ACCESS_DENIED ); return; } if (debug_level > 1) dump_operation( key, NULL, "Delete" ); free_subkey( parent, index ); touch_key( parent ); } /* try to grow the array of values; return 1 if OK, 0 on error */ static int grow_values( struct key *key ) { struct key_value *new_val; int nb_values; if (key->nb_values) { nb_values = key->nb_values + (key->nb_values / 2); /* grow by 50% */ if (!(new_val = realloc( key->values, nb_values * sizeof(*new_val) ))) { set_error( ERROR_OUTOFMEMORY ); return 0; } } else { nb_values = MIN_VALUES; if (!(new_val = mem_alloc( nb_values * sizeof(*new_val) ))) return 0; } key->values = new_val; key->nb_values = nb_values; return 1; } /* find the named value of a given key and return its index in the array */ static struct key_value *find_value( const struct key *key, const WCHAR *name, int *index ) { int i, min, max, res; min = 0; max = key->last_value; while (min <= max) { i = (min + max) / 2; if (!(res = strcmpiW( key->values[i].name, name ))) { *index = i; return &key->values[i]; } if (res > 0) max = i - 1; else min = i + 1; } *index = min; /* this is where we should insert it */ return NULL; } /* insert a new value or return a pointer to an existing one */ static struct key_value *insert_value( struct key *key, const WCHAR *name ) { struct key_value *value; WCHAR *new_name; int i, index; if (!(value = find_value( key, name, &index ))) { /* not found, add it */ if (key->last_value + 1 == key->nb_values) { if (!grow_values( key )) return NULL; } if (!(new_name = strdupW(name))) return NULL; for (i = ++key->last_value; i > index; i--) key->values[i] = key->values[i - 1]; value = &key->values[index]; value->name = new_name; value->len = 0; value->data = NULL; } return value; } /* set a key value */ static void set_value( struct key *key, WCHAR *name, int type, int datalen, void *data ) { struct key_value *value; void *ptr = NULL; /* first copy the data */ if (datalen) { if (!(ptr = mem_alloc( datalen ))) return; memcpy( ptr, data, datalen ); } if (!(value = insert_value( key, name ))) { if (ptr) free( ptr ); return; } if (value->data) free( value->data ); /* already existing, free previous data */ value->type = type; value->len = datalen; value->data = ptr; touch_key( key ); if (debug_level > 1) dump_operation( key, value, "Set" ); } /* get a key value */ static void get_value( struct key *key, WCHAR *name, int *type, int *len, void *data ) { struct key_value *value; int index; if ((value = find_value( key, name, &index ))) { *type = value->type; *len = value->len; if (value->data) memcpy( data, value->data, value->len ); if (debug_level > 1) dump_operation( key, value, "Get" ); } else { *type = -1; *len = 0; set_error( ERROR_FILE_NOT_FOUND ); } } /* enumerate a key value */ static void enum_value( struct key *key, int i, WCHAR *name, int *type, int *len, void *data ) { struct key_value *value; if (i < 0 || i > key->last_value) { name[0] = 0; *len = 0; set_error( ERROR_NO_MORE_ITEMS ); } else { value = &key->values[i]; strcpyW( name, value->name ); *type = value->type; *len = value->len; if (value->data) memcpy( data, value->data, value->len ); if (debug_level > 1) dump_operation( key, value, "Enum" ); } } /* delete a value */ static void delete_value( struct key *key, const WCHAR *name ) { struct key_value *value; int i, index, nb_values; if (!