/* * Copyright 2012 Hans Leidekker for CodeWeavers * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA */ #define COBJMACROS #define NONAMELESSUNION #define NONAMELESSSTRUCT #include #include #include "ntstatus.h" #define WIN32_NO_STATUS #include "windef.h" #include "winbase.h" #include "winsock2.h" #include "ws2tcpip.h" #include "initguid.h" #include "wbemcli.h" #include "wbemprov.h" #include "iphlpapi.h" #include "netioapi.h" #include "tlhelp32.h" #include "d3d10.h" #include "winternl.h" #include "winioctl.h" #include "winsvc.h" #include "winver.h" #include "sddl.h" #include "ntsecapi.h" #include "winspool.h" #include "setupapi.h" #include "ntddstor.h" #include "wine/asm.h" #include "wine/debug.h" #include "wbemprox_private.h" WINE_DEFAULT_DEBUG_CHANNEL(wbemprox); /* column definitions must be kept in sync with record structures below */ static const struct column col_associator[] = { { L"AssocClass", CIM_STRING }, { L"Class", CIM_STRING }, { L"Associator", CIM_STRING } }; static const struct column col_baseboard[] = { { L"Manufacturer", CIM_STRING|COL_FLAG_DYNAMIC }, { L"Model", CIM_STRING }, { L"Name", CIM_STRING }, { L"Product", CIM_STRING|COL_FLAG_DYNAMIC }, { L"SerialNumber", CIM_STRING|COL_FLAG_DYNAMIC }, { L"Tag", CIM_STRING|COL_FLAG_KEY }, { L"Version", CIM_STRING|COL_FLAG_DYNAMIC }, }; static const struct column col_bios[] = { { L"CurrentLanguage", CIM_STRING }, { L"Description", CIM_STRING }, { L"EmbeddedControllerMajorVersion", CIM_UINT8 }, { L"EmbeddedControllerMinorVersion", CIM_UINT8 }, { L"IdentificationCode", CIM_STRING }, { L"Manufacturer", CIM_STRING|COL_FLAG_DYNAMIC }, { L"Name", CIM_STRING }, { L"ReleaseDate", CIM_DATETIME|COL_FLAG_DYNAMIC }, { L"SerialNumber", CIM_STRING }, { L"SMBIOSBIOSVersion", CIM_STRING|COL_FLAG_DYNAMIC }, { L"SMBIOSMajorVersion", CIM_UINT16 }, { L"SMBIOSMinorVersion", CIM_UINT16 }, { L"SystemBiosMajorVersion", CIM_UINT8 }, { L"SystemBiosMinorVersion", CIM_UINT8 }, { L"Version", CIM_STRING|COL_FLAG_KEY }, }; static const struct column col_cdromdrive[] = { { L"DeviceId", CIM_STRING|COL_FLAG_KEY }, { L"Drive", CIM_STRING|COL_FLAG_DYNAMIC }, { L"MediaType", CIM_STRING }, { L"Name", CIM_STRING }, { L"PNPDeviceID", CIM_STRING }, }; static const struct column col_compsys[] = { { L"Description", CIM_STRING }, { L"Domain", CIM_STRING }, { L"DomainRole", CIM_UINT16 }, { L"Manufacturer", CIM_STRING }, { L"Model", CIM_STRING }, { L"Name", CIM_STRING|COL_FLAG_DYNAMIC }, { L"NumberOfLogicalProcessors", CIM_UINT32 }, { L"NumberOfProcessors", CIM_UINT32 }, { L"TotalPhysicalMemory", CIM_UINT64 }, { L"UserName", CIM_STRING|COL_FLAG_DYNAMIC }, }; static const struct column col_compsysproduct[] = { { L"IdentifyingNumber", CIM_STRING|COL_FLAG_DYNAMIC|COL_FLAG_KEY }, { L"Name", CIM_STRING|COL_FLAG_DYNAMIC|COL_FLAG_KEY }, { L"SKUNumber", CIM_STRING }, { L"UUID", CIM_STRING|COL_FLAG_DYNAMIC }, { L"Vendor", CIM_STRING|COL_FLAG_DYNAMIC }, { L"Version", CIM_STRING|COL_FLAG_DYNAMIC|COL_FLAG_KEY }, }; static const struct column col_datafile[] = { { L"Name", CIM_STRING|COL_FLAG_DYNAMIC|COL_FLAG_KEY }, { L"Version", CIM_STRING|COL_FLAG_DYNAMIC }, }; static const struct column col_desktopmonitor[] = { { L"Name", CIM_STRING }, { L"PixelsPerXLogicalInch", CIM_UINT32 }, }; static const struct column col_directory[] = { { L"AccessMask", CIM_UINT32 }, { L"Name", CIM_STRING|COL_FLAG_DYNAMIC|COL_FLAG_KEY }, }; static const struct column col_diskdrive[] = { { L"DeviceId", CIM_STRING|COL_FLAG_DYNAMIC|COL_FLAG_KEY }, { L"Index", CIM_UINT32 }, { L"InterfaceType", CIM_STRING }, { L"Manufacturer", CIM_STRING }, { L"MediaType", CIM_STRING }, { L"Model", CIM_STRING }, { L"PNPDeviceID", CIM_STRING }, { L"SerialNumber", CIM_STRING|COL_FLAG_DYNAMIC }, { L"Size", CIM_UINT64 }, }; static const struct column col_diskdrivetodiskpartition[] = { { L"Antecedent", CIM_REFERENCE|COL_FLAG_DYNAMIC|COL_FLAG_KEY }, { L"Dependent", CIM_REFERENCE|COL_FLAG_DYNAMIC|COL_FLAG_KEY }, }; static const struct column col_diskpartition[] = { { L"Bootable", CIM_BOOLEAN }, { L"BootPartition", CIM_BOOLEAN }, { L"DeviceId", CIM_STRING|COL_FLAG_DYNAMIC|COL_FLAG_KEY }, { L"DiskIndex", CIM_UINT32 }, { L"Index", CIM_UINT32 }, { L"PNPDeviceID", CIM_STRING|COL_FLAG_DYNAMIC }, { L"Size", CIM_UINT64 }, { L"StartingOffset", CIM_UINT64 }, { L"Type", CIM_STRING|COL_FLAG_DYNAMIC }, }; static const struct column col_displaycontrollerconfig[] = { { L"BitsPerPixel", CIM_UINT32 }, { L"Caption", CIM_STRING }, { L"HorizontalResolution", CIM_UINT32 }, { L"Name", CIM_STRING|COL_FLAG_KEY }, { L"VerticalResolution", CIM_UINT32 }, }; static const struct column col_ip4routetable[] = { { L"Destination", CIM_STRING|COL_FLAG_DYNAMIC|COL_FLAG_KEY }, { L"InterfaceIndex", CIM_SINT32|COL_FLAG_KEY }, { L"NextHop", CIM_STRING|COL_FLAG_DYNAMIC|COL_FLAG_KEY }, }; static const struct column col_logicaldisk[] = { { L"DeviceId", CIM_STRING|COL_FLAG_DYNAMIC|COL_FLAG_KEY }, { L"DriveType", CIM_UINT32 }, { L"FileSystem", CIM_STRING|COL_FLAG_DYNAMIC }, { L"FreeSpace", CIM_UINT64 }, { L"Name", CIM_STRING|COL_FLAG_DYNAMIC }, { L"Size", CIM_UINT64 }, { L"VolumeName", CIM_STRING|COL_FLAG_DYNAMIC }, { L"VolumeSerialNumber", CIM_STRING|COL_FLAG_DYNAMIC }, }; static const struct column col_logicaldisktopartition[] = { { L"Antecedent", CIM_REFERENCE|COL_FLAG_DYNAMIC|COL_FLAG_KEY }, { L"Dependent", CIM_REFERENCE|COL_FLAG_DYNAMIC|COL_FLAG_KEY }, }; static const struct column col_networkadapter[] = { { L"AdapterType", CIM_STRING }, { L"AdapterTypeID", CIM_UINT16 }, { L"Description", CIM_STRING|COL_FLAG_DYNAMIC }, { L"DeviceId", CIM_STRING|COL_FLAG_DYNAMIC|COL_FLAG_KEY }, { L"Index", CIM_UINT32 }, { L"InterfaceIndex", CIM_UINT32 }, { L"MACAddress", CIM_STRING|COL_FLAG_DYNAMIC }, { L"Manufacturer", CIM_STRING }, { L"Name", CIM_STRING|COL_FLAG_DYNAMIC }, { L"NetConnectionStatus", CIM_UINT16 }, { L"PhysicalAdapter", CIM_BOOLEAN }, { L"PNPDeviceID", CIM_STRING }, { L"Speed", CIM_UINT64 }, }; static const struct column col_networkadapterconfig[] = { { L"DefaultIPGateway", CIM_STRING|CIM_FLAG_ARRAY|COL_FLAG_DYNAMIC }, { L"Description", CIM_STRING|COL_FLAG_DYNAMIC }, { L"DHCPEnabled", CIM_BOOLEAN }, { L"DNSHostName", CIM_STRING|COL_FLAG_DYNAMIC }, { L"DNSServerSearchOrder", CIM_STRING|CIM_FLAG_ARRAY|COL_FLAG_DYNAMIC }, { L"Index", CIM_UINT32|COL_FLAG_KEY }, { L"IPAddress", CIM_STRING|CIM_FLAG_ARRAY|COL_FLAG_DYNAMIC }, { L"IPConnectionMetric", CIM_UINT32 }, { L"IPEnabled", CIM_BOOLEAN }, { L"IPSubnet", CIM_STRING|CIM_FLAG_ARRAY|COL_FLAG_DYNAMIC }, { L"MACAddress", CIM_STRING|COL_FLAG_DYNAMIC }, { L"SettingID", CIM_STRING|COL_FLAG_DYNAMIC }, }; static const struct column col_operatingsystem[] = { { L"BuildNumber", CIM_STRING|COL_FLAG_DYNAMIC }, { L"Caption", CIM_STRING|COL_FLAG_DYNAMIC }, { L"CodeSet", CIM_STRING|COL_FLAG_DYNAMIC }, { L"CountryCode", CIM_STRING|COL_FLAG_DYNAMIC }, { L"CSDVersion", CIM_STRING|COL_FLAG_DYNAMIC }, { L"CSName", CIM_STRING|COL_FLAG_DYNAMIC }, { L"CurrentTimeZone", CIM_SINT16 }, { L"FreePhysicalMemory", CIM_UINT64 }, { L"InstallDate", CIM_DATETIME }, { L"LastBootUpTime", CIM_DATETIME|COL_FLAG_DYNAMIC }, { L"LocalDateTime", CIM_DATETIME|COL_FLAG_DYNAMIC }, { L"Locale", CIM_STRING|COL_FLAG_DYNAMIC }, { L"Manufacturer", CIM_STRING }, { L"Name", CIM_STRING|COL_FLAG_DYNAMIC }, { L"OperatingSystemSKU", CIM_UINT32 }, { L"OSArchitecture", CIM_STRING }, { L"OSLanguage", CIM_UINT32 }, { L"OSProductSuite", CIM_UINT32 }, { L"OSType", CIM_UINT16 }, { L"Primary", CIM_BOOLEAN }, { L"SerialNumber", CIM_STRING|COL_FLAG_DYNAMIC }, { L"ServicePackMajorVersion", CIM_UINT16 }, { L"ServicePackMinorVersion", CIM_UINT16 }, { L"SuiteMask", CIM_UINT32 }, { L"SystemDirectory", CIM_STRING|COL_FLAG_DYNAMIC }, { L"SystemDrive", CIM_STRING|COL_FLAG_DYNAMIC }, { L"TotalVirtualMemorySize", CIM_UINT64 }, { L"TotalVisibleMemorySize", CIM_UINT64 }, { L"Version", CIM_STRING|COL_FLAG_DYNAMIC }, }; static const struct column col_param[] = { { L"Class", CIM_STRING }, { L"Method", CIM_STRING }, { L"Direction", CIM_SINT32 }, { L"Parameter", CIM_STRING }, { L"Type", CIM_UINT32 }, { L"DefaultValue", CIM_UINT32 }, }; static const struct column col_physicalmedia[] = { { L"SerialNumber", CIM_STRING }, { L"Tag", CIM_STRING }, }; static const struct column col_physicalmemory[] = { { L"Capacity", CIM_UINT64 }, { L"ConfiguredClockSpeed", CIM_UINT32 }, { L"DeviceLocator", CIM_STRING }, { L"FormFactor", CIM_UINT16 }, { L"MemoryType", CIM_UINT16 }, { L"PartNumber", CIM_STRING }, }; static const struct column col_pnpentity[] = { { L"DeviceId", CIM_STRING|COL_FLAG_DYNAMIC }, }; static const struct column col_printer[] = { { L"Attributes", CIM_UINT32 }, { L"DeviceId", CIM_STRING|COL_FLAG_DYNAMIC|COL_FLAG_KEY }, { L"DriverName", CIM_STRING|COL_FLAG_DYNAMIC }, { L"HorizontalResolution", CIM_UINT32 }, { L"Local", CIM_BOOLEAN }, { L"Location", CIM_STRING|COL_FLAG_DYNAMIC }, { L"Name", CIM_STRING|COL_FLAG_DYNAMIC }, { L"Network", CIM_BOOLEAN }, { L"PortName", CIM_STRING|COL_FLAG_DYNAMIC }, }; static const struct column col_process[] = { { L"Caption", CIM_STRING|COL_FLAG_DYNAMIC }, { L"CommandLine", CIM_STRING|COL_FLAG_DYNAMIC }, { L"Description", CIM_STRING|COL_FLAG_DYNAMIC }, { L"Handle", CIM_STRING|COL_FLAG_DYNAMIC|COL_FLAG_KEY }, { L"Name", CIM_STRING|COL_FLAG_DYNAMIC }, { L"ParentProcessID", CIM_UINT32 }, { L"ProcessID", CIM_UINT32 }, { L"ThreadCount", CIM_UINT32 }, { L"WorkingSetSize", CIM_UINT64 }, /* methods */ { L"GetOwner", CIM_FLAG_ARRAY|COL_FLAG_METHOD }, }; static const struct column col_processor[] = { { L"AddressWidth", CIM_UINT16 }, { L"Architecture", CIM_UINT16 }, { L"Caption", CIM_STRING|COL_FLAG_DYNAMIC }, { L"CpuStatus", CIM_UINT16 }, { L"CurrentClockSpeed", CIM_UINT32 }, { L"DataWidth", CIM_UINT16 }, { L"Description", CIM_STRING|COL_FLAG_DYNAMIC }, { L"DeviceId", CIM_STRING|COL_FLAG_DYNAMIC|COL_FLAG_KEY }, { L"Family", CIM_UINT16 }, { L"Level", CIM_UINT16 }, { L"Manufacturer", CIM_STRING|COL_FLAG_DYNAMIC }, { L"MaxClockSpeed", CIM_UINT32 }, { L"Name", CIM_STRING|COL_FLAG_DYNAMIC }, { L"NumberOfCores", CIM_UINT32 }, { L"NumberOfLogicalProcessors", CIM_UINT32 }, { L"ProcessorId", CIM_STRING|COL_FLAG_DYNAMIC }, { L"ProcessorType", CIM_UINT16 }, { L"Revision", CIM_UINT16 }, { L"UniqueId", CIM_STRING }, { L"Version", CIM_STRING|COL_FLAG_DYNAMIC }, }; static const struct column col_qualifier[] = { { L"Class", CIM_STRING }, { L"Member", CIM_STRING }, { L"Type", CIM_UINT32 }, { L"Flavor", CIM_SINT32 }, { L"Name", CIM_STRING }, { L"IntegerValue", CIM_SINT32 }, { L"StringValue", CIM_STRING }, { L"BoolValue", CIM_BOOLEAN }, }; static const struct column col_quickfixengineering[] = { { L"Caption", CIM_STRING }, { L"HotFixID", CIM_STRING|COL_FLAG_KEY }, }; static const struct column col_service[] = { { L"AcceptPause", CIM_BOOLEAN }, { L"AcceptStop", CIM_BOOLEAN }, { L"DisplayName", CIM_STRING|COL_FLAG_DYNAMIC }, { L"Name", CIM_STRING|COL_FLAG_DYNAMIC|COL_FLAG_KEY }, { L"ProcessID", CIM_UINT32 }, { L"ServiceType", CIM_STRING }, { L"StartMode", CIM_STRING }, { L"State", CIM_STRING }, { L"SystemName", CIM_STRING|COL_FLAG_DYNAMIC }, /* methods */ { L"PauseService", CIM_FLAG_ARRAY|COL_FLAG_METHOD }, { L"ResumeService", CIM_FLAG_ARRAY|COL_FLAG_METHOD }, { L"StartService", CIM_FLAG_ARRAY|COL_FLAG_METHOD }, { L"StopService", CIM_FLAG_ARRAY|COL_FLAG_METHOD }, }; static const struct column col_sid[] = { { L"AccountName", CIM_STRING|COL_FLAG_DYNAMIC }, { L"BinaryRepresentation", CIM_UINT8|CIM_FLAG_ARRAY|COL_FLAG_DYNAMIC }, { L"ReferencedDomainName", CIM_STRING|COL_FLAG_DYNAMIC }, { L"SID", CIM_STRING|COL_FLAG_DYNAMIC|COL_FLAG_KEY }, { L"SidLength", CIM_UINT32 }, }; static const struct column col_sounddevice[] = { { L"Name", CIM_STRING }, { L"ProductName", CIM_STRING }, { L"StatusInfo", CIM_UINT16 }, }; static const struct column col_stdregprov[] = { { L"CreateKey", CIM_FLAG_ARRAY|COL_FLAG_METHOD }, { L"EnumKey", CIM_FLAG_ARRAY|COL_FLAG_METHOD }, { L"EnumValues", CIM_FLAG_ARRAY|COL_FLAG_METHOD }, { L"GetStringValue", CIM_FLAG_ARRAY|COL_FLAG_METHOD }, }; static const struct column col_systemenclosure[] = { { L"Caption", CIM_STRING }, { L"ChassisTypes", CIM_UINT16|CIM_FLAG_ARRAY|COL_FLAG_DYNAMIC }, { L"Description", CIM_STRING }, { L"LockPresent", CIM_BOOLEAN }, { L"Manufacturer", CIM_STRING|COL_FLAG_DYNAMIC }, { L"Name", CIM_STRING }, { L"Tag", CIM_STRING }, }; static const struct column col_systemsecurity[] = { { L"GetSD", CIM_FLAG_ARRAY|COL_FLAG_METHOD }, { L"SetSD", CIM_FLAG_ARRAY|COL_FLAG_METHOD }, }; static const struct column col_videocontroller[] = { { L"AdapterCompatibility", CIM_STRING }, { L"AdapterDACType", CIM_STRING }, { L"AdapterRAM", CIM_UINT32 }, { L"Availability", CIM_UINT16 }, { L"Caption", CIM_STRING|COL_FLAG_DYNAMIC }, { L"ConfigManagerErrorCode", CIM_UINT32 }, { L"CurrentBitsPerPixel", CIM_UINT32 }, { L"CurrentHorizontalResolution", CIM_UINT32 }, { L"CurrentRefreshRate", CIM_UINT32 }, { L"CurrentScanMode", CIM_UINT16 }, { L"CurrentVerticalResolution", CIM_UINT32 }, { L"Description", CIM_STRING|COL_FLAG_DYNAMIC }, { L"DeviceId", CIM_STRING|COL_FLAG_KEY }, { L"DriverDate", CIM_DATETIME }, { L"DriverVersion", CIM_STRING }, { L"InstalledDisplayDrivers", CIM_STRING }, { L"Name", CIM_STRING|COL_FLAG_DYNAMIC }, { L"PNPDeviceID", CIM_STRING|COL_FLAG_DYNAMIC }, { L"Status", CIM_STRING }, { L"VideoArchitecture", CIM_UINT16 }, { L"VideoMemoryType", CIM_UINT16 }, { L"VideoModeDescription", CIM_STRING|COL_FLAG_DYNAMIC }, { L"VideoProcessor", CIM_STRING|COL_FLAG_DYNAMIC }, }; static const struct column col_winsat[] = { { L"CPUScore", CIM_REAL32 }, { L"D3DScore", CIM_REAL32 }, { L"DiskScore", CIM_REAL32 }, { L"GraphicsScore", CIM_REAL32 }, { L"MemoryScore", CIM_REAL32 }, { L"TimeTaken", CIM_STRING|COL_FLAG_KEY }, { L"WinSATAssessmentState", CIM_UINT32 }, { L"WinSPRLevel", CIM_REAL32 }, }; #include "pshpack1.h" struct record_associator { const WCHAR *assocclass; const WCHAR *class; const WCHAR *associator; }; struct record_baseboard { const WCHAR *manufacturer; const WCHAR *model; const WCHAR *name; const WCHAR *product; const WCHAR *serialnumber; const WCHAR *tag; const WCHAR *version; }; struct record_bios { const WCHAR *currentlanguage; const WCHAR *description; UINT8 ecmajorversion; UINT8 ecminorversion; const WCHAR *identificationcode; const WCHAR *manufacturer; const WCHAR *name; const WCHAR *releasedate; const WCHAR *serialnumber; const WCHAR *smbiosbiosversion; UINT16 smbiosmajorversion; UINT16 smbiosminorversion; UINT8 systembiosmajorversion; UINT8 systembiosminorversion; const WCHAR *version; }; struct record_cdromdrive { const WCHAR *device_id; const WCHAR *drive; const WCHAR *mediatype; const WCHAR *name; const WCHAR *pnpdevice_id; }; struct record_computersystem { const WCHAR *description; const WCHAR *domain; UINT16 domainrole; const WCHAR *manufacturer; const WCHAR *model; const WCHAR *name; UINT32 num_logical_processors; UINT32 num_processors; UINT64 total_physical_memory; const WCHAR *username; }; struct record_computersystemproduct { const WCHAR *identifyingnumber; const WCHAR *name; const WCHAR *skunumber; const WCHAR *uuid; const WCHAR *vendor; const WCHAR *version; }; struct record_datafile { const WCHAR *name; const WCHAR *version; }; struct record_desktopmonitor { const WCHAR *name; UINT32 pixelsperxlogicalinch; }; struct record_directory { UINT32 accessmask; const WCHAR *name; }; struct record_diskdrive { const WCHAR *device_id; UINT32 index; const WCHAR *interfacetype; const WCHAR *manufacturer; const WCHAR *mediatype; const WCHAR *model; const WCHAR *pnpdevice_id; const WCHAR *serialnumber; UINT64 size; }; struct record_diskdrivetodiskpartition { const WCHAR *antecedent; const WCHAR *dependent; }; struct record_diskpartition { int bootable; int bootpartition; const WCHAR *device_id; UINT32 diskindex; UINT32 index; const WCHAR *pnpdevice_id; UINT64 size; UINT64 startingoffset; const WCHAR *type; }; struct record_displaycontrollerconfig { UINT32 bitsperpixel; const WCHAR *caption; UINT32 horizontalresolution; const WCHAR *name; UINT32 verticalresolution; }; struct record_ip4routetable { const WCHAR *destination; INT32 interfaceindex; const WCHAR *nexthop; }; struct record_logicaldisk { const WCHAR *device_id; UINT32 drivetype; const WCHAR *filesystem; UINT64 freespace; const WCHAR *name; UINT64 size; const WCHAR *volumename; const WCHAR *volumeserialnumber; }; struct record_logicaldisktopartition { const WCHAR *antecedent; const WCHAR *dependent; }; struct record_networkadapter { const WCHAR *adaptertype; UINT16 adaptertypeid; const WCHAR *description; const WCHAR *device_id; UINT32 index; UINT32 interface_index; const WCHAR *mac_address; const WCHAR *manufacturer; const WCHAR *name; UINT16 netconnection_status; int physicaladapter; const WCHAR *pnpdevice_id; UINT64 speed; }; struct record_networkadapterconfig { const struct