/* * Server-side thread management * * Copyright (C) 1998 Alexandre Julliard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA */ #include "config.h" #include "wine/port.h" #include #include #include #include #include #include #include #include #include #include #include #ifdef HAVE_POLL_H #include #endif #ifdef HAVE_SCHED_H #include #endif #include "ntstatus.h" #define WIN32_NO_STATUS #include "windef.h" #include "winternl.h" #include "file.h" #include "handle.h" #include "process.h" #include "thread.h" #include "request.h" #include "user.h" #include "security.h" #ifdef __i386__ static const unsigned int supported_cpus = CPU_FLAG(CPU_x86); #elif defined(__x86_64__) static const unsigned int supported_cpus = CPU_FLAG(CPU_x86_64) | CPU_FLAG(CPU_x86); #elif defined(__powerpc__) static const unsigned int supported_cpus = CPU_FLAG(CPU_POWERPC); #elif defined(__arm__) static const unsigned int supported_cpus = CPU_FLAG(CPU_ARM); #elif defined(__aarch64__) static const unsigned int supported_cpus = CPU_FLAG(CPU_ARM64) | CPU_FLAG(CPU_ARM); #else #error Unsupported CPU #endif /* thread queues */ struct thread_wait { struct thread_wait *next; /* next wait structure for this thread */ struct thread *thread; /* owner thread */ int count; /* count of objects */ int flags; int abandoned; enum select_op select; client_ptr_t key; /* wait key for keyed events */ client_ptr_t cookie; /* magic cookie to return to client */ abstime_t when; struct timeout_user *user; struct wait_queue_entry queues[1]; }; /* asynchronous procedure calls */ struct thread_apc { struct object obj; /* object header */ struct list entry; /* queue linked list */ struct thread *caller; /* thread that queued this apc */ struct object *owner; /* object that queued this apc */ int executed; /* has it been executed by the client? */ apc_call_t call; /* call arguments */ apc_result_t result; /* call results once executed */ }; static void dump_thread_apc( struct object *obj, int verbose ); static int thread_apc_signaled( struct object *obj, struct wait_queue_entry *entry ); static void thread_apc_destroy( struct object *obj ); static void clear_apc_queue( struct list *queue ); static const struct object_ops thread_apc_ops = { sizeof(struct thread_apc), /* size */ dump_thread_apc, /* dump */ no_get_type, /* get_type */ add_queue, /* add_queue */ remove_queue, /* remove_queue */ thread_apc_signaled, /* signaled */ no_satisfied, /* satisfied */ no_signal, /* signal */ no_get_fd, /* get_fd */ no_map_access, /* map_access */ default_get_sd, /* get_sd */ default_set_sd, /* set_sd */ no_lookup_name, /* lookup_name */ no_link_name, /* link_name */ NULL, /* unlink_name */ no_open_file, /* open_file */ no_kernel_obj_list, /* get_kernel_obj_list */ no_close_handle, /* close_handle */ thread_apc_destroy /* destroy */ }; /* thread CPU context */ struct context { struct object obj; /* object header */ unsigned int status; /* status of the context */ context_t regs; /* context data */ }; static void dump_context( struct object *obj, int verbose ); static int context_signaled( struct object *obj, struct wait_queue_entry *entry ); static const struct object_ops context_ops = { sizeof(struct context), /* size */ dump_context, /* dump */ no_get_type, /* get_type */ add_queue, /* add_queue */ remove_queue, /* remove_queue */ context_signaled, /* signaled */ no_satisfied, /* satisfied */ no_signal, /* signal */ no_get_fd, /* get_fd */ no_map_access, /* map_access */ default_get_sd, /* get_sd */ default_set_sd, /* set_sd */ no_lookup_name, /* lookup_name */ no_link_name, /* link_name */ NULL, /* unlink_name */ no_open_file, /* open_file */ no_kernel_obj_list, /* get_kernel_obj_list */ no_close_handle, /* close_handle */ no_destroy /* destroy */ }; /* thread operations */ static void dump_thread( struct object *obj, int verbose ); static struct object_type *thread_get_type( struct object *obj ); static int thread_signaled( struct object *obj, struct wait_queue_entry *entry ); static unsigned int thread_map_access( struct object *obj, unsigned int access ); static void thread_poll_event( struct fd *fd, int event ); static struct list *thread_get_kernel_obj_list( struct object *obj ); static void destroy_thread( struct object *obj ); static const struct object_ops thread_ops = { sizeof(struct thread), /* size */ dump_thread, /* dump */ thread_get_type, /* get_type */ add_queue, /* add_queue */ remove_queue, /* remove_queue */ thread_signaled, /* signaled */ no_satisfied, /* satisfied */ no_signal, /* signal */ no_get_fd, /* get_fd */ thread_map_access, /* map_access */ default_get_sd, /* get_sd */ default_set_sd, /* set_sd */ no_lookup_name, /* lookup_name */ no_link_name, /* link_name */ NULL, /* unlink_name */ no_open_file, /* open_file */ thread_get_kernel_obj_list, /* get_kernel_obj_list */ no_close_handle, /* close_handle */ destroy_thread /* destroy */ }; static const struct fd_ops thread_fd_ops = { NULL, /* get_poll_events */ thread_poll_event, /* poll_event */ NULL, /* flush */ NULL, /* get_fd_type */ NULL, /* ioctl */ NULL, /* queue_async */ NULL /* reselect_async */ }; static struct list thread_list = LIST_INIT(thread_list); /* initialize the structure for a newly allocated thread */ static inline void init_thread_structure( struct thread *thread ) { int i; thread->unix_pid = -1; /* not known yet */ thread->unix_tid = -1; /* not known yet */ thread->context = NULL; thread->teb = 0; thread->entry_point = 0; thread->debug_ctx = NULL; thread->system_regs = 0; thread->queue = NULL; thread->wait = NULL; thread->error = 0; thread->req_data = NULL; thread->req_toread = 0; thread->reply_data = NULL; thread->reply_towrite = 0; thread->request_fd = NULL; thread->reply_fd = NULL; thread->wait_fd = NULL; thread->state = RUNNING; thread->exit_code = 0; thread->priority = 0; thread->suspend = 0; thread->desktop_users = 0; thread->token = NULL; thread->desc = NULL; thread->desc_len = 0; thread->creation_time = current_time; thread->exit_time = 0; list_init( &thread->mutex_list ); list_init( &thread->system_apc ); list_init( &thread->user_apc ); list_init( &thread->kernel_object ); for (i = 0; i < MAX_INFLIGHT_FDS; i++) thread->inflight[i].server = thread->inflight[i].client = -1; } /* check if address looks valid for a client-side data structure (TEB etc.) */ static inline int is_valid_address( client_ptr_t addr ) { return addr && !