(value = find_value( key, name, &index ))) { set_error( ERROR_FILE_NOT_FOUND ); return; } if (debug_level > 1) dump_operation( key, value, "Delete" ); free( value->name ); if (value->data) free( value->data ); for (i = index; i < key->last_value; i++) key->values[i] = key->values[i + 1]; key->last_value--; touch_key( key ); /* try to shrink the array */ nb_values = key->nb_values; if (nb_values > MIN_VALUES && key->last_value < nb_values / 2) { struct key_value *new_val; nb_values -= nb_values / 3; /* shrink by 33% */ if (nb_values < MIN_VALUES) nb_values = MIN_VALUES; if (!(new_val = realloc( key->values, nb_values * sizeof(*new_val) ))) return; key->values = new_val; key->nb_values = nb_values; } } static struct key *get_hkey_obj( int hkey, unsigned int access ); static struct key *create_root_key( int hkey ) { int dummy; struct key *key; switch(hkey) { /* the two real root-keys */ case HKEY_LOCAL_MACHINE: { static const WCHAR name[] = { 'M','A','C','H','I','N','E',0 }; key = alloc_key( name, time(NULL) ); } break; case HKEY_USERS: { static const WCHAR name[] = { 'U','S','E','R',0 }; key = alloc_key( name, time(NULL) ); } break; /* special subkeys */ case HKEY_CLASSES_ROOT: { static const WCHAR name[] = { 'S','O','F','T','W','A','R','E','\\','C','l','a','s','s','e','s',0 }; struct key *root = get_hkey_obj( HKEY_LOCAL_MACHINE, 0 ); if (!root) return NULL; key = create_key( root, name, sizeof(name), NULL, 0, time(NULL), &dummy ); release_object( root ); } break; case HKEY_CURRENT_CONFIG: { static const WCHAR name[] = { 'S','Y','S','T','E','M','\\', 'C','U','R','R','E','N','T','C','O','N','T','R','O','L','S','E','T','\\', 'H','A','R','D','W','A','R','E','P','R','O','F','I','L','E','S','\\', 'C','U','R','R','E','N','T',0}; struct key *root = get_hkey_obj( HKEY_LOCAL_MACHINE, 0 ); if (!root) return NULL; key = create_key( root, name, sizeof(name), NULL, 0, time(NULL), &dummy ); release_object( root ); } break; case HKEY_CURRENT_USER: { /* FIXME: should be HKEY_USERS\\the_current_user_SID */ static const WCHAR name[] = { '.','D','e','f','a','u','l','t',0 }; struct key *root = get_hkey_obj( HKEY_USERS, 0 ); if (!root) return NULL; key = create_key( root, name, sizeof(name), NULL, 0, time(NULL), &dummy ); release_object( root ); } break; /* dynamically generated keys */ case HKEY_PERFORMANCE_DATA: case HKEY_DYN_DATA: key = alloc_key( NULL, time(NULL) ); break; default: key = NULL; assert(0); } if (key) { root_keys[hkey - HKEY_ROOT_FIRST] = key; key->flags |= KEY_ROOT; } return key; } /* close the top-level keys; used on server exit */ void close_registry(void) { int i; for (i = 0; i < NB_ROOT_KEYS; i++) { if (root_keys[i]) release_object( root_keys[i] ); } } /* get the registry key corresponding to an hkey handle */ static struct key *get_hkey_obj( int hkey, unsigned int access ) { struct key *key; if (IS_ROOT_HKEY(hkey)) { if (!(key = root_keys[hkey - HKEY_ROOT_FIRST])) key = create_root_key( hkey ); grab_object( key ); } else key = (struct key *)get_handle_obj( current->process, hkey, access, &key_ops ); return key; } /* read a line from the input file */ static int read_next_line( struct file_load_info *info ) { char *newbuf; int newlen, pos = 0; info->line++; for (;;) { if (!fgets( info->buffer + pos, info->len - pos, info->file )) return (pos != 0); /* EOF */ pos = strlen(info->buffer); if (info->buffer[pos-1] == '\n') { /* got a full line */ info->buffer[--pos] = 0; if (pos > 0 && info->buffer[pos-1] == '\r') info->buffer[pos-1] = 0; return 1; } if (pos < info->len - 1) return 1; /* EOF but something was read */ /* need to enlarge the buffer */ newlen = info->len + info->len / 2; if (!