array *defaultipgateway; const WCHAR *description; int dhcpenabled; const WCHAR *dnshostname; const struct array *dnsserversearchorder; UINT32 index; const struct array *ipaddress; UINT32 ipconnectionmetric; int ipenabled; const struct array *ipsubnet; const WCHAR *mac_address; const WCHAR *settingid; }; struct record_operatingsystem { const WCHAR *buildnumber; const WCHAR *caption; const WCHAR *codeset; const WCHAR *countrycode; const WCHAR *csdversion; const WCHAR *csname; INT16 currenttimezone; UINT64 freephysicalmemory; const WCHAR *installdate; const WCHAR *lastbootuptime; const WCHAR *localdatetime; const WCHAR *locale; const WCHAR *manufacturer; const WCHAR *name; UINT32 operatingsystemsku; const WCHAR *osarchitecture; UINT32 oslanguage; UINT32 osproductsuite; UINT16 ostype; int primary; const WCHAR *serialnumber; UINT16 servicepackmajor; UINT16 servicepackminor; UINT32 suitemask; const WCHAR *systemdirectory; const WCHAR *systemdrive; UINT64 totalvirtualmemorysize; UINT64 totalvisiblememorysize; const WCHAR *version; }; struct record_param { const WCHAR *class; const WCHAR *method; INT32 direction; const WCHAR *parameter; UINT32 type; UINT32 defaultvalue; }; struct record_physicalmedia { const WCHAR *serialnumber; const WCHAR *tag; }; struct record_physicalmemory { UINT64 capacity; UINT32 configuredclockspeed; const WCHAR *devicelocator; UINT16 formfactor; UINT16 memorytype; const WCHAR *partnumber; }; struct record_pnpentity { const WCHAR *device_id; }; struct record_printer { UINT32 attributes; const WCHAR *device_id; const WCHAR *drivername; UINT32 horizontalresolution; int local; const WCHAR *location; const WCHAR *name; int network; const WCHAR *portname; }; struct record_process { const WCHAR *caption; const WCHAR *commandline; const WCHAR *description; const WCHAR *handle; const WCHAR *name; UINT32 pprocess_id; UINT32 process_id; UINT32 thread_count; UINT64 workingsetsize; /* methods */ class_method *get_owner; }; struct record_processor { UINT16 addresswidth; UINT16 architecture; const WCHAR *caption; UINT16 cpu_status; UINT32 currentclockspeed; UINT16 datawidth; const WCHAR *description; const WCHAR *device_id; UINT16 family; UINT16 level; const WCHAR *manufacturer; UINT32 maxclockspeed; const WCHAR *name; UINT32 num_cores; UINT32 num_logical_processors; const WCHAR *processor_id; UINT16 processortype; UINT16 revision; const WCHAR *unique_id; const WCHAR *version; }; struct record_qualifier { const WCHAR *class; const WCHAR *member; UINT32 type; INT32 flavor; const WCHAR *name; INT32 intvalue; const WCHAR *strvalue; int boolvalue; }; struct record_quickfixengineering { const WCHAR *caption; const WCHAR *hotfixid; }; struct record_service { int accept_pause; int accept_stop; const WCHAR *displayname; const WCHAR *name; UINT32 process_id; const WCHAR *servicetype; const WCHAR *startmode; const WCHAR *state; const WCHAR *systemname; /* methods */ class_method *pause_service; class_method *resume_service; class_method *start_service; class_method *stop_service; }; struct record_sid { const WCHAR *accountname; const struct array *binaryrepresentation; const WCHAR *referenceddomainname; const WCHAR *sid; UINT32 sidlength; }; struct record_sounddevice { const WCHAR *name; const WCHAR *productname; UINT16 statusinfo; }; struct record_stdregprov { class_method *createkey; class_method *enumkey; class_method *enumvalues; class_method *getstringvalue; }; struct record_systemsecurity { class_method *getsd; class_method *setsd; }; struct record_systemenclosure { const WCHAR *caption; const struct array *chassistypes; const WCHAR *description; int lockpresent; const WCHAR *manufacturer; const WCHAR *name; const WCHAR *tag; }; struct record_videocontroller { const WCHAR *adapter_compatibility; const WCHAR *adapter_dactype; UINT32 adapter_ram; UINT16 availability; const WCHAR *caption; UINT32 config_errorcode; UINT32 current_bitsperpixel; UINT32 current_horizontalres; UINT32 current_refreshrate; UINT16 current_scanmode; UINT32 current_verticalres; const WCHAR *description; const WCHAR *device_id; const WCHAR *driverdate; const WCHAR *driverversion; const WCHAR *installeddriver; const WCHAR *name; const WCHAR *pnpdevice_id; const WCHAR *status; UINT16 videoarchitecture; UINT16 videomemorytype; const WCHAR *videomodedescription; const WCHAR *videoprocessor; }; struct record_winsat { FLOAT cpuscore; FLOAT d3dscore; FLOAT diskscrore; FLOAT graphicsscore; FLOAT memoryscore; const WCHAR *timetaken; UINT32 winsatassessmentstate; FLOAT winsprlevel; }; #include "poppack.h" static const struct record_associator data_associator[] = { { L"Win32_DiskDriveToDiskPartition", L"Win32_DiskPartition", L"Win32_DiskDrive" }, { L"Win32_LogicalDiskToPartition", L"Win32_LogicalDisk", L"Win32_DiskPartition" }, }; static const struct record_param data_param[] = { { L"__SystemSecurity", L"GetSD", -1, L"ReturnValue", CIM_UINT32 }, { L"__SystemSecurity", L"GetSD", -1, L"SD", CIM_UINT8|CIM_FLAG_ARRAY }, { L"__SystemSecurity", L"SetSD", 1, L"SD", CIM_UINT8|CIM_FLAG_ARRAY }, { L"__SystemSecurity", L"SetSD", -1, L"ReturnValue", CIM_UINT32 }, { L"StdRegProv", L"CreateKey", 1, L"hDefKey", CIM_SINT32, 0x80000002 }, { L"StdRegProv", L"CreateKey", 1, L"sSubKeyName", CIM_STRING }, { L"StdRegProv", L"CreateKey", -1, L"ReturnValue", CIM_UINT32 }, { L"StdRegProv", L"EnumKey", 1, L"hDefKey", CIM_SINT32, 0x80000002 }, { L"StdRegProv", L"EnumKey", 1, L"sSubKeyName", CIM_STRING }, { L"StdRegProv", L"EnumKey", -1, L"ReturnValue", CIM_UINT32 }, { L"StdRegProv", L"EnumKey", -1, L"sNames", CIM_STRING|CIM_FLAG_ARRAY }, { L"StdRegProv", L"EnumValues", 1, L"hDefKey", CIM_SINT32, 0x80000002 }, { L"StdRegProv", L"EnumValues", 1, L"sSubKeyName", CIM_STRING }, { L"StdRegProv", L"EnumValues", -1, L"ReturnValue", CIM_UINT32 }, { L"StdRegProv", L"EnumValues", -1, L"sNames", CIM_STRING|CIM_FLAG_ARRAY }, { L"StdRegProv", L"EnumValues", -1, L"Types", CIM_SINT32|CIM_FLAG_ARRAY }, { L"StdRegProv", L"GetStringValue", 1, L"hDefKey", CIM_SINT32, 0x80000002 }, { L"StdRegProv", L"GetStringValue", 1, L"sSubKeyName", CIM_STRING }, { L"StdRegProv", L"GetStringValue", 1, L"sValueName", CIM_STRING }, { L"StdRegProv", L"GetStringValue", -1, L"ReturnValue", CIM_UINT32 }, { L"StdRegProv", L"GetStringValue", -1, L"sValue", CIM_STRING }, { L"Win32_Process", L"GetOwner", -1, L"ReturnValue", CIM_UINT32 }, { L"Win32_Process", L"GetOwner", -1, L"User", CIM_STRING }, { L"Win32_Process", L"GetOwner", -1, L"Domain", CIM_STRING }, { L"Win32_Service", L"PauseService", -1, L"ReturnValue", CIM_UINT32 }, { L"Win32_Service", L"ResumeService", -1, L"ReturnValue", CIM_UINT32 }, { L"Win32_Service", L"StartService", -1, L"ReturnValue", CIM_UINT32 }, { L"Win32_Service", L"StopService", -1, L"ReturnValue", CIM_UINT32 }, }; #define FLAVOR_ID (WBEM_FLAVOR_FLAG_PROPAGATE_TO_INSTANCE | WBEM_FLAVOR_NOT_OVERRIDABLE |\ WBEM_FLAVOR_ORIGIN_PROPAGATED) static const struct record_physicalmedia data_physicalmedia[] = { { L"WINEHDISK", L"\\\\.\\PHYSICALDRIVE0" } }; static const struct record_qualifier data_qualifier[] = { { L"__WIN32_PROCESS_GETOWNER_OUT", L"User", CIM_SINT32, FLAVOR_ID, L"ID", 0 }, { L"__WIN32_PROCESS_GETOWNER_OUT", L"Domain", CIM_SINT32, FLAVOR_ID, L"ID", 1 } }; static const struct record_quickfixengineering data_quickfixengineering[] = { { L"http://winehq.org", L"KB1234567" }, }; static const struct record_sounddevice data_sounddevice[] = { { L"Wine Audio Device", L"Wine Audio Device", 3 /* enabled */ } }; static const struct record_stdregprov data_stdregprov[] = { { reg_create_key, reg_enum_key, reg_enum_values, reg_get_stringvalue } }; static UINT16 systemenclosure_chassistypes[] = { 1, }; static const struct array systemenclosure_chassistypes_array = { sizeof(*systemenclosure_chassistypes), ARRAY_SIZE(systemenclosure_chassistypes), &systemenclosure_chassistypes }; static const struct record_systemsecurity data_systemsecurity[] = { { security_get_sd, security_set_sd } }; static const struct record_winsat data_winsat[] = { { 8.0f, 8.0f, 8.0f, 8.0f, 8.0f, L"MostRecentAssessment", 1 /* Valid */, 8.0f }, }; /* check if row matches condition and update status */ static BOOL match_row( const struct table *table, UINT row, const struct expr *cond, enum fill_status *status ) { LONGLONG val; UINT type; if (!cond) { *status = FILL_STATUS_UNFILTERED; return TRUE; } if (eval_cond( table, row, cond, &val, &type ) != S_OK) { *status = FILL_STATUS_FAILED; return FALSE; } *status = FILL_STATUS_FILTERED; return val != 0; } static BOOL resize_table( struct table *table, UINT row_count, UINT row_size ) { if (!table->num_rows_allocated) { if (!