(addr % sizeof(int)); } /* dump a context on stdout for debugging purposes */ static void dump_context( struct object *obj, int verbose ) { struct context *context = (struct context *)obj; assert( obj->ops == &context_ops ); fprintf( stderr, "context flags=%x\n", context->regs.flags ); } static int context_signaled( struct object *obj, struct wait_queue_entry *entry ) { struct context *context = (struct context *)obj; return context->status != STATUS_PENDING; } static struct context *create_thread_context( struct thread *thread ) { struct context *context; if (!(context = alloc_object( &context_ops ))) return NULL; context->status = STATUS_PENDING; memset( &context->regs, 0, sizeof(context->regs) ); context->regs.cpu = thread->process->cpu; return context; } /* create a new thread */ struct thread *create_thread( int fd, struct process *process, const struct security_descriptor *sd ) { struct thread *thread; int request_pipe[2]; if (fd == -1) { if (pipe( request_pipe ) == -1) { file_set_error(); return NULL; } if (send_client_fd( process, request_pipe[1], SERVER_PROTOCOL_VERSION ) == -1) { close( request_pipe[0] ); close( request_pipe[1] ); return NULL; } close( request_pipe[1] ); fd = request_pipe[0]; } if (process->is_terminating) { close( fd ); set_error( STATUS_PROCESS_IS_TERMINATING ); return NULL; } if (!(thread = alloc_object( &thread_ops ))) { close( fd ); return NULL; } init_thread_structure( thread ); thread->process = (struct process *)grab_object( process ); thread->desktop = process->desktop; thread->affinity = process->affinity; if (!current) current = thread; list_add_head( &thread_list, &thread->entry ); if (sd && !set_sd_defaults_from_token( &thread->obj, sd, OWNER_SECURITY_INFORMATION | GROUP_SECURITY_INFORMATION | DACL_SECURITY_INFORMATION | SACL_SECURITY_INFORMATION, process->token )) { close( fd ); release_object( thread ); return NULL; } if (!(thread->id = alloc_ptid( thread ))) { close( fd ); release_object( thread ); return NULL; } if (!(thread->request_fd = create_anonymous_fd( &thread_fd_ops, fd, &thread->obj, 0 ))) { release_object( thread ); return NULL; } set_fd_events( thread->request_fd, POLLIN ); /* start listening to events */ add_process_thread( thread->process, thread ); return thread; } /* handle a client event */ static void thread_poll_event( struct fd *fd, int event ) { struct thread *thread = get_fd_user( fd ); assert( thread->obj.ops == &thread_ops ); grab_object( thread ); if (event & (POLLERR | POLLHUP)) kill_thread( thread, 0 ); else if (event & POLLIN) read_request( thread ); else if (event & POLLOUT) write_reply( thread ); release_object( thread ); } static struct list *thread_get_kernel_obj_list( struct object *obj ) { struct thread *thread = (struct thread *)obj; return &thread->kernel_object; } /* cleanup everything that is no longer needed by a dead thread */ /* used by destroy_thread and kill_thread */ static void cleanup_thread( struct thread *thread ) { int i; if (thread->context) { thread->context->status = STATUS_ACCESS_DENIED; wake_up( &thread->context->obj, 0 ); release_object( thread->context ); thread->context = NULL; } clear_apc_queue( &thread->system_apc ); clear_apc_queue( &thread->user_apc ); free( thread->req_data ); free( thread->reply_data ); if (thread->request_fd) release_object( thread->request_fd ); if (thread->reply_fd) release_object( thread->reply_fd ); if (thread->wait_fd) release_object( thread->wait_fd ); cleanup_clipboard_thread(thread); destroy_thread_windows( thread ); free_msg_queue( thread ); close_thread_desktop( thread ); for (i = 0; i < MAX_INFLIGHT_FDS; i++) { if (thread->inflight[i].client != -1) { close( thread->inflight[i].server ); thread->inflight[i].client = thread->inflight[i].server = -1; } } free( thread->desc ); thread->req_data = NULL; thread->reply_data = NULL; thread->request_fd = NULL; thread->reply_fd = NULL; thread->wait_fd = NULL; thread->desktop = 0; thread->desc = NULL; thread->desc_len = 0; } /* destroy a thread when its refcount is 0 */ static void destroy_thread( struct object *obj ) { struct thread *thread = (struct thread *)obj; assert( obj->ops == &thread_ops ); assert( !thread->debug_ctx ); /* cannot still be debugging something */ list_remove( &thread->entry ); cleanup_thread( thread ); release_object( thread->process ); if (thread->id) free_ptid( thread->id ); if (thread->token) release_object( thread->token ); } /* dump a thread on stdout for debugging purposes */ static void dump_thread( struct object *obj, int verbose ) { struct thread *thread = (struct thread *)obj; assert( obj->ops == &thread_ops ); fprintf( stderr, "Thread id=%04x unix pid=%d unix tid=%d state=%d\n", thread->id, thread->unix_pid, thread->unix_tid, thread->state ); } static struct object_type *thread_get_type( struct object *obj ) { static const WCHAR name[] = {'T','h','r','e','a','d'}; static const struct unicode_str str = { name, sizeof(name) }; return get_object_type( &str ); } static int thread_signaled( struct object *obj, struct wait_queue_entry *entry ) { struct thread *mythread = (struct thread *)obj; return (mythread->state == TERMINATED); } static unsigned int thread_map_access( struct object *obj, unsigned int access ) { if (access & GENERIC_READ) access |= STANDARD_RIGHTS_READ | THREAD_QUERY_INFORMATION | THREAD_GET_CONTEXT; if (access & GENERIC_WRITE) access |= STANDARD_RIGHTS_WRITE | THREAD_SET_INFORMATION | THREAD_SET_CONTEXT | THREAD_TERMINATE | THREAD_SUSPEND_RESUME; if (access & GENERIC_EXECUTE) access |= STANDARD_RIGHTS_EXECUTE | SYNCHRONIZE | THREAD_QUERY_LIMITED_INFORMATION; if (access & GENERIC_ALL) access |= THREAD_ALL_ACCESS; if (access & THREAD_QUERY_INFORMATION) access |= THREAD_QUERY_LIMITED_INFORMATION; if (access & THREAD_SET_INFORMATION) access |= THREAD_SET_LIMITED_INFORMATION; return access & ~(GENERIC_READ | GENERIC_WRITE | GENERIC_EXECUTE | GENERIC_ALL); } static void dump_thread_apc( struct object *obj, int verbose ) { struct thread_apc *apc = (struct thread_apc *)obj; assert( obj->ops == &thread_apc_ops ); fprintf( stderr, "APC owner=%p type=%u\n", apc->owner, apc->call.type ); } static int thread_apc_signaled( struct object *obj, struct wait_queue_entry *entry ) { struct thread_apc *apc = (struct thread_apc *)obj; return apc->executed; } static void thread_apc_destroy( struct object *obj ) { struct thread_apc *apc = (struct thread_apc *)obj; if (apc->caller) release_object( apc->caller ); if (apc->owner) release_object( apc->owner ); } /* queue an async procedure call */ static struct thread_apc *create_apc( struct object *owner, const apc_call_t *call_data ) { struct thread_apc *apc; if ((apc = alloc_object( &thread_apc_ops ))) { apc->call = *call_data; apc->caller = NULL; apc->owner = owner; apc->executed = 0; apc->result.type = APC_NONE; if (owner) grab_object( owner ); } return apc; } /* get a thread pointer from a thread id (and increment the refcount) */ struct thread *get_thread_from_id( thread_id_t id ) { struct object *obj = get_ptid_entry( id ); if (obj && obj->ops == &thread_ops) return (struct thread *)grab_object( obj ); set_error( STATUS_INVALID_CID ); return NULL; } /* get a thread from a handle (and increment the refcount) */ struct thread *get_thread_from_handle( obj_handle_t handle, unsigned int access ) { return (struct thread *)get_handle_obj( current->process, handle, access, &thread_ops ); } /* find a thread from a Unix tid */ struct thread *get_thread_from_tid( int tid ) { struct thread *thread; LIST_FOR_EACH_ENTRY( thread, &thread_list, struct thread, entry ) { if (thread->unix_tid == tid) return thread; } return NULL; } /* find a thread from a Unix pid */ struct thread *get_thread_from_pid( int pid ) { struct thread *thread; LIST_FOR_EACH_ENTRY( thread, &thread_list, struct thread, entry ) { if (thread->unix_pid == pid) return thread; } return NULL; } int set_thread_affinity( struct thread *thread, affinity_t affinity ) { int ret = 0; #ifdef HAVE_SCHED_SETAFFINITY if (thread->unix_tid != -1) { cpu_set_t set; int i; affinity_t mask; CPU_ZERO( &set ); for (i = 0, mask = 1; mask; i++, mask <<= 1) if (affinity & mask) CPU_SET( i, &set ); ret = sched_setaffinity( thread->unix_tid, sizeof(set), &set ); } #endif if (!ret) thread->affinity = affinity; return ret; } affinity_t get_thread_affinity( struct thread *thread ) { affinity_t mask = 0; #ifdef HAVE_SCHED_SETAFFINITY if (thread->unix_tid != -1) { cpu_set_t set; unsigned int i; if (!sched_getaffinity( thread->unix_tid, sizeof(set), &set )) for (i = 0; i < 8 * sizeof(mask); i++) if (CPU_ISSET( i, &set )) mask |= (affinity_t)1 << i; } #endif if (!mask) mask = ~(affinity_t)0; return mask; } #define THREAD_PRIORITY_REALTIME_HIGHEST 6 #define THREAD_PRIORITY_REALTIME_LOWEST -7 /* set all information about a thread */ static void set_thread_info( struct thread *thread, const struct set_thread_info_request *req ) { if (req->mask & SET_THREAD_INFO_PRIORITY) { int max = THREAD_PRIORITY_HIGHEST; int min = THREAD_PRIORITY_LOWEST; if (thread->process->priority == PROCESS_PRIOCLASS_REALTIME) { max = THREAD_PRIORITY_REALTIME_HIGHEST; min = THREAD_PRIORITY_REALTIME_LOWEST; } if ((req->priority >= min && req->priority <= max) || req->priority == THREAD_PRIORITY_IDLE || req->priority == THREAD_PRIORITY_TIME_CRITICAL) thread->priority = req->priority; else set_error( STATUS_INVALID_PARAMETER ); } if (req->mask & SET_THREAD_INFO_AFFINITY) { if ((req->affinity & thread->process->affinity) != req->affinity) set_error( STATUS_INVALID_PARAMETER ); else if (thread->state == TERMINATED) set_error( STATUS_THREAD_IS_TERMINATING ); else if (set_thread_affinity( thread, req->affinity )) file_set_error(); } if (req->mask & SET_THREAD_INFO_TOKEN) security_set_thread_token( thread, req->token ); if (req->mask & SET_THREAD_INFO_ENTRYPOINT) thread->entry_point = req->entry_point; if (req->mask & SET_THREAD_INFO_DESCRIPTION) { WCHAR *desc; data_size_t desc_len = get_req_data_size(); if (desc_len) { if ((desc = mem_alloc( desc_len ))) { memcpy( desc, get_req_data(), desc_len ); free( thread->desc ); thread->desc = desc; thread->desc_len = desc_len; } } else { free( thread->desc ); thread->desc = NULL; thread->desc_len = 0; } } } /* stop a thread (at the Unix level) */ void stop_thread( struct thread *thread ) { if (thread->context) return; /* already suspended, no need for a signal */ if (!(thread->context = create_thread_context( thread ))) return; /* can't stop a thread while initialisation is in progress */ if (is_process_init_done(thread->process)) send_thread_signal( thread, SIGUSR1 ); } /* suspend a thread */ int suspend_thread( struct thread *thread ) { int old_count = thread->suspend; if (thread->suspend < MAXIMUM_SUSPEND_COUNT) { if (!(thread->process->suspend + thread->suspend++)) stop_thread( thread ); } else set_error( STATUS_SUSPEND_COUNT_EXCEEDED ); return old_count; } /* resume a thread */ int resume_thread( struct thread *thread ) { int old_count = thread->suspend; if (thread->suspend > 0) { if (!(--thread->suspend)) resume_delayed_debug_events( thread ); if (!(thread->suspend + thread->process->suspend)) wake_thread( thread ); } return old_count; } /* add a thread to an object wait queue; return 1 if OK, 0 on error */ int add_queue( struct object *obj, struct wait_queue_entry *entry ) { grab_object( obj ); entry->obj = obj; list_add_tail( &obj->wait_queue, &entry->entry ); return 1; } /* remove a thread from an object wait queue */ void remove_queue( struct object *obj, struct wait_queue_entry *entry ) { list_remove( &entry->entry ); release_object( obj ); } struct thread *get_wait_queue_thread( struct wait_queue_entry *entry ) { return entry->wait->thread; } enum select_op get_wait_queue_select_op( struct wait_queue_entry *entry ) { return entry->wait->select; } client_ptr_t get_wait_queue_key( struct wait_queue_entry *entry ) { return entry->wait->key; } void make_wait_abandoned( struct wait_queue_entry *entry ) { entry->wait->abandoned = 1; } /* finish waiting */ static unsigned int end_wait( struct thread *thread, unsigned int status ) { struct thread_wait *wait = thread->wait; struct wait_queue_entry *entry; int i; assert( wait ); thread->wait = wait->next; if (status < wait->count) /* wait satisfied, tell it to the objects */ { if (wait->select == SELECT_WAIT_ALL) { for (i = 0, entry = wait->queues; i < wait->count; i++, entry++) entry->obj->ops->satisfied( entry->obj, entry ); } else { entry = wait->queues + status; entry->obj->ops->satisfied( entry->obj, entry ); } if (wait->abandoned) status += STATUS_ABANDONED_WAIT_0; } for (i = 0, entry = wait->queues; i < wait->count; i++, entry++) entry->obj->ops->remove_queue( entry->obj, entry ); if (wait->user) remove_timeout_user( wait->user ); free( wait ); return status; } /* build the thread wait structure */ static int wait_on( const select_op_t *select_op, unsigned int count, struct object *objects[], int flags, abstime_t when ) { struct thread_wait *wait; struct wait_queue_entry *entry; unsigned int i; if (!