(newbuf = realloc( info->buffer, newlen ))) { set_error( ERROR_OUTOFMEMORY ); return -1; } info->buffer = newbuf; info->len = newlen; } } /* make sure the temp buffer holds enough space */ static int get_file_tmp_space( struct file_load_info *info, int size ) { char *tmp; if (info->tmplen >= size) return 1; if (!(tmp = realloc( info->tmp, size ))) { set_error( ERROR_OUTOFMEMORY ); return 0; } info->tmp = tmp; info->tmplen = size; return 1; } /* report an error while loading an input file */ static void file_read_error( const char *err, struct file_load_info *info ) { fprintf( stderr, "Line %d: %s '%s'\n", info->line, err, info->buffer ); } /* parse an escaped string back into Unicode */ /* return the number of chars read from the input, or -1 on output overflow */ static int parse_strW( WCHAR *dest, int *len, const char *src, char endchar ) { int count = sizeof(WCHAR); /* for terminating null */ const char *p = src; while (*p && *p != endchar) { if (*p != '\\') *dest = (WCHAR)*p++; else { p++; switch(*p) { case 'a': *dest = '\a'; p++; break; case 'b': *dest = '\b'; p++; break; case 'e': *dest = '\e'; p++; break; case 'f': *dest = '\f'; p++; break; case 'n': *dest = '\n'; p++; break; case 'r': *dest = '\r'; p++; break; case 't': *dest = '\t'; p++; break; case 'v': *dest = '\v'; p++; break; case 'x': /* hex escape */ p++; if (!isxdigit(*p)) *dest = 'x'; else { *dest = to_hex(*p++); if (isxdigit(*p)) *dest = (*dest * 16) + to_hex(*p++); if (isxdigit(*p)) *dest = (*dest * 16) + to_hex(*p++); if (isxdigit(*p)) *dest = (*dest * 16) + to_hex(*p++); } break; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': /* octal escape */ *dest = *p++ - '0'; if (*p >= '0' && *p <= '7') *dest = (*dest * 8) + (*p++ - '0'); if (*p >= '0' && *p <= '7') *dest = (*dest * 8) + (*p++ - '0'); break; default: *dest = (WCHAR)*p++; break; } } if ((count += sizeof(WCHAR)) > *len) return -1; /* dest buffer overflow */ dest++; } *dest = 0; if (!*p) return -1; /* delimiter not found */ *len = count; return p + 1 - src; } /* convert a data type tag to a value type */ static int get_data_type( const char *buffer, int *type, int *parse_type ) { struct data_type { const char *tag; int len; int type; int parse_type; }; static const struct data_type data_types[] = { /* actual type */ /* type to assume for parsing */ { "\"", 1, REG_SZ, REG_SZ }, { "str:\"", 5, REG_SZ, REG_SZ }, { "str(2):\"", 8, REG_EXPAND_SZ, REG_SZ }, { "str(7):\"", 8, REG_MULTI_SZ, REG_SZ }, { "hex:", 4, REG_BINARY, REG_BINARY }, { "dword:", 6, REG_DWORD, REG_DWORD }, { "hex(", 4, -1, REG_BINARY }, { NULL, } }; const struct data_type *ptr; char *end; for (ptr = data_types; ptr->tag; ptr++) { if (memcmp( ptr->tag, buffer, ptr->len )) continue; *parse_type = ptr->parse_type; if ((*type = ptr->type) != -1) return ptr->len; /* "hex(xx):" is special */ *type = (int)strtoul( buffer + 4, &end, 16 ); if ((end <= buffer) || memcmp( end, "):", 2 )) return 0; return end + 2 - buffer; } return 0; } /* load and create a key from the input file */ static struct key *load_key( struct key *base, const char *buffer, struct file_load_info *info ) { WCHAR *p; int res, len, modif; len = strlen(buffer) * sizeof(WCHAR); if (!get_file_tmp_space( info, len )) return NULL; if ((res = parse_strW( (WCHAR *)info->tmp, &len, buffer, ']' )) == -1) { file_read_error( "Malformed