(table->data = heap_alloc( row_count * row_size ))) return FALSE; table->num_rows_allocated = row_count; return TRUE; } if (row_count > table->num_rows_allocated) { BYTE *data; UINT count = max( row_count, table->num_rows_allocated * 2 ); if (!(data = heap_realloc( table->data, count * row_size ))) return FALSE; table->data = data; table->num_rows_allocated = count; } return TRUE; } #include "pshpack1.h" struct smbios_prologue { BYTE calling_method; BYTE major_version; BYTE minor_version; BYTE revision; DWORD length; }; enum smbios_type { SMBIOS_TYPE_BIOS, SMBIOS_TYPE_SYSTEM, SMBIOS_TYPE_BASEBOARD, SMBIOS_TYPE_CHASSIS, }; struct smbios_header { BYTE type; BYTE length; WORD handle; }; struct smbios_baseboard { struct smbios_header hdr; BYTE vendor; BYTE product; BYTE version; BYTE serial; }; struct smbios_bios { struct smbios_header hdr; BYTE vendor; BYTE version; WORD start; BYTE date; BYTE size; UINT64 characteristics; BYTE characteristics_ext[2]; BYTE system_bios_major_release; BYTE system_bios_minor_release; BYTE ec_firmware_major_release; BYTE ec_firmware_minor_release; }; struct smbios_chassis { struct smbios_header hdr; BYTE vendor; BYTE type; BYTE version; BYTE serial; BYTE asset_tag; }; struct smbios_system { struct smbios_header hdr; BYTE vendor; BYTE product; BYTE version; BYTE serial; BYTE uuid[16]; }; #include "poppack.h" #define RSMB (('R' << 24) | ('S' << 16) | ('M' << 8) | 'B') static const struct smbios_header *find_smbios_entry( enum smbios_type type, const char *buf, UINT len ) { const char *ptr, *start; const struct smbios_prologue *prologue; const struct smbios_header *hdr; if (len < sizeof(struct smbios_prologue)) return NULL; prologue = (const struct smbios_prologue *)buf; if (prologue->length > len - sizeof(*prologue) || prologue->length < sizeof(*hdr)) return NULL; start = (const char *)(prologue + 1); hdr = (const struct smbios_header *)start; for (;;) { if ((const char *)hdr - start >= prologue->length - sizeof(*hdr)) return NULL; if (!hdr->length) { WARN( "invalid entry\n" ); return NULL; } if (hdr->type == type) { if ((const char *)hdr - start + hdr->length > prologue->length) return NULL; break; } else /* skip other entries and their strings */ { for (ptr = (const char *)hdr + hdr->length; ptr - buf < len && *ptr; ptr++) { for (; ptr - buf < len; ptr++) if (!*ptr) break; } if (ptr == (const char *)hdr + hdr->length) ptr++; hdr = (const struct smbios_header *)(ptr + 1); } } return hdr; } static WCHAR *get_smbios_string( BYTE id, const char *buf, UINT offset, UINT buflen ) { const char *ptr = buf + offset; UINT i = 0; if (!id || offset >= buflen) return NULL; for (ptr = buf + offset; ptr - buf < buflen && *ptr; ptr++) { if (++i == id) return heap_strdupAW( ptr ); for (; ptr - buf < buflen; ptr++) if (!*ptr) break; } return NULL; } static WCHAR *get_baseboard_string( BYTE id, const char *buf, UINT len ) { const struct smbios_header *hdr; const struct smbios_baseboard *baseboard; UINT offset; if (!(hdr = find_smbios_entry( SMBIOS_TYPE_BASEBOARD, buf, len ))) return NULL; baseboard = (const struct smbios_baseboard *)hdr; offset = (const char *)baseboard - buf + baseboard->hdr.length; return get_smbios_string( id, buf, offset, len ); } static WCHAR *get_baseboard_manufacturer( const char *buf, UINT len ) { WCHAR *ret = get_baseboard_string( 1, buf, len ); if (!ret) return heap_strdupW( L"Intel Corporation" ); return ret; } static WCHAR *get_baseboard_product( const char *buf, UINT len ) { WCHAR *ret = get_baseboard_string( 2, buf, len ); if (!ret) return heap_strdupW( L"Base Board" ); return ret; } static WCHAR *get_baseboard_serialnumber( const char *buf, UINT len ) { WCHAR *ret = get_baseboard_string( 4, buf, len ); if (!ret) return heap_strdupW( L"None" ); return ret; } static WCHAR *get_baseboard_version( const char *buf, UINT len ) { WCHAR *ret = get_baseboard_string( 3, buf, len ); if (!ret) return heap_strdupW( L"1.0" ); return ret; } static enum fill_status fill_baseboard( struct table *table, const struct expr *cond ) { struct record_baseboard *rec; enum fill_status status = FILL_STATUS_UNFILTERED; UINT row = 0, len; char *buf; if (!resize_table( table, 1, sizeof(*rec) )) return FILL_STATUS_FAILED; len = GetSystemFirmwareTable( RSMB, 0, NULL, 0 ); if (!(buf = heap_alloc( len ))) return FILL_STATUS_FAILED; GetSystemFirmwareTable( RSMB, 0, buf, len ); rec = (struct record_baseboard *)table->data; rec->manufacturer = get_baseboard_manufacturer( buf, len ); rec->model = L"Base Board"; rec->name = L"Base Board"; rec->product = get_baseboard_product( buf, len ); rec->serialnumber = get_baseboard_serialnumber( buf, len ); rec->tag = L"Base Board"; rec->version = get_baseboard_version( buf, len ); if (!match_row( table, row, cond, &status )) free_row_values( table, row ); else row++; heap_free( buf ); TRACE("created %u rows\n", row); table->num_rows = row; return status; } static UINT16 get_bios_smbiosmajorversion( const char *buf, UINT len ) { const struct smbios_prologue *prologue = (const struct smbios_prologue *)buf; if (len < sizeof(*prologue)) return 2; return prologue->major_version; } static UINT16 get_bios_smbiosminorversion( const char *buf, UINT len ) { const struct smbios_prologue *prologue = (const struct smbios_prologue *)buf; if (len < sizeof(*prologue)) return 0; return prologue->minor_version; } static WCHAR *get_bios_string( BYTE id, const char *buf, UINT len ) { const struct smbios_header *hdr; const struct smbios_bios *bios; UINT offset; if (!(hdr = find_smbios_entry( SMBIOS_TYPE_BIOS, buf, len ))) return NULL; bios = (const struct smbios_bios *)hdr; offset = (const char *)bios - buf + bios->hdr.length; return get_smbios_string( id, buf, offset, len ); } static WCHAR *get_bios_manufacturer( const char *buf, UINT len ) { WCHAR *ret = get_bios_string( 1, buf, len ); if (!ret) return heap_strdupW( L"The Wine Project" ); return ret; } static WCHAR *convert_bios_date( const WCHAR *str ) { static const WCHAR fmtW[] = L"%04u%02u%02u000000.000000+000"; UINT year, month, day, len = lstrlenW( str ); const WCHAR *p = str, *q; WCHAR *ret; while (len && iswspace( *p )) { p++; len--; } while (len && iswspace( p[len - 1] )) { len--; } q = p; while (len && is_digit( *q )) { q++; len--; }; if (q - p != 2 || !len || *q != '/') return NULL; month = (p[0] - '0') * 10 + p[1] - '0'; p = ++q; len--; while (len && is_digit( *q )) { q++; len--; }; if (q - p != 2 || !len || *q != '/') return NULL; day = (p[0] - '0') * 10 + p[1] - '0'; p = ++q; len--; while (len && is_digit( *q )) { q++; len--; }; if (q - p == 4) year = (p[0] - '0') * 1000 + (p[1] - '0') * 100 + (p[2] - '0') * 10 + p[3] - '0'; else if (q - p == 2) year = 1900 + (p[0] - '0') * 10 + p[1] - '0'; else return NULL; if (!(ret = heap_alloc( sizeof(fmtW) ))) return NULL; swprintf( ret, ARRAY_SIZE(fmtW), fmtW, year, month, day ); return ret; } static WCHAR *get_bios_releasedate( const char *buf, UINT len ) { WCHAR *ret, *date = get_bios_string( 3, buf, len ); if (!date || !(ret = convert_bios_date( date ))) ret = heap_strdupW( L"20120608000000.000000+000" ); heap_free( date ); return ret; } static WCHAR *get_bios_smbiosbiosversion( const char *buf, UINT len ) { WCHAR *ret = get_bios_string( 2, buf, len ); if (!ret) return heap_strdupW( L"Wine" ); return ret; } static BYTE get_bios_ec_firmware_major_release( const char *buf, UINT len ) { const struct smbios_header *hdr; const struct smbios_bios *bios; if (!(hdr = find_smbios_entry( SMBIOS_TYPE_BIOS, buf, len ))) return 0xFF; bios = (const struct smbios_bios *)hdr; if (bios->hdr.length >= 0x18) return bios->ec_firmware_major_release; else return 0xFF; } static BYTE get_bios_ec_firmware_minor_release( const char *buf, UINT len ) { const struct smbios_header *hdr; const struct smbios_bios *bios; if (!(hdr = find_smbios_entry( SMBIOS_TYPE_BIOS, buf, len ))) return 0xFF; bios = (const struct smbios_bios *)hdr; if (bios->hdr.length >= 0x18) return bios->ec_firmware_minor_release; else return 0xFF; } static BYTE get_bios_system_bios_major_release( const char *buf, UINT len ) { const struct smbios_header *hdr; const struct smbios_bios *bios; if (!