(wait = mem_alloc( FIELD_OFFSET(struct thread_wait, queues[count]) ))) return 0; wait->next = current->wait; wait->thread = current; wait->count = count; wait->flags = flags; wait->select = select_op->op; wait->cookie = 0; wait->user = NULL; wait->when = when; wait->abandoned = 0; current->wait = wait; for (i = 0, entry = wait->queues; i < count; i++, entry++) { struct object *obj = objects[i]; entry->wait = wait; if (!obj->ops->add_queue( obj, entry )) { wait->count = i; end_wait( current, get_error() ); return 0; } } return 1; } static int wait_on_handles( const select_op_t *select_op, unsigned int count, const obj_handle_t *handles, int flags, abstime_t when ) { struct object *objects[MAXIMUM_WAIT_OBJECTS]; unsigned int i; int ret = 0; assert( count <= MAXIMUM_WAIT_OBJECTS ); for (i = 0; i < count; i++) if (!(objects[i] = get_handle_obj( current->process, handles[i], SYNCHRONIZE, NULL ))) break; if (i == count) ret = wait_on( select_op, count, objects, flags, when ); while (i > 0) release_object( objects[--i] ); return ret; } /* check if the thread waiting condition is satisfied */ static int check_wait( struct thread *thread ) { int i; struct thread_wait *wait = thread->wait; struct wait_queue_entry *entry; assert( wait ); if ((wait->flags & SELECT_INTERRUPTIBLE) && !list_empty( &thread->system_apc )) return STATUS_KERNEL_APC; /* Suspended threads may not acquire locks, but they can run system APCs */ if (thread->process->suspend + thread->suspend > 0) return -1; if (wait->select == SELECT_WAIT_ALL) { int not_ok = 0; /* Note: we must check them all anyway, as some objects may * want to do something when signaled, even if others are not */ for (i = 0, entry = wait->queues; i < wait->count; i++, entry++) not_ok |= !entry->obj->ops->signaled( entry->obj, entry ); if (!not_ok) return STATUS_WAIT_0; } else { for (i = 0, entry = wait->queues; i < wait->count; i++, entry++) if (entry->obj->ops->signaled( entry->obj, entry )) return i; } if ((wait->flags & SELECT_ALERTABLE) && !list_empty(&thread->user_apc)) return STATUS_USER_APC; if (wait->when >= 0 && wait->when <= current_time) return STATUS_TIMEOUT; if (wait->when < 0 && -wait->when <= monotonic_time) return STATUS_TIMEOUT; return -1; } /* send the wakeup signal to a thread */ static int send_thread_wakeup( struct thread *thread, client_ptr_t cookie, int signaled ) { struct wake_up_reply reply; int ret; /* check if we're waking current suspend wait */ if (thread->context && thread->suspend_cookie == cookie && signaled != STATUS_KERNEL_APC && signaled != STATUS_USER_APC) { if (!thread->context->regs.flags) { release_object( thread->context ); thread->context = NULL; } else signaled = STATUS_KERNEL_APC; /* signal a fake APC so that client calls select to get a new context */ } memset( &reply, 0, sizeof(reply) ); reply.cookie = cookie; reply.signaled = signaled; if ((ret = write( get_unix_fd( thread->wait_fd ), &reply, sizeof(reply) )) == sizeof(reply)) return 0; if (ret >= 0) fatal_protocol_error( thread, "partial wakeup write %d\n", ret ); else if (errno == EPIPE) kill_thread( thread, 0 ); /* normal death */ else fatal_protocol_error( thread, "write: %s\n", strerror( errno )); return -1; } /* attempt to wake up a thread */ /* return >0 if OK, 0 if the wait condition is still not satisfied and -1 on error */ int wake_thread( struct thread *thread ) { int signaled, count; client_ptr_t cookie; for (count = 0; thread->wait; count++) { if ((signaled = check_wait( thread )) == -1) break; cookie = thread->wait->cookie; signaled = end_wait( thread, signaled ); if (debug_level) fprintf( stderr, "%04x: *wakeup* signaled=%d\n", thread->id, signaled ); if (cookie && send_thread_wakeup( thread, cookie, signaled ) == -1) /* error */ { if (!count) count = -1; break; } } return count; } /* attempt to wake up a thread from a wait queue entry, assuming that it is signaled */ int wake_thread_queue_entry( struct wait_queue_entry *entry ) { struct thread_wait *wait = entry->wait; struct thread *thread = wait->thread; int signaled; client_ptr_t cookie; if (thread->wait != wait) return 0; /* not the current wait */ if (thread->process->suspend + thread->suspend > 0) return 0; /* cannot acquire locks */ assert( wait->select != SELECT_WAIT_ALL ); cookie = wait->cookie; signaled = end_wait( thread, entry - wait->queues ); if (debug_level) fprintf( stderr, "%04x: *wakeup* signaled=%d\n", thread->id, signaled ); if (!cookie || send_thread_wakeup( thread, cookie, signaled ) != -1) wake_thread( thread ); /* check other waits too */ return 1; } /* thread wait timeout */ static void thread_timeout( void *ptr ) { struct thread_wait *wait = ptr; struct thread *thread = wait->thread; client_ptr_t cookie = wait->cookie; wait->user = NULL; if (thread->wait != wait) return; /* not the top-level wait, ignore it */ if (thread->suspend + thread->process->suspend > 0) return; /* suspended, ignore it */ if (debug_level) fprintf( stderr, "%04x: *wakeup* signaled=TIMEOUT\n", thread->id ); end_wait( thread, STATUS_TIMEOUT ); assert( cookie ); if (send_thread_wakeup( thread, cookie, STATUS_TIMEOUT ) == -1) return; /* check if other objects have become signaled in the meantime */ wake_thread( thread ); } /* try signaling an event flag, a semaphore or a mutex */ static int signal_object( obj_handle_t handle ) { struct object *obj; int ret = 0; obj = get_handle_obj( current->process, handle, 0, NULL ); if (obj) { ret = obj->ops->signal( obj, get_handle_access( current->process, handle )); release_object( obj ); } return ret; } /* select on a list of handles */ static void select_on( const select_op_t *select_op, data_size_t op_size, client_ptr_t cookie, int flags, abstime_t when ) { int ret; unsigned int count; struct object *object; switch (select_op->op) { case SELECT_NONE: if (!wait_on( select_op, 0, NULL, flags, when )) return; break; case SELECT_WAIT: case SELECT_WAIT_ALL: count = (op_size - offsetof( select_op_t, wait.handles )) / sizeof(select_op->wait.handles[0]); if (op_size < offsetof( select_op_t, wait.handles ) || count > MAXIMUM_WAIT_OBJECTS) { set_error( STATUS_INVALID_PARAMETER ); return; } if (!wait_on_handles( select_op, count, select_op->wait.handles, flags, when )) return; break; case SELECT_SIGNAL_AND_WAIT: if (!wait_on_handles( select_op, 1, &select_op->signal_and_wait.wait, flags, when )) return; if (select_op->signal_and_wait.signal) { if (!signal_object( select_op->signal_and_wait.signal )) { end_wait( current, get_error() ); return; } /* check if we woke ourselves up */ if (!current->wait) return; } break; case SELECT_KEYED_EVENT_WAIT: case SELECT_KEYED_EVENT_RELEASE: object = (struct object *)get_keyed_event_obj( current->process, select_op->keyed_event.handle, select_op->op == SELECT_KEYED_EVENT_WAIT ? KEYEDEVENT_WAIT : KEYEDEVENT_WAKE ); if (!object) return; ret = wait_on( select_op, 1, &object, flags, when ); release_object( object ); if (!ret) return; current->wait->key = select_op->keyed_event.key; break; default: set_error( STATUS_INVALID_PARAMETER ); return; } if ((ret = check_wait( current )) != -1) { /* condition is already satisfied */ set_error( end_wait( current, ret )); return; } /* now we need to wait */ if (current->wait->when != TIMEOUT_INFINITE) { if (!(current->wait->user = add_timeout_user( abstime_to_timeout(current->wait->when), thread_timeout, current->wait ))) { end_wait( current, get_error() ); return; } } current->wait->cookie = cookie; set_error( STATUS_PENDING ); return; } /* attempt to wake threads sleeping on the object wait queue */ void wake_up( struct object *obj, int max ) { struct list *ptr; int ret; LIST_FOR_EACH( ptr, &obj->wait_queue ) { struct wait_queue_entry *entry = LIST_ENTRY( ptr, struct wait_queue_entry, entry ); if (!(ret = wake_thread( get_wait_queue_thread( entry )))) continue; if (ret > 0 && max && !--max) break; /* restart at the head of the list since a wake up can change the object wait queue */ ptr = &obj->wait_queue; } } /* return the apc queue to use for a given apc type */ static inline struct list *get_apc_queue( struct thread *thread, enum apc_type type ) { switch(type) { case APC_NONE: case APC_USER: case APC_TIMER: return &thread->user_apc; default: return &thread->system_apc; } } /* check if thread is currently waiting for a (system) apc */ static inline int is_in_apc_wait( struct thread *thread ) { return (thread->process->suspend || thread->suspend || (thread->wait && (thread->wait->flags & SELECT_INTERRUPTIBLE))); } /* queue an existing APC to a given thread */ static int queue_apc( struct process *process, struct thread *thread, struct thread_apc *apc ) { struct list *queue; if (thread && thread->state == TERMINATED && process) thread = NULL; if (!thread) /* find a suitable thread inside the process */ { struct thread *candidate; /* first try to find a waiting thread */ LIST_FOR_EACH_ENTRY( candidate, &process->thread_list, struct thread, proc_entry ) { if (candidate->state == TERMINATED) continue; if (is_in_apc_wait( candidate )) { thread = candidate; break; } } if (!thread) { /* then use the first one that accepts a signal */ LIST_FOR_EACH_ENTRY( candidate, &process->thread_list, struct thread, proc_entry ) { if (send_thread_signal( candidate, SIGUSR1 )) { thread = candidate; break; } } } if (!thread) return 0; /* nothing found */ queue = get_apc_queue( thread, apc->call.type ); } else { if (thread->state == TERMINATED) return 0; queue = get_apc_queue( thread, apc->call.type ); /* send signal for system APCs if needed */ if (queue == &thread->system_apc && list_empty( queue ) && !is_in_apc_wait( thread )) { if (!send_thread_signal( thread, SIGUSR1 )) return 0; } /* cancel a possible previous APC with the same owner */ if (apc->owner) thread_cancel_apc( thread, apc->owner, apc->call.type ); } grab_object( apc ); list_add_tail( queue, &apc->entry ); if (!list_prev( queue, &apc->entry )) /* first one */ wake_thread( thread ); return 1; } /* queue an async procedure call */ int thread_queue_apc( struct process *process, struct thread *thread, struct object *owner, const apc_call_t *call_data ) { struct thread_apc *apc; int ret = 0; if ((apc = create_apc( owner, call_data ))) { ret = queue_apc( process, thread, apc ); release_object( apc ); } return ret; } /* cancel the async procedure call owned by a specific object */ void thread_cancel_apc( struct thread *thread, struct object *owner, enum apc_type type ) { struct thread_apc *apc; struct list *queue = get_apc_queue( thread, type ); LIST_FOR_EACH_ENTRY( apc, queue, struct thread_apc, entry ) { if (apc->owner != owner) continue; list_remove( &apc->entry ); apc->executed = 1; wake_up( &apc->obj, 0 ); release_object( apc ); return; } } /* remove the head apc from the queue; the returned object must be released by the caller */ static struct thread_apc *thread_dequeue_apc( struct thread *thread, int system ) { struct thread_apc *apc = NULL; struct list *ptr = list_head( system ? &thread->system_apc : &thread->user_apc ); if (ptr) { apc = LIST_ENTRY( ptr, struct thread_apc, entry ); list_remove( ptr ); } return apc; } /* clear an APC queue, cancelling all the APCs on it */ static void clear_apc_queue( struct list *queue ) { struct list *ptr; while ((ptr = list_head( queue ))) { struct thread_apc *apc = LIST_ENTRY( ptr, struct thread_apc, entry ); list_remove( &apc->entry ); apc->executed = 1; wake_up( &apc->obj, 0 ); release_object( apc ); } } /* add an fd to the inflight list */ /* return list index, or -1 on error */ int thread_add_inflight_fd( struct thread *thread, int client, int server ) { int i; if (server == -1) return -1; if (client == -1) { close( server ); return -1; } /* first check if we already have an entry for this fd */ for (i = 0; i < MAX_INFLIGHT_FDS; i++) if (thread->inflight[i].client == client) { close( thread->inflight[i].server ); thread->inflight[i].server = server; return i; } /* now find a free spot to store it */ for (i = 0; i < MAX_INFLIGHT_FDS; i++) if (thread->inflight[i].client == -1) { thread->inflight[i].client = client; thread->inflight[i].server = server; return i; } close( server ); return -1; } /* get an inflight fd and purge