key", info ); return NULL; } if (!sscanf( buffer + res, " %d", &modif )) modif = time(NULL); for (p = (WCHAR *)info->tmp; *p; p++) if (*p == '\\') { p++; break; } return create_key( base, p, len - ((char *)p - info->tmp), NULL, 0, modif, &res ); } /* parse a comma-separated list of hex digits */ static int parse_hex( unsigned char *dest, int *len, const char *buffer ) { const char *p = buffer; int count = 0; while (isxdigit(*p)) { int val; char buf[3]; memcpy( buf, p, 2 ); buf[2] = 0; sscanf( buf, "%x", &val ); if (count++ >= *len) return -1; /* dest buffer overflow */ *dest++ = (unsigned char )val; p += 2; if (*p == ',') p++; } *len = count; return p - buffer; } /* parse a value name and create the corresponding value */ static struct key_value *parse_value_name( struct key *key, const char *buffer, int *len, struct file_load_info *info ) { int maxlen = strlen(buffer) * sizeof(WCHAR); if (!get_file_tmp_space( info, maxlen )) return NULL; if (buffer[0] == '@') { info->tmp[0] = info->tmp[1] = 0; *len = 1; } else { if ((*len = parse_strW( (WCHAR *)info->tmp, &maxlen, buffer + 1, '\"' )) == -1) goto error; (*len)++; /* for initial quote */ } if (buffer[*len] != '=') goto error; (*len)++; return insert_value( key, (WCHAR *)info->tmp ); error: file_read_error( "Malformed value name", info ); return NULL; } /* load a value from the input file */ static int load_value( struct key *key, const char *buffer, struct file_load_info *info ) { DWORD dw; void *ptr, *newptr; int maxlen, len, res; int type, parse_type; struct key_value *value; if (!(value = parse_value_name( key, buffer, &len, info ))) return 0; if (!(res = get_data_type( buffer + len, &type, &parse_type ))) goto error; buffer += len + res; switch(parse_type) { case REG_SZ: len = strlen(buffer) * sizeof(WCHAR); if (!get_file_tmp_space( info, len )) return 0; if ((res = parse_strW( (WCHAR *)info->tmp, &len, buffer, '\"' )) == -1) goto error; ptr = info->tmp; break; case REG_DWORD: dw = strtoul( buffer, NULL, 16 ); ptr = &dw; len = sizeof(dw); break; case REG_BINARY: /* hex digits */ len = 0; for (;;) { maxlen = 1 + strlen(buffer)/3; /* 3 chars for one hex byte */ if (!get_file_tmp_space( info, len + maxlen )) return 0; if ((res = parse_hex( info->tmp + len, &maxlen, buffer )) == -1) goto error; len += maxlen; buffer += res; while (isspace(*buffer)) buffer++; if (!*buffer) break; if (*buffer != '\\') goto error; if (read_next_line( info) != 1) goto error; buffer = info->buffer; while (isspace(*buffer)) buffer++; } ptr = info->tmp; break; default: assert(0); ptr = NULL; /* keep compiler quiet */ break; } if (!len) newptr = NULL; else if (!(newptr = memdup( ptr, len ))) return 0; if (value->data) free( value->data ); value->data = newptr; value->len = len; value->type = type; /* update the key level but not the modification time */ key->level = MAX( key->level, current_level ); return 1; error: file_read_error( "Malformed value", info ); return 0; } /* load all the keys from the input file */ static void load_keys( struct key *key, FILE *f ) { struct key *subkey = NULL; struct file_load_info info; char *p; info.file = f; info.len = 4; info.tmplen = 4; info.line = 0; if (!(info.buffer = mem_alloc( info.len ))) return; if (!