(hdr = find_smbios_entry( SMBIOS_TYPE_BIOS, buf, len ))) return 0xFF; bios = (const struct smbios_bios *)hdr; if (bios->hdr.length >= 0x18) return bios->system_bios_major_release; else return 0xFF; } static BYTE get_bios_system_bios_minor_release( const char *buf, UINT len ) { const struct smbios_header *hdr; const struct smbios_bios *bios; if (!(hdr = find_smbios_entry( SMBIOS_TYPE_BIOS, buf, len ))) return 0xFF; bios = (const struct smbios_bios *)hdr; if (bios->hdr.length >= 0x18) return bios->system_bios_minor_release; else return 0xFF; } static enum fill_status fill_bios( struct table *table, const struct expr *cond ) { struct record_bios *rec; enum fill_status status = FILL_STATUS_UNFILTERED; UINT row = 0, len; char *buf; if (!resize_table( table, 1, sizeof(*rec) )) return FILL_STATUS_FAILED; len = GetSystemFirmwareTable( RSMB, 0, NULL, 0 ); if (!(buf = heap_alloc( len ))) return FILL_STATUS_FAILED; GetSystemFirmwareTable( RSMB, 0, buf, len ); rec = (struct record_bios *)table->data; rec->currentlanguage = NULL; rec->description = L"Default System BIOS"; rec->ecmajorversion = get_bios_ec_firmware_major_release( buf, len ); rec->ecminorversion = get_bios_ec_firmware_minor_release( buf, len ); rec->identificationcode = NULL; rec->manufacturer = get_bios_manufacturer( buf, len ); rec->name = L"Default System BIOS"; rec->releasedate = get_bios_releasedate( buf, len ); rec->serialnumber = L"0"; rec->smbiosbiosversion = get_bios_smbiosbiosversion( buf, len ); rec->smbiosmajorversion = get_bios_smbiosmajorversion( buf, len ); rec->smbiosminorversion = get_bios_smbiosminorversion( buf, len ); rec->systembiosmajorversion = get_bios_system_bios_major_release( buf, len ); rec->systembiosminorversion = get_bios_system_bios_minor_release( buf, len ); rec->version = L"WINE - 1"; if (!match_row( table, row, cond, &status )) free_row_values( table, row ); else row++; heap_free( buf ); TRACE("created %u rows\n", row); table->num_rows = row; return status; } static enum fill_status fill_cdromdrive( struct table *table, const struct expr *cond ) { WCHAR drive[3], root[] = {'A',':','\\',0}; struct record_cdromdrive *rec; UINT i, row = 0, offset = 0; DWORD drives = GetLogicalDrives(); enum fill_status status = FILL_STATUS_UNFILTERED; if (!resize_table( table, 1, sizeof(*rec) )) return FILL_STATUS_FAILED; for (i = 0; i < 26; i++) { if (drives & (1 << i)) { root[0] = 'A' + i; if (GetDriveTypeW( root ) != DRIVE_CDROM) continue; if (!resize_table( table, row + 1, sizeof(*rec) )) return FILL_STATUS_FAILED; rec = (struct record_cdromdrive *)(table->data + offset); rec->device_id = L"IDE\\CDROMWINE_CD-ROM_____________________________1.0_____\\5&3A2A5854&0&1.0.0"; swprintf( drive, ARRAY_SIZE( drive ), L"%c:", 'A' + i ); rec->drive = heap_strdupW( drive ); rec->mediatype = L"CR-ROM"; rec->name = L"Wine CD_ROM ATA Device"; rec->pnpdevice_id = L"IDE\\CDROMWINE_CD-ROM_____________________________1.0_____\\5&3A2A5854&0&1.0.0"; if (!match_row( table, row, cond, &status )) { free_row_values( table, row ); continue; } offset += sizeof(*rec); row++; } } TRACE("created %u rows\n", row); table->num_rows = row; return status; } static UINT get_processor_count(void) { SYSTEM_BASIC_INFORMATION info; if (NtQuerySystemInformation( SystemBasicInformation, &info, sizeof(info), NULL )) return 1; return info.NumberOfProcessors; } static UINT get_logical_processor_count( UINT *num_physical, UINT *num_packages ) { SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *buf, *entry; UINT core_relation_count = 0, package_relation_count = 0; NTSTATUS status; ULONG len, offset = 0; BOOL smt_enabled = FALSE; DWORD all = RelationAll; if (num_packages) *num_packages = 1; status = NtQuerySystemInformationEx( SystemLogicalProcessorInformationEx, &all, sizeof(all), NULL, 0, &len ); if (status != STATUS_INFO_LENGTH_MISMATCH) return get_processor_count(); if (!(buf = heap_alloc( len ))) return get_processor_count(); status = NtQuerySystemInformationEx( SystemLogicalProcessorInformationEx, &all, sizeof(all), buf, len, NULL ); if (status != STATUS_SUCCESS) { heap_free( buf ); return get_processor_count(); } while (offset < len) { entry = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *)((char *)buf + offset); if (entry->Relationship == RelationProcessorCore) { core_relation_count++; if (entry->u.Processor.Flags & LTP_PC_SMT) smt_enabled = TRUE; } else if (entry->Relationship == RelationProcessorPackage) { package_relation_count++; } offset += entry->Size; } heap_free( buf ); if (num_physical) *num_physical = core_relation_count; if (num_packages) *num_packages = package_relation_count; return smt_enabled ? core_relation_count * 2 : core_relation_count; } static UINT64 get_total_physical_memory(void) { MEMORYSTATUSEX status; status.dwLength = sizeof(status); if (!GlobalMemoryStatusEx( &status )) return 1024 * 1024 * 1024; return status.ullTotalPhys; } static UINT64 get_available_physical_memory(void) { MEMORYSTATUSEX status; status.dwLength = sizeof(status); if (!GlobalMemoryStatusEx( &status )) return 1024 * 1024 * 1024; return status.ullAvailPhys; } static WCHAR *get_computername(void) { WCHAR *ret; DWORD size = MAX_COMPUTERNAME_LENGTH + 1; if (!(ret = heap_alloc( size * sizeof(WCHAR) ))) return NULL; GetComputerNameW( ret, &size ); return ret; } static WCHAR *get_username(void) { WCHAR *ret; DWORD compsize, usersize; DWORD size; compsize = 0; GetComputerNameW( NULL, &compsize ); usersize = 0; GetUserNameW( NULL, &usersize ); size = compsize + usersize; /* two null terminators account for the \ */ if (!(ret = heap_alloc( size * sizeof(WCHAR) ))) return NULL; GetComputerNameW( ret, &compsize ); ret[compsize] = '\\'; GetUserNameW( ret + compsize + 1, &usersize ); return ret; } static enum fill_status fill_compsys( struct table *table, const struct expr *cond ) { struct record_computersystem *rec; enum fill_status status = FILL_STATUS_UNFILTERED; UINT row = 0; if (!resize_table( table, 1, sizeof(*rec) )) return FILL_STATUS_FAILED; rec = (struct record_computersystem *)table->data; rec->description = L"AT/AT COMPATIBLE"; rec->domain = L"WORKGROUP"; rec->domainrole = 0; /* standalone workstation */ rec->manufacturer = L"The Wine Project"; rec->model = L"Wine"; rec->name = get_computername(); rec->num_logical_processors = get_logical_processor_count( NULL, &rec->num_processors ); rec->total_physical_memory = get_total_physical_memory(); rec->username = get_username(); if (!match_row( table, row, cond, &status )) free_row_values( table, row ); else row++; TRACE("created %u rows\n", row); table->num_rows = row; return status; } static WCHAR *get_compsysproduct_string( BYTE id, const char *buf, UINT len ) { const struct smbios_header *hdr; const struct smbios_system *system; UINT offset; if (!(hdr = find_smbios_entry( SMBIOS_TYPE_SYSTEM, buf, len ))) return NULL; system = (const struct smbios_system *)hdr; offset = (const char *)system - buf + system->hdr.length; return get_smbios_string( id, buf, offset, len ); } static WCHAR *get_compsysproduct_identifyingnumber( const char *buf, UINT len ) { WCHAR *ret = get_compsysproduct_string( 4, buf, len ); if (!ret) return heap_strdupW( L"0" ); return ret; } static WCHAR *get_compsysproduct_name( const char *buf, UINT len ) { WCHAR *ret = get_compsysproduct_string( 2, buf, len ); if (!ret) return heap_strdupW( L"Wine" ); return ret; } static WCHAR *get_compsysproduct_uuid( const char *buf, UINT len ) { static const BYTE none[] = {0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff}; const struct smbios_header *hdr; const struct smbios_system *system; const BYTE *ptr; WCHAR *ret = NULL; if (!(hdr = find_smbios_entry( SMBIOS_TYPE_SYSTEM, buf, len )) || hdr->length < sizeof(*system)) goto done; system = (const struct smbios_system *)hdr; if (!memcmp( system->uuid, none, sizeof(none) ) || !(ret = heap_alloc( 37 * sizeof(WCHAR) ))) goto done; ptr = system->uuid; swprintf( ret, 37, L"%02X%02X%02X%02X-%02X%02X-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X", ptr[0], ptr[1], ptr[2], ptr[3], ptr[4], ptr[5], ptr[6], ptr[7], ptr[8], ptr[9], ptr[10], ptr[11], ptr[12], ptr[13], ptr[14], ptr[15] ); done: if (!ret) ret = heap_strdupW( L"deaddead-dead-dead-dead-deaddeaddead" ); return ret; } static WCHAR *get_compsysproduct_vendor( const char *buf, UINT len ) { WCHAR *ret = get_compsysproduct_string( 1, buf, len ); if (!ret) return heap_strdupW( L"The Wine Project" ); return ret; } static WCHAR *get_compsysproduct_version( const char *buf, UINT len ) { WCHAR *ret = get_compsysproduct_string( 3, buf, len ); if (!ret) return heap_strdupW( L"1.0" ); return ret; } static enum fill_status fill_compsysproduct( struct table *table, const struct expr *cond ) { struct record_computersystemproduct *rec; enum fill_status status = FILL_STATUS_UNFILTERED; UINT row = 0, len; char *buf; if (!resize_table( table, 1, sizeof(*rec) )) return FILL_STATUS_FAILED; len = GetSystemFirmwareTable( RSMB, 0, NULL, 0 ); if (!