it from the list */ /* the fd must be closed when no longer used */ int thread_get_inflight_fd( struct thread *thread, int client ) { int i, ret; if (client == -1) return -1; do { for (i = 0; i < MAX_INFLIGHT_FDS; i++) { if (thread->inflight[i].client == client) { ret = thread->inflight[i].server; thread->inflight[i].server = thread->inflight[i].client = -1; return ret; } } } while (!receive_fd( thread->process )); /* in case it is still in the socket buffer */ return -1; } /* kill a thread on the spot */ void kill_thread( struct thread *thread, int violent_death ) { if (thread->state == TERMINATED) return; /* already killed */ thread->state = TERMINATED; thread->exit_time = current_time; if (current == thread) current = NULL; if (debug_level) fprintf( stderr,"%04x: *killed* exit_code=%d\n", thread->id, thread->exit_code ); if (thread->wait) { while (thread->wait) end_wait( thread, STATUS_THREAD_IS_TERMINATING ); send_thread_wakeup( thread, 0, thread->exit_code ); /* if it is waiting on the socket, we don't need to send a SIGQUIT */ violent_death = 0; } kill_console_processes( thread, 0 ); debug_exit_thread( thread ); abandon_mutexes( thread ); wake_up( &thread->obj, 0 ); if (violent_death) send_thread_signal( thread, SIGQUIT ); cleanup_thread( thread ); remove_process_thread( thread->process, thread ); release_object( thread ); } /* copy parts of a context structure */ static void copy_context( context_t *to, const context_t *from, unsigned int flags ) { assert( to->cpu == from->cpu ); if (flags & SERVER_CTX_CONTROL) to->ctl = from->ctl; if (flags & SERVER_CTX_INTEGER) to->integer = from->integer; if (flags & SERVER_CTX_SEGMENTS) to->seg = from->seg; if (flags & SERVER_CTX_FLOATING_POINT) to->fp = from->fp; if (flags & SERVER_CTX_DEBUG_REGISTERS) to->debug = from->debug; if (flags & SERVER_CTX_EXTENDED_REGISTERS) to->ext = from->ext; } /* return the context flags that correspond to system regs */ /* (system regs are the ones we can't access on the client side) */ static unsigned int get_context_system_regs( enum cpu_type cpu ) { switch (cpu) { case CPU_x86: return SERVER_CTX_DEBUG_REGISTERS; case CPU_x86_64: return SERVER_CTX_DEBUG_REGISTERS; case CPU_POWERPC: return 0; case CPU_ARM: return SERVER_CTX_DEBUG_REGISTERS; case CPU_ARM64: return SERVER_CTX_DEBUG_REGISTERS; } return 0; } /* take a snapshot of currently running threads */ struct thread_snapshot *thread_snap( int *count ) { struct thread_snapshot *snapshot, *ptr; struct thread *thread; int total = 0; LIST_FOR_EACH_ENTRY( thread, &thread_list, struct thread, entry ) if (thread->state != TERMINATED) total++; if (!total || !(snapshot = mem_alloc( sizeof(*snapshot) * total ))) return NULL; ptr = snapshot; LIST_FOR_EACH_ENTRY( thread, &thread_list, struct thread, entry ) { if (thread->state == TERMINATED) continue; ptr->thread = thread; ptr->count = thread->obj.refcount; ptr->priority = thread->priority; grab_object( thread ); ptr++; } *count = total; return snapshot; } /* gets the current impersonation token */ struct token *thread_get_impersonation_token( struct thread *thread ) { if (thread->token) return thread->token; else return thread->process->token; } /* check if a cpu type can be supported on this server */ int is_cpu_supported( enum cpu_type cpu ) { unsigned int prefix_cpu_mask = get_prefix_cpu_mask(); if (supported_cpus & prefix_cpu_mask & CPU_FLAG(cpu)) return 1; if (!(supported_cpus & prefix_cpu_mask)) set_error( STATUS_NOT_SUPPORTED ); else if (supported_cpus & CPU_FLAG(cpu)) set_error( STATUS_INVALID_IMAGE_WIN_64 ); /* server supports it but not the prefix */ else set_error( STATUS_INVALID_IMAGE_FORMAT ); return 0; } /* return the cpu mask for supported cpus */ unsigned int get_supported_cpu_mask(void) { return supported_cpus & get_prefix_cpu_mask(); } /* create a new thread */ DECL_HANDLER(new_thread) { struct thread *thread; struct process *process; struct unicode_str name; const struct security_descriptor *sd; const struct object_attributes *objattr = get_req_object_attributes( &sd, &name, NULL ); int request_fd = thread_get_inflight_fd( current, req->request_fd ); if (!(process = get_process_from_handle( req->process, PROCESS_CREATE_THREAD ))) { if (request_fd != -1) close( request_fd ); return; } if (process != current->process) { if (request_fd != -1) /* can't create a request fd in a different process */ { close( request_fd ); set_error( STATUS_INVALID_PARAMETER ); goto done; } if (process->running_threads) /* only the initial thread can be created in another process */ { set_error( STATUS_ACCESS_DENIED ); goto done; } } else if (request_fd == -1 || fcntl( request_fd, F_SETFL, O_NONBLOCK ) == -1) { if (request_fd != -1) close( request_fd ); set_error( STATUS_INVALID_HANDLE ); goto done; } if ((thread = create_thread( request_fd, process, sd ))) { thread->system_regs = current->system_regs; if (req->suspend) thread->suspend++; reply->tid = get_thread_id( thread ); if ((reply->handle = alloc_handle_no_access_check( current->process, thread, req->access, objattr->attributes ))) { /* thread object will be released when the thread gets killed */ goto done; } kill_thread( thread, 1 ); } done: release_object( process ); } /* initialize a new thread */ DECL_HANDLER(init_thread) { struct process *process = current->process; int wait_fd, reply_fd; if ((reply_fd = thread_get_inflight_fd( current, req->reply_fd )) == -1) { set_error( STATUS_TOO_MANY_OPENED_FILES ); return; } if ((wait_fd = thread_get_inflight_fd( current, req->wait_fd )) == -1) { set_error( STATUS_TOO_MANY_OPENED_FILES ); goto error; } if (current->reply_fd) /* already initialised */ { set_error( STATUS_INVALID_PARAMETER ); goto error; } if (fcntl( reply_fd, F_SETFL, O_NONBLOCK ) == -1) goto error; current->reply_fd = create_anonymous_fd( &thread_fd_ops, reply_fd, ¤t->obj, 0 ); current->wait_fd = create_anonymous_fd( &thread_fd_ops, wait_fd, ¤t->obj, 0 ); if (!current->reply_fd || !current->wait_fd) return; if (!is_valid_address(req->teb)) { set_error( STATUS_INVALID_PARAMETER ); return; } current->unix_pid = req->unix_pid; current->unix_tid = req->unix_tid; current->teb = req->teb; current->entry_point = process->peb ? req->entry : 0; if (!process->peb) /* first thread, initialize the process too */ { if (!is_cpu_supported( req->cpu )) return; process->unix_pid = current->unix_pid; process->peb = req->entry; process->cpu = req->cpu; reply->info_size = init_process( current ); if (!process->parent_id) process->affinity = current->affinity = get_thread_affinity( current ); else set_thread_affinity( current, current->affinity ); } else { if (req->cpu != process->cpu) { set_error( STATUS_INVALID_PARAMETER ); return; } if (process->unix_pid != current->unix_pid) process->unix_pid = -1; /* can happen with linuxthreads */ init_thread_context( current ); generate_debug_event( current, CREATE_THREAD_DEBUG_EVENT, &req->entry ); set_thread_affinity( current, current->affinity ); } debug_level = max( debug_level, req->debug_level ); reply->pid = get_process_id( process ); reply->tid = get_thread_id( current ); reply->version = SERVER_PROTOCOL_VERSION; reply->server_start = server_start_time; reply->all_cpus = supported_cpus & get_prefix_cpu_mask(); reply->suspend = (current->suspend || process->suspend || current->context != NULL); return; error: if (reply_fd != -1) close( reply_fd ); if (wait_fd != -1) close( wait_fd ); } /* terminate a thread */ DECL_HANDLER(terminate_thread) { struct thread *thread; if ((thread = get_thread_from_handle( req->handle, THREAD_TERMINATE ))) { thread->exit_code = req->exit_code; if (thread != current) kill_thread( thread, 1 ); else reply->self = 1; release_object( thread ); } } /* open a handle to a thread */ DECL_HANDLER(open_thread) { struct thread *thread = get_thread_from_id( req->tid ); reply->handle = 0; if (thread) { reply->handle = alloc_handle( current->process, thread, req->access, req->attributes ); release_object( thread ); } } /* fetch information about a thread */ DECL_HANDLER(get_thread_info) { struct thread *thread; obj_handle_t handle = req->handle; if (!handle) thread = get_thread_from_id( req->tid_in ); else thread = get_thread_from_handle( req->handle, THREAD_QUERY_LIMITED_INFORMATION ); if (thread) { reply->pid = get_process_id( thread->process ); reply->tid = get_thread_id( thread ); reply->teb = thread->teb; reply->entry_point = thread->entry_point; reply->exit_code = (thread->state == TERMINATED) ? thread->exit_code : STATUS_PENDING; reply->priority = thread->priority; reply->affinity = thread->affinity; reply->last = thread->process->running_threads == 1; reply->suspend_count = thread->suspend; reply->desc_len = thread->desc_len; if (thread->desc && get_reply_max_size()) { if (thread->desc_len <= get_reply_max_size()) set_reply_data( thread->desc, thread->desc_len ); else set_error( STATUS_BUFFER_TOO_SMALL ); } release_object( thread ); } } /* fetch information about thread times */ DECL_HANDLER(get_thread_times) { struct thread *thread; if ((thread = get_thread_from_handle( req->handle, THREAD_QUERY_INFORMATION ))) { reply->creation_time = thread->creation_time; reply->exit_time = thread->exit_time; release_object( thread ); } } /* set information about a thread */ DECL_HANDLER(set_thread_info) { struct thread *thread; if ((thread = get_thread_from_handle( req->handle, THREAD_SET_INFORMATION ))) { set_thread_info( thread, req ); release_object( thread ); } } /* suspend a thread */ DECL_HANDLER(suspend_thread) { struct thread *thread; if ((thread = get_thread_from_handle( req->handle, THREAD_SUSPEND_RESUME ))) { if (thread->state == TERMINATED) set_error( STATUS_ACCESS_DENIED ); else reply->count = suspend_thread( thread ); release_object( thread ); } } /* resume a thread */ DECL_HANDLER(resume_thread) { struct thread *thread; if ((thread = get_thread_from_handle( req->handle, THREAD_SUSPEND_RESUME ))) { reply->count = resume_thread( thread ); release_object( thread ); } } /* select on a handle list */ DECL_HANDLER(select) { select_op_t select_op; data_size_t op_size; struct thread_apc *apc; const apc_result_t *result = get_req_data(); if (get_req_data_size() < sizeof(*result) || get_req_data_size() - sizeof(*result) < req->size || req->size & 3) { set_error( STATUS_INVALID_PARAMETER ); return; } if (get_req_data_size() - sizeof(*result) - req->size == sizeof(context_t)) { const context_t *context = (const context_t *)((const char *)(result + 1) + req->size); if ((current->context && current->context->status != STATUS_PENDING) || context->cpu != current->process->cpu) { set_error( STATUS_INVALID_PARAMETER ); return; } if (!current->context && !(current->context = create_thread_context( current ))) return; copy_context( ¤t->context->regs, context, context->flags & ~(current->context->regs.flags | get_context_system_regs(current->process->cpu)) ); current->context->status = STATUS_SUCCESS; current->suspend_cookie = req->cookie; wake_up( ¤t->context->obj, 0 ); } if (!req->cookie) { set_error( STATUS_INVALID_PARAMETER ); return; } op_size = min( req->size, sizeof(select_op) ); memset( &select_op, 0, sizeof(select_op) ); memcpy( &select_op, result + 1, op_size ); /* first store results of previous apc */ if (req->prev_apc) { if (!(apc = (struct thread_apc *)get_handle_obj( current->process, req->prev_apc, 0, &thread_apc_ops ))) return; apc->result = *result; apc->executed = 1; if (apc->result.type == APC_CREATE_THREAD) /* transfer the handle to the caller process */ { obj_handle_t handle = duplicate_handle( current->process, apc->result.create_thread.handle, apc->caller->process, 0, 0, DUP_HANDLE_SAME_ACCESS ); close_handle( current->process, apc->result.create_thread.handle ); apc->result.create_thread.handle = handle; clear_error(); /* ignore errors from the above calls */ } else if (apc->result.type == APC_ASYNC_IO) { if (apc->owner) async_set_result( apc->owner, apc->result.async_io.status, apc->result.async_io.total ); } wake_up( &apc->obj, 0 ); close_handle( current->process, req->prev_apc ); release_object( apc ); } select_on( &select_op, op_size, req->cookie, req->flags, req->timeout ); while (get_error() == STATUS_USER_APC) { if (!