(info.tmp = mem_alloc( info.tmplen ))) { free( info.buffer ); return; } if ((read_next_line( &info ) != 1) || strcmp( info.buffer, "WINE REGISTRY Version 2" )) { set_error( ERROR_NOT_REGISTRY_FILE ); goto done; } while (read_next_line( &info ) == 1) { for (p = info.buffer; *p && isspace(*p); p++); switch(*p) { case '[': /* new key */ if (subkey) release_object( subkey ); subkey = load_key( key, p + 1, &info ); break; case '@': /* default value */ case '\"': /* value */ if (subkey) load_value( subkey, p, &info ); else file_read_error( "Value without key", &info ); break; case '#': /* comment */ case ';': /* comment */ case 0: /* empty line */ break; default: file_read_error( "Unrecognized input", &info ); break; } } done: if (subkey) release_object( subkey ); free( info.buffer ); free( info.tmp ); } /* load a part of the registry from a file */ static void load_registry( struct key *key, int handle ) { struct object *obj; int fd; if (!(obj = get_handle_obj( current->process, handle, GENERIC_READ, NULL ))) return; fd = obj->ops->get_read_fd( obj ); release_object( obj ); if (fd != -1) { FILE *f = fdopen( fd, "r" ); if (f) { load_keys( key, f ); fclose( f ); } else file_set_error(); } } /* update the level of the parents of a key (only needed for the old format) */ static int update_level( struct key *key ) { int i; int max = key->level; for (i = 0; i <= key->last_subkey; i++) { int sub = update_level( key->subkeys[i] ); if (sub > max) max = sub; } key->level = max; return max; } /* dump a string to a registry save file in the old v1 format */ static void save_string_v1( LPCWSTR str, FILE *f ) { if (!str) return; while (*str) { if ((*str > 0x7f) || (*str == '\n') || (*str == '=')) fprintf( f, "\\u%04x", *str ); else { if (*str == '\\') fputc( '\\', f ); fputc( (char)*str, f ); } str++; } } /* save a registry and all its subkeys to a text file in the old v1 format */ static void save_subkeys_v1( struct key *key, int nesting, FILE *f ) { int i, j; if (key->flags & KEY_VOLATILE) return; if (key->level < saving_level) return; for (i = 0; i <= key->last_value; i++) { struct key_value *value = &key->values[i]; for (j = nesting; j > 0; j --) fputc( '\t', f ); save_string_v1( value->name, f ); fprintf( f, "=%d,%d,", value->type, 0 ); if (value->type == REG_SZ || value->type == REG_EXPAND_SZ) save_string_v1( (LPWSTR)value->data, f ); else for (j = 0; j < value->len; j++) fprintf( f, "%02x", *((unsigned char *)value->data + j) ); fputc( '\n', f ); } for (i = 0; i <= key->last_subkey; i++) { for (j = nesting; j > 0; j --) fputc( '\t', f ); save_string_v1( key->subkeys[i]->name, f ); fputc( '\n', f ); save_subkeys_v1( key->subkeys[i], nesting + 1, f ); } } /* save a registry branch to a file handle */ static void save_registry( struct key *key, int handle ) { struct object *obj; int fd; if (key->flags & KEY_DELETED) { set_error( ERROR_KEY_DELETED ); return; } if (!(obj = get_handle_obj( current->process, handle, GENERIC_WRITE, NULL ))) return; fd = obj->ops->get_write_fd( obj ); release_object( obj ); if (fd != -1) { FILE *f = fdopen( fd, "w" ); if (f) { fprintf( f, "WINE REGISTRY Version %d\n", saving_version ); if (saving_version == 2) save_subkeys( key, key, f ); else { update_level( key ); save_subkeys_v1( key, 0, f ); } if (fclose( f )) file_set_error(); } else { file_set_error(); close( fd ); } } } /* create a registry key */ DECL_HANDLER(create_key) { struct key *key, *parent; WCHAR *class; unsigned int access = req->access; if (access & MAXIMUM_ALLOWED) access = KEY_ALL_ACCESS; /* FIXME: needs general solution */ req->hkey = -1; if ((parent = get_hkey_obj( req->parent, KEY_CREATE_SUB_KEY ))) { if ((class = req_strdupW( req->class ))) { if ((key = create_key( parent, req->name, sizeof(req->name), class, req->options, req->modif, &req->created ))) { req->hkey = alloc_handle( current->process, key, access, 0 ); release_object( key ); } free( class ); } release_object( parent ); } } /* open a registry key */ DECL_HANDLER(open_key) { struct key *key, *parent; unsigned int access = req->access; if (access & MAXIMUM_ALLOWED) access = KEY_ALL_ACCESS; /* FIXME: needs general solution */ req->hkey = -1; if ((parent = get_hkey_obj( req->parent, 0 /*FIXME*/ ))) { if ((key = open_key( parent, req->name, sizeof(req->name) ))) { req->hkey = alloc_handle( current->process, key, access, 0 ); release_object( key ); } release_object( parent ); } } /* delete a registry key */ DECL_HANDLER(delete_key) { struct key *key; if ((key = get_hkey_obj( req->hkey, KEY_CREATE_SUB_KEY /*FIXME*/ ))) { delete_key( key, req->name, sizeof(req->name) ); release_object( key ); } } /* close a registry key */ DECL_HANDLER(close_key) { int hkey = req->hkey; /* ignore attempts to close a root key */ if (!IS_ROOT_HKEY(hkey)) close_handle( current->process, hkey ); } /* enumerate registry subkeys */ DECL_HANDLER(enum_key) { struct key *key; if ((key = get_hkey_obj( req->hkey, KEY_ENUMERATE_SUB_KEYS ))) { enum_key( key, req->index, req->name, req->class, &req->modif ); release_object( key ); } } /* query information about a registry key */ DECL_HANDLER(query_key_info) { struct key *key; if ((key = get_hkey_obj( req->hkey, KEY_QUERY_VALUE ))) { query_key( key, req ); release_object( key ); } } /* set a value of a registry key */ DECL_HANDLER(set_key_value) { struct key *key; int max = get_req_size( req->data, sizeof(req->data[0]) ); int datalen = req->len; if (datalen > max) { set_error( ERROR_OUTOFMEMORY ); /* FIXME */ return; } if ((key = get_hkey_obj( req->hkey, KEY_SET_VALUE ))) { set_value( key, copy_path( req->name ), req->type, datalen, req->data ); release_object( key ); } } /* retrieve the value of a registry key */ DECL_HANDLER(get_key_value) { struct key *key; if ((key = get_hkey_obj( req->hkey, KEY_QUERY_VALUE ))) { get_value( key, copy_path( req->name ), &req->type, &req->len, req->data ); release_object( key ); } } /* enumerate the value of a registry key */ DECL_HANDLER(enum_key_value) { struct key *key; if ((key = get_hkey_obj( req->hkey, KEY_QUERY_VALUE ))) { enum_value( key, req->index, req->name, &req->type, &req->len, req->data ); release_object( key ); } } /* delete a value of a registry key */ DECL_HANDLER(delete_key_value) { WCHAR *name; struct key *key; if ((key = get_hkey_obj( req->hkey, KEY_SET_VALUE ))) { if ((name = req_strdupW( req->name ))) { delete_value( key, name ); free( name ); } release_object( key ); } } /* load a registry branch from a file */ DECL_HANDLER(load_registry) { struct key *key; if ((key = get_hkey_obj( req->hkey, KEY_SET_VALUE | KEY_CREATE_SUB_KEY ))) { /* FIXME: use subkey name */ load_registry( key, req->file ); release_object( key ); } } /* save a registry branch to a file */ DECL_HANDLER(save_registry) { struct key *key; if ((key = get_hkey_obj( req->hkey, KEY_QUERY_VALUE | KEY_ENUMERATE_SUB_KEYS ))) { save_registry( key, req->file ); release_object( key ); } } /* set the current and saving level for the registry */ DECL_HANDLER(set_registry_levels) { current_level = req->current; saving_level = req->saving; saving_version = req->version; }