(buf = heap_alloc( len ))) return FILL_STATUS_FAILED; GetSystemFirmwareTable( RSMB, 0, buf, len ); rec = (struct record_computersystemproduct *)table->data; rec->identifyingnumber = get_compsysproduct_identifyingnumber( buf, len ); rec->name = get_compsysproduct_name( buf, len ); rec->skunumber = NULL; rec->uuid = get_compsysproduct_uuid( buf, len ); rec->vendor = get_compsysproduct_vendor( buf, len ); rec->version = get_compsysproduct_version( buf, len ); if (!match_row( table, row, cond, &status )) free_row_values( table, row ); else row++; heap_free( buf ); TRACE("created %u rows\n", row); table->num_rows = row; return status; } struct dirstack { WCHAR **dirs; UINT *len_dirs; UINT num_dirs; UINT num_allocated; }; static struct dirstack *alloc_dirstack( UINT size ) { struct dirstack *dirstack; if (!(dirstack = heap_alloc( sizeof(*dirstack) ))) return NULL; if (!(dirstack->dirs = heap_alloc( sizeof(WCHAR *) * size ))) { heap_free( dirstack ); return NULL; } if (!(dirstack->len_dirs = heap_alloc( sizeof(UINT) * size ))) { heap_free( dirstack->dirs ); heap_free( dirstack ); return NULL; } dirstack->num_dirs = 0; dirstack->num_allocated = size; return dirstack; } static void clear_dirstack( struct dirstack *dirstack ) { UINT i; for (i = 0; i < dirstack->num_dirs; i++) heap_free( dirstack->dirs[i] ); dirstack->num_dirs = 0; } static void free_dirstack( struct dirstack *dirstack ) { clear_dirstack( dirstack ); heap_free( dirstack->dirs ); heap_free( dirstack->len_dirs ); heap_free( dirstack ); } static BOOL push_dir( struct dirstack *dirstack, WCHAR *dir, UINT len ) { UINT size, i = dirstack->num_dirs; if (!dir) return FALSE; if (i == dirstack->num_allocated) { WCHAR **tmp; UINT *len_tmp; size = dirstack->num_allocated * 2; if (!(tmp = heap_realloc( dirstack->dirs, size * sizeof(WCHAR *) ))) return FALSE; dirstack->dirs = tmp; if (!(len_tmp = heap_realloc( dirstack->len_dirs, size * sizeof(UINT) ))) return FALSE; dirstack->len_dirs = len_tmp; dirstack->num_allocated = size; } dirstack->dirs[i] = dir; dirstack->len_dirs[i] = len; dirstack->num_dirs++; return TRUE; } static WCHAR *pop_dir( struct dirstack *dirstack, UINT *len ) { if (!dirstack->num_dirs) { *len = 0; return NULL; } dirstack->num_dirs--; *len = dirstack->len_dirs[dirstack->num_dirs]; return dirstack->dirs[dirstack->num_dirs]; } static const WCHAR *peek_dir( struct dirstack *dirstack ) { if (!dirstack->num_dirs) return NULL; return dirstack->dirs[dirstack->num_dirs - 1]; } static WCHAR *build_glob( WCHAR drive, const WCHAR *path, UINT len ) { UINT i = 0; WCHAR *ret; if (!(ret = heap_alloc( (len + 6) * sizeof(WCHAR) ))) return NULL; ret[i++] = drive; ret[i++] = ':'; ret[i++] = '\\'; if (path && len) { memcpy( ret + i, path, len * sizeof(WCHAR) ); i += len; ret[i++] = '\\'; } ret[i++] = '*'; ret[i] = 0; return ret; } static WCHAR *build_name( WCHAR drive, const WCHAR *path ) { UINT i = 0, len = 0; const WCHAR *p; WCHAR *ret; for (p = path; *p; p++) { if (*p == '\\') len += 2; else len++; }; if (!(ret = heap_alloc( (len + 5) * sizeof(WCHAR) ))) return NULL; ret[i++] = drive; ret[i++] = ':'; ret[i++] = '\\'; ret[i++] = '\\'; for (p = path; *p; p++) { if (*p != '\\') ret[i++] = *p; else { ret[i++] = '\\'; ret[i++] = '\\'; } } ret[i] = 0; return ret; } static WCHAR *build_dirname( const WCHAR *path, UINT *ret_len ) { const WCHAR *p = path, *start; UINT len, i; WCHAR *ret; if (!iswalpha( p[0] ) || p[1] != ':' || p[2] != '\\' || p[3] != '\\' || !p[4]) return NULL; start = path + 4; len = lstrlenW( start ); p = start + len - 1; if (*p == '\\') return NULL; while (p >= start && *p != '\\') { len--; p--; }; while (p >= start && *p == '\\') { len--; p--; }; if (!(ret = heap_alloc( (len + 1) * sizeof(WCHAR) ))) return NULL; for (i = 0, p = start; p < start + len; p++) { if (p[0] == '\\' && p[1] == '\\') { ret[i++] = '\\'; p++; } else ret[i++] = *p; } ret[i] = 0; *ret_len = i; return ret; } static BOOL seen_dir( struct dirstack *dirstack, const WCHAR *path ) { UINT i; for (i = 0; i < dirstack->num_dirs; i++) if (!wcscmp( dirstack->dirs[i], path )) return TRUE; return FALSE; } /* optimize queries of the form WHERE Name='...' [OR Name='...']* */ static UINT seed_dirs( struct dirstack *dirstack, const struct expr *cond, WCHAR root, UINT *count ) { const struct expr *left, *right; if (!cond || cond->type != EXPR_COMPLEX) return *count = 0; left = cond->u.expr.left; right = cond->u.expr.right; if (cond->u.expr.op == OP_EQ) { UINT len; WCHAR *path; const WCHAR *str = NULL; if (left->type == EXPR_PROPVAL && right->type == EXPR_SVAL && !wcscmp( left->u.propval->name, L"Name" ) && towupper( right->u.sval[0] ) == towupper( root )) { str = right->u.sval; } else if (left->type == EXPR_SVAL && right->type == EXPR_PROPVAL && !wcscmp( right->u.propval->name, L"Name" ) && towupper( left->u.sval[0] ) == towupper( root )) { str = left->u.sval; } if (str && (path = build_dirname( str, &len ))) { if (seen_dir( dirstack, path )) { heap_free( path ); return ++*count; } else if (push_dir( dirstack, path, len )) return ++*count; heap_free( path ); return *count = 0; } } else if (cond->u.expr.op == OP_OR) { UINT left_count = 0, right_count = 0; if (!(seed_dirs( dirstack, left, root, &left_count ))) return *count = 0; if (!(seed_dirs( dirstack, right, root, &right_count ))) return *count = 0; return *count += left_count + right_count; } return *count = 0; } static WCHAR *append_path( const WCHAR *path, const WCHAR *segment, UINT *len ) { UINT len_path = 0, len_segment = lstrlenW( segment ); WCHAR *ret; *len = 0; if (path) len_path = lstrlenW( path ); if (!(ret = heap_alloc( (len_path + len_segment + 2) * sizeof(WCHAR) ))) return NULL; if (path && len_path) { memcpy( ret, path, len_path * sizeof(WCHAR) ); ret[len_path] = '\\'; *len += len_path + 1; } memcpy( ret + *len, segment, len_segment * sizeof(WCHAR) ); *len += len_segment; ret[*len] = 0; return ret; } static WCHAR *get_file_version( const WCHAR *filename ) { VS_FIXEDFILEINFO *info; DWORD size, len = 4 * 5 + ARRAY_SIZE( L"%u.%u.%u.%u" ); void *block; WCHAR *ret; if (!(ret = heap_alloc( len * sizeof(WCHAR) ))) return NULL; if (!(size = GetFileVersionInfoSizeW( filename, NULL )) || !(block = heap_alloc( size ))) { heap_free( ret ); return NULL; } if (!GetFileVersionInfoW( filename, 0, size, block ) || !VerQueryValueW( block, L"\\", (void **)&info, &size )) { heap_free( block ); heap_free( ret ); return NULL; } swprintf( ret, len, L"%u.%u.%u.%u", info->dwFileVersionMS >> 16, info->dwFileVersionMS & 0xffff, info->dwFileVersionLS >> 16, info->dwFileVersionLS & 0xffff ); heap_free( block ); return ret; } static enum fill_status fill_datafile( struct table *table, const struct expr *cond ) { struct record_datafile *rec; UINT i, len, row = 0, offset = 0, num_expected_rows; WCHAR *glob = NULL, *path = NULL, *new_path, root[] = {'A',':','\\',0}; DWORD drives = GetLogicalDrives(); WIN32_FIND_DATAW data; HANDLE handle; struct dirstack *dirstack; enum fill_status status = FILL_STATUS_UNFILTERED; if (!resize_table( table, 8, sizeof(*rec) )) return FILL_STATUS_FAILED; dirstack = alloc_dirstack(2); for (i = 0; i < 26; i++) { if (!(drives & (1 << i))) continue; root[0] = 'A' + i; if (GetDriveTypeW( root ) != DRIVE_FIXED) continue; num_expected_rows = 0; if (!seed_dirs( dirstack, cond, root[0], &num_expected_rows )) clear_dirstack( dirstack ); for (;;) { heap_free( glob ); heap_free( path ); path = pop_dir( dirstack, &len ); if (!(glob = build_glob( root[0], path, len ))) { status = FILL_STATUS_FAILED; goto done; } if ((handle = FindFirstFileW( glob, &data )) != INVALID_HANDLE_VALUE) { do { if (!resize_table( table, row + 1, sizeof(*rec) )) { status = FILL_STATUS_FAILED; FindClose( handle ); goto done; } if (!wcscmp( data.cFileName, L"." ) || !wcscmp( data.cFileName, L".." )) continue; if (!