(apc = thread_dequeue_apc( current, 0 ))) break; /* Optimization: ignore APC_NONE calls, they are only used to * wake up a thread, but since we got here the thread woke up already. */ if (apc->call.type != APC_NONE && (reply->apc_handle = alloc_handle( current->process, apc, SYNCHRONIZE, 0 ))) { reply->call = apc->call; release_object( apc ); break; } apc->executed = 1; wake_up( &apc->obj, 0 ); release_object( apc ); } if (get_error() == STATUS_KERNEL_APC) { apc = thread_dequeue_apc( current, 1 ); if ((reply->apc_handle = alloc_handle( current->process, apc, SYNCHRONIZE, 0 ))) reply->call = apc->call; else { apc->executed = 1; wake_up( &apc->obj, 0 ); } release_object( apc ); } else if (get_error() != STATUS_PENDING && get_reply_max_size() == sizeof(context_t) && current->context && current->suspend_cookie == req->cookie) { if (current->context->regs.flags) { unsigned int system_flags = get_context_system_regs(current->process->cpu) & current->context->regs.flags; if (system_flags) set_thread_context( current, ¤t->context->regs, system_flags ); set_reply_data( ¤t->context->regs, sizeof(context_t) ); } release_object( current->context ); current->context = NULL; } } /* queue an APC for a thread or process */ DECL_HANDLER(queue_apc) { struct thread *thread = NULL; struct process *process = NULL; struct thread_apc *apc; if (!(apc = create_apc( NULL, &req->call ))) return; switch (apc->call.type) { case APC_NONE: case APC_USER: thread = get_thread_from_handle( req->handle, THREAD_SET_CONTEXT ); break; case APC_VIRTUAL_ALLOC: case APC_VIRTUAL_FREE: case APC_VIRTUAL_PROTECT: case APC_VIRTUAL_FLUSH: case APC_VIRTUAL_LOCK: case APC_VIRTUAL_UNLOCK: case APC_UNMAP_VIEW: process = get_process_from_handle( req->handle, PROCESS_VM_OPERATION ); break; case APC_VIRTUAL_QUERY: process = get_process_from_handle( req->handle, PROCESS_QUERY_INFORMATION ); break; case APC_MAP_VIEW: process = get_process_from_handle( req->handle, PROCESS_VM_OPERATION ); if (process && process != current->process) { /* duplicate the handle into the target process */ obj_handle_t handle = duplicate_handle( current->process, apc->call.map_view.handle, process, 0, 0, DUP_HANDLE_SAME_ACCESS ); if (handle) apc->call.map_view.handle = handle; else { release_object( process ); process = NULL; } } break; case APC_CREATE_THREAD: case APC_BREAK_PROCESS: process = get_process_from_handle( req->handle, PROCESS_CREATE_THREAD ); break; default: set_error( STATUS_INVALID_PARAMETER ); break; } if (thread) { if (!queue_apc( NULL, thread, apc )) set_error( STATUS_THREAD_IS_TERMINATING ); release_object( thread ); } else if (process) { reply->self = (process == current->process); if (!reply->self) { obj_handle_t handle = alloc_handle( current->process, apc, SYNCHRONIZE, 0 ); if (handle) { if (queue_apc( process, NULL, apc )) { apc->caller = (struct thread *)grab_object( current ); reply->handle = handle; } else { close_handle( current->process, handle ); set_error( STATUS_PROCESS_IS_TERMINATING ); } } } release_object( process ); } release_object( apc ); } /* Get the result of an APC call */ DECL_HANDLER(get_apc_result) { struct thread_apc *apc; if (!(apc = (struct thread_apc *)get_handle_obj( current->process, req->handle, 0, &thread_apc_ops ))) return; if (apc->executed) reply->result = apc->result; else set_error( STATUS_PENDING ); /* close the handle directly to avoid an extra round-trip */ close_handle( current->process, req->handle ); release_object( apc ); } /* retrieve the current context of a thread */ DECL_HANDLER(get_thread_context) { struct context *thread_context = NULL; unsigned int system_flags; struct thread *thread; context_t *context; if (get_reply_max_size() < sizeof(context_t)) { set_error( STATUS_INVALID_PARAMETER ); return; } if ((thread_context = (struct context *)get_handle_obj( current->process, req->handle, 0, &context_ops ))) { close_handle( current->process, req->handle ); /* avoid extra server call */ system_flags = get_context_system_regs( thread_context->regs.cpu ); } else if ((thread = get_thread_from_handle( req->handle, THREAD_GET_CONTEXT ))) { clear_error(); system_flags = get_context_system_regs( thread->process->cpu ); if (thread->state == RUNNING) { reply->self = (thread == current); if (thread != current) stop_thread( thread ); if (thread->context) { /* make sure that system regs are valid in thread context */ if (thread->unix_tid != -1 && (req->flags & system_flags & ~thread->context->regs.flags)) get_thread_context( thread, &thread->context->regs, req->flags & system_flags ); if (!get_error()) thread_context = (struct context *)grab_object( thread->context ); } else if (!get_error() && (context = set_reply_data_size( sizeof(context_t) ))) { assert( reply->self ); memset( context, 0, sizeof(context_t) ); context->cpu = thread->process->cpu; if (req->flags & system_flags) { get_thread_context( thread, context, req->flags & system_flags ); context->flags |= req->flags & system_flags; } } } else set_error( STATUS_UNSUCCESSFUL ); release_object( thread ); } if (get_error() || !thread_context) return; set_error( thread_context->status ); if (!thread_context->status && (context = set_reply_data_size( sizeof(context_t) ))) { memset( context, 0, sizeof(context_t) ); context->cpu = thread_context->regs.cpu; copy_context( context, &thread_context->regs, req->flags ); context->flags = req->flags; } else if (thread_context->status == STATUS_PENDING) { reply->handle = alloc_handle( current->process, thread_context, SYNCHRONIZE, 0 ); } release_object( thread_context ); } /* set the current context of a thread */ DECL_HANDLER(set_thread_context) { struct thread *thread; const context_t *context = get_req_data(); if (get_req_data_size() < sizeof(context_t)) { set_error( STATUS_INVALID_PARAMETER ); return; } if (!(thread = get_thread_from_handle( req->handle, THREAD_SET_CONTEXT ))) return; reply->self = (thread == current); if (thread->state == TERMINATED) set_error( STATUS_UNSUCCESSFUL ); else if (context->cpu != thread->process->cpu) set_error( STATUS_INVALID_PARAMETER ); else { unsigned int system_flags = get_context_system_regs(context->cpu) & context->flags; if (thread != current) stop_thread( thread ); else if (system_flags) set_thread_context( thread, context, system_flags ); if (thread->context && !get_error()) { copy_context( &thread->context->regs, context, context->flags ); thread->context->regs.flags |= context->flags; } } release_object( thread ); } /* fetch a selector entry for a thread */ DECL_HANDLER(get_selector_entry) { struct thread *thread; if ((thread = get_thread_from_handle( req->handle, THREAD_QUERY_INFORMATION ))) { get_selector_entry( thread, req->entry, &reply->base, &reply->limit, &reply->flags ); release_object( thread ); } }