(new_path = append_path( path, data.cFileName, &len ))) { status = FILL_STATUS_FAILED; FindClose( handle ); goto done; } if (data.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) { if (push_dir( dirstack, new_path, len )) continue; heap_free( new_path ); FindClose( handle ); status = FILL_STATUS_FAILED; goto done; } rec = (struct record_datafile *)(table->data + offset); rec->name = build_name( root[0], new_path ); rec->version = get_file_version( rec->name ); heap_free( new_path ); if (!match_row( table, row, cond, &status )) { free_row_values( table, row ); continue; } else if (num_expected_rows && row == num_expected_rows - 1) { row++; FindClose( handle ); status = FILL_STATUS_FILTERED; goto done; } offset += sizeof(*rec); row++; } while (FindNextFileW( handle, &data )); FindClose( handle ); } if (!peek_dir( dirstack )) break; } } done: free_dirstack( dirstack ); heap_free( glob ); heap_free( path ); TRACE("created %u rows\n", row); table->num_rows = row; return status; } static UINT32 get_pixelsperxlogicalinch(void) { HDC hdc = GetDC( NULL ); UINT32 ret; if (!hdc) return 96; ret = GetDeviceCaps( hdc, LOGPIXELSX ); ReleaseDC( NULL, hdc ); return ret; } static enum fill_status fill_desktopmonitor( struct table *table, const struct expr *cond ) { struct record_desktopmonitor *rec; enum fill_status status = FILL_STATUS_UNFILTERED; UINT row = 0; if (!resize_table( table, 1, sizeof(*rec) )) return FILL_STATUS_FAILED; rec = (struct record_desktopmonitor *)table->data; rec->name = L"Generic Non-PnP Monitor"; rec->pixelsperxlogicalinch = get_pixelsperxlogicalinch(); if (match_row( table, row, cond, &status )) row++; TRACE("created %u rows\n", row); table->num_rows = row; return status; } static enum fill_status fill_directory( struct table *table, const struct expr *cond ) { struct record_directory *rec; UINT i, len, row = 0, offset = 0, num_expected_rows; WCHAR *glob = NULL, *path = NULL, *new_path, root[] = {'A',':','\\',0}; DWORD drives = GetLogicalDrives(); WIN32_FIND_DATAW data; HANDLE handle; struct dirstack *dirstack; enum fill_status status = FILL_STATUS_UNFILTERED; if (!resize_table( table, 4, sizeof(*rec) )) return FILL_STATUS_FAILED; dirstack = alloc_dirstack(2); for (i = 0; i < 26; i++) { if (!(drives & (1 << i))) continue; root[0] = 'A' + i; if (GetDriveTypeW( root ) != DRIVE_FIXED) continue; num_expected_rows = 0; if (!seed_dirs( dirstack, cond, root[0], &num_expected_rows )) clear_dirstack( dirstack ); for (;;) { heap_free( glob ); heap_free( path ); path = pop_dir( dirstack, &len ); if (!(glob = build_glob( root[0], path, len ))) { status = FILL_STATUS_FAILED; goto done; } if ((handle = FindFirstFileW( glob, &data )) != INVALID_HANDLE_VALUE) { do { if (!resize_table( table, row + 1, sizeof(*rec) )) { FindClose( handle ); status = FILL_STATUS_FAILED; goto done; } if (!(data.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) || !wcscmp( data.cFileName, L"." ) || !wcscmp( data.cFileName, L".." )) continue; if (!(new_path = append_path( path, data.cFileName, &len ))) { FindClose( handle ); status = FILL_STATUS_FAILED; goto done; } if (!(push_dir( dirstack, new_path, len ))) { heap_free( new_path ); FindClose( handle ); status = FILL_STATUS_FAILED; goto done; } rec = (struct record_directory *)(table->data + offset); rec->accessmask = FILE_ALL_ACCESS; rec->name = build_name( root[0], new_path ); heap_free( new_path ); if (!match_row( table, row, cond, &status )) { free_row_values( table, row ); continue; } else if (num_expected_rows && row == num_expected_rows - 1) { row++; FindClose( handle ); status = FILL_STATUS_FILTERED; goto done; } offset += sizeof(*rec); row++; } while (FindNextFileW( handle, &data )); FindClose( handle ); } if (!peek_dir( dirstack )) break; } } done: free_dirstack( dirstack ); heap_free( glob ); heap_free( path ); TRACE("created %u rows\n", row); table->num_rows = row; return status; } static UINT64 get_freespace( const WCHAR *dir, UINT64 *disksize ) { WCHAR root[] = {'\\','\\','.','\\','A',':',0}; ULARGE_INTEGER free; DISK_GEOMETRY_EX info; HANDLE handle; DWORD bytes_returned; free.QuadPart = 512 * 1024 * 1024; GetDiskFreeSpaceExW( dir, NULL, NULL, &free ); root[4] = dir[0]; handle = CreateFileW( root, GENERIC_READ, FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, 0 ); if (handle != INVALID_HANDLE_VALUE) { if (DeviceIoControl( handle, IOCTL_DISK_GET_DRIVE_GEOMETRY_EX, NULL, 0, &info, sizeof(info), &bytes_returned, NULL )) *disksize = info.DiskSize.QuadPart; CloseHandle( handle ); } return free.QuadPart; } static WCHAR *get_diskdrive_serialnumber( WCHAR letter ) { WCHAR *ret = NULL; STORAGE_DEVICE_DESCRIPTOR *desc; HANDLE handle = INVALID_HANDLE_VALUE; STORAGE_PROPERTY_QUERY query = {0}; WCHAR drive[7]; DWORD size; swprintf( drive, ARRAY_SIZE(drive), L"\\\\.\\%c:", letter ); handle = CreateFileW( drive, 0, FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, 0 ); if (handle == INVALID_HANDLE_VALUE) goto done; query.PropertyId = StorageDeviceProperty; query.QueryType = PropertyStandardQuery; size = sizeof(*desc) + 256; for (;;) { if (!(desc = heap_alloc( size ))) break; if (DeviceIoControl( handle, IOCTL_STORAGE_QUERY_PROPERTY, &query, sizeof(query), desc, size, NULL, NULL )) { if (desc->SerialNumberOffset) ret = heap_strdupAW( (const char *)desc + desc->SerialNumberOffset ); heap_free( desc ); break; } heap_free( desc ); if (GetLastError() == ERROR_MORE_DATA) size = desc->Size; else break; } done: if (handle != INVALID_HANDLE_VALUE) CloseHandle( handle ); if (!ret) ret = heap_strdupW( L"WINEHDISK" ); return ret; } static enum fill_status fill_diskdrive( struct table *table, const struct expr *cond ) { static const WCHAR fmtW[] = L"\\\\\\\\.\\\\PHYSICALDRIVE%u"; WCHAR device_id[ARRAY_SIZE( fmtW ) + 10], root[] = {'A',':','\\',0}; struct record_diskdrive *rec; UINT i, row = 0, offset = 0, index = 0, type; UINT64 size = 1024 * 1024 * 1024; DWORD drives = GetLogicalDrives(); enum fill_status status = FILL_STATUS_UNFILTERED; if (!resize_table( table, 2, sizeof(*rec) )) return FILL_STATUS_FAILED; for (i = 0; i < 26; i++) { if (drives & (1 << i)) { root[0] = 'A' + i; type = GetDriveTypeW( root ); if (type != DRIVE_FIXED && type != DRIVE_REMOVABLE) continue; if (!resize_table( table, row + 1, sizeof(*rec) )) return FILL_STATUS_FAILED; rec = (struct record_diskdrive *)(table->data + offset); swprintf( device_id, ARRAY_SIZE( device_id ), fmtW, index ); rec->device_id = heap_strdupW( device_id ); rec->index = index++; rec->interfacetype = L"IDE"; rec->manufacturer = L"(Standard disk drives)"; rec->mediatype = (type == DRIVE_FIXED) ? L"Fixed hard disk" : L"Removable media"; rec->model = L"Wine Disk Drive"; rec->pnpdevice_id = L"IDE\\Disk\\VEN_WINE"; rec->serialnumber = get_diskdrive_serialnumber( root[0] ); get_freespace( root, &size ); rec->size = size; if (!match_row( table, row, cond, &status )) { free_row_values( table, row ); continue; } offset += sizeof(*rec); row++; } } TRACE("created %u rows\n", row); table->num_rows = row; return status; } struct association { WCHAR *ref; WCHAR *ref2; }; static void free_associations( struct association *assoc, UINT count ) { UINT i; if (!assoc) return; for (i = 0; i < count; i++) { heap_free( assoc[i].ref ); heap_free( assoc[i].ref2 ); } heap_free( assoc ); } static struct association *get_diskdrivetodiskpartition_pairs( UINT *count ) { struct association *ret = NULL; struct query *query, *query2 = NULL; VARIANT val; HRESULT hr; UINT i; if (!(query = create_query())) return NULL; if ((hr = parse_query( L"SELECT * FROM Win32_DiskDrive", &query->view, &query->mem )) != S_OK) goto done; if ((hr = execute_view( query->view )) != S_OK) goto done; if (!(query2 = create_query())) return FALSE; if ((hr = parse_query( L"SELECT * FROM Win32_DiskPartition", &query2->view, &query2->mem )) != S_OK) goto done; if ((hr = execute_view( query2->view )) != S_OK) goto done; if (!(ret = heap_alloc_zero( query->view->result_count * sizeof(*ret) ))) goto done; for (i = 0; i < query->view->result_count; i++) { if ((hr = get_propval( query->view, i, L"__PATH", &val, NULL, NULL )) != S_OK) goto done; if (!(ret[i].ref = heap_strdupW( V_BSTR(&val) ))) goto done; VariantClear( &val ); if ((hr = get_propval( query2->view, i, L"__PATH", &val, NULL, NULL )) != S_OK) goto done; if (!(ret[i].ref2 = heap_strdupW( V_BSTR(&val) ))) goto done; VariantClear( &val ); } *count = query->view->result_count; done: if (!ret) free_associations( ret, query->view->result_count ); free_query( query ); free_query( query2 ); return ret; } static enum fill_status fill_diskdrivetodiskpartition( struct table *table, const struct expr *cond ) { struct record_diskdrivetodiskpartition *rec; UINT i, row = 0, offset = 0, count = 0; enum fill_status status = FILL_STATUS_UNFILTERED; struct association *assoc; if (!(assoc = get_diskdrivetodiskpartition_pairs( &count ))) return FILL_STATUS_FAILED; if (!count) { free_associations( assoc, count ); return FILL_STATUS_UNFILTERED; } if (!resize_table( table, count, sizeof(*rec) )) { free_associations( assoc, count ); return FILL_STATUS_FAILED; } for (i = 0; i < count; i++) { rec = (struct record_diskdrivetodiskpartition *)(table->data + offset); rec->antecedent = assoc[i].ref; rec->dependent = assoc[i].ref2; if (!match_row( table, row, cond, &status )) { free_row_values( table, row ); continue; } offset += sizeof(*rec); row++; } heap_free( assoc ); TRACE("created %u rows\n", row); table->num_rows = row; return status; } static WCHAR *get_filesystem( const WCHAR *root ) { WCHAR buffer[MAX_PATH + 1]; if (GetVolumeInformationW( root, NULL, 0, NULL, NULL, NULL, buffer, MAX_PATH + 1 )) return heap_strdupW( buffer ); return heap_strdupW( L"NTFS" ); } static enum fill_status fill_diskpartition( struct table *table, const struct expr *cond ) { WCHAR device_id[32], root[] = {'A',':','\\',0}; struct record_diskpartition *rec; UINT i, row = 0, offset = 0, type, index = 0; UINT64 size = 1024 * 1024 * 1024; DWORD drives = GetLogicalDrives(); enum fill_status status = FILL_STATUS_UNFILTERED; if (!resize_table( table, 4, sizeof(*rec) )) return FILL_STATUS_FAILED; for (i = 0; i < 26; i++) { if (drives & (1 << i)) { root[0] = 'A' + i; type = GetDriveTypeW( root ); if (type != DRIVE_FIXED && type != DRIVE_REMOVABLE) continue; if (!resize_table( table, row + 1, sizeof(*rec) )) return FILL_STATUS_FAILED; rec = (struct record_diskpartition *)(table->data + offset); rec->bootable = (i == 2) ? -1 : 0; rec->bootpartition = (i == 2) ? -1 : 0; swprintf( device_id, ARRAY_SIZE( device_id ), L"Disk #%u, Partition #0", index ); rec->device_id = heap_strdupW( device_id ); rec->diskindex = index++; rec->index = 0; rec->pnpdevice_id = heap_strdupW( device_id ); get_freespace( root, &size ); rec->size = size; rec->startingoffset = 0; rec->type = get_filesystem( root ); if (!match_row( table, row, cond, &status )) { free_row_values( table, row ); continue; } offset += sizeof(*rec); row++; } } TRACE("created %u rows\n", row); table->num_rows = row; return status; } static UINT32 get_bitsperpixel( UINT *hres, UINT *vres ) { HDC hdc = GetDC( NULL ); UINT32 ret; if (!hdc) return 32; ret = GetDeviceCaps( hdc, BITSPIXEL ); *hres = GetDeviceCaps( hdc, HORZRES ); *vres = GetDeviceCaps( hdc, VERTRES ); ReleaseDC( NULL, hdc ); return ret; } static enum fill_status fill_displaycontrollerconfig( struct table *table, const struct expr *cond ) { struct record_displaycontrollerconfig *rec; UINT row = 0, hres = 1024, vres = 768; enum fill_status status = FILL_STATUS_UNFILTERED; if (!resize_table( table, 1, sizeof(*rec) )) return FILL_STATUS_FAILED; rec = (struct record_displaycontrollerconfig *)table->data; rec->bitsperpixel = get_bitsperpixel( &hres, &vres ); rec->caption = L"VideoController1"; rec->horizontalresolution = hres; rec->name = L"VideoController1"; rec->verticalresolution = vres; if (!match_row( table, row, cond, &status )) free_row_values( table, row ); else row++; TRACE("created %u rows\n", row); table->num_rows = row; return status; } static WCHAR *get_ip4_string( DWORD addr ) { DWORD len = sizeof("ddd.ddd.ddd.ddd"); WCHAR *ret; if (!(ret = heap_alloc( len * sizeof(WCHAR) ))) return NULL; swprintf( ret, len, L"%u.%u.%u.%u", (addr >> 24) & 0xff, (addr >> 16) & 0xff, (addr >> 8) & 0xff, addr & 0xff ); return ret; } static enum fill_status fill_ip4routetable( struct table *table, const struct expr *cond ) { struct record_ip4routetable *rec; UINT i, row = 0, offset = 0, size = 0; MIB_IPFORWARDTABLE *forwards; enum fill_status status = FILL_STATUS_UNFILTERED; if (GetIpForwardTable( NULL, &size, TRUE ) != ERROR_INSUFFICIENT_BUFFER) return FILL_STATUS_FAILED; if (!(forwards = heap_alloc( size ))) return FILL_STATUS_FAILED; if (GetIpForwardTable( forwards, &size, TRUE )) { heap_free( forwards ); return FILL_STATUS_FAILED; } if (!resize_table( table, max(forwards->dwNumEntries, 1), sizeof(*rec) )) { heap_free( forwards ); return FILL_STATUS_FAILED; } for (i = 0; i < forwards->dwNumEntries; i++) { rec = (struct record_ip4routetable *)(table->data + offset); rec->destination = get_ip4_string( ntohl(forwards->table[i].dwForwardDest) ); rec->interfaceindex = forwards->table[i].dwForwardIfIndex; rec->nexthop = get_ip4_string( ntohl(forwards->table[i].dwForwardNextHop) ); if (!match_row( table, row, cond, &status )) { free_row_values( table, row ); continue; } offset += sizeof(*rec); row++; } TRACE("created %u rows\n", row); table->num_rows = row; heap_free( forwards ); return status; } static WCHAR *get_volumename( const WCHAR *root ) { WCHAR buf[MAX_PATH + 1] = {0}; GetVolumeInformationW( root, buf, ARRAY_SIZE( buf ), NULL, NULL, NULL, NULL, 0 ); return heap_strdupW( buf ); } static WCHAR *get_volumeserialnumber( const WCHAR *root ) { DWORD serial = 0; WCHAR buffer[9]; GetVolumeInformationW( root, NULL, 0, &serial, NULL, NULL, NULL, 0 ); swprintf( buffer, ARRAY_SIZE( buffer ), L"%08X", serial ); return heap_strdupW( buffer ); } static enum fill_status fill_logicaldisk( struct table *table, const struct expr *cond ) { WCHAR device_id[3], root[] = {'A',':','\\',0}; struct record_logicaldisk *rec; UINT i, row = 0, offset = 0, type; UINT64 size = 1024 * 1024 * 1024; DWORD drives = GetLogicalDrives(); enum fill_status status = FILL_STATUS_UNFILTERED; if (!resize_table( table, 4, sizeof(*rec) )) return FILL_STATUS_FAILED; for (i = 0; i < 26; i++) { if (drives & (1 << i)) { root[0] = 'A' + i; type = GetDriveTypeW( root ); if (type != DRIVE_FIXED && type != DRIVE_CDROM && type != DRIVE_REMOVABLE) continue; if (!resize_table( table, row + 1, sizeof(*rec) )) return FILL_STATUS_FAILED; rec = (struct record_logicaldisk *)(table->data + offset); swprintf( device_id, ARRAY_SIZE( device_id ), L"%c:", 'A' + i ); rec->device_id = heap_strdupW( device_id ); rec->drivetype = type; rec->filesystem = get_filesystem( root ); rec->freespace = get_freespace( root, &size ); rec->name = heap_strdupW( device_id ); rec->size = size; rec->volumename = get_volumename( root ); rec->volumeserialnumber = get_volumeserialnumber( root ); if (!match_row( table, row, cond, &status )) { free_row_values( table, row ); continue; } offset += sizeof(*rec); row++; } } TRACE("created %u rows\n", row); table->num_rows = row; return status; } static struct association *get_logicaldisktopartition_pairs( UINT *count ) { struct association *ret = NULL; struct query *query, *query2 = NULL; VARIANT val; HRESULT hr; UINT i; if (!(query = create_query())) return NULL; if ((hr = parse_query( L"SELECT * FROM Win32_DiskPartition", &query->view, &query->mem )) != S_OK) goto done; if ((hr = execute_view( query->view )) != S_OK) goto done; if (!(query2 = create_query())) return FALSE; if ((hr = parse_query( L"SELECT * FROM Win32_LogicalDisk WHERE DriveType=2 OR DriveType=3", &query2->view, &query2->mem )) != S_OK) goto done; if ((hr = execute_view( query2->view )) != S_OK) goto done; if (!(ret = heap_alloc_zero( query->view->result_count * sizeof(*ret) ))) goto done; /* assume fixed and removable disks are enumerated in the same order as partitions */ for (i = 0; i < query->view->result_count; i++) { if ((hr = get_propval( query->view, i, L"__PATH", &val, NULL, NULL )) != S_OK) goto done; if (!(ret[i].ref = heap_strdupW( V_BSTR(&val) ))) goto done; VariantClear( &val ); if ((hr = get_propval( query2->view, i, L"__PATH", &val, NULL, NULL )) != S_OK) goto done; if (!(ret[i].ref2 = heap_strdupW( V_BSTR(&val) ))) goto done; VariantClear( &val ); } *count = query->view->result_count; done: if (!ret) free_associations( ret, query->view->result_count ); free_query( query ); free_query( query2 ); return ret; } static enum fill_status fill_logicaldisktopartition( struct table *table, const struct expr *cond ) { struct record_logicaldisktopartition *rec; UINT i, row = 0, offset = 0, count = 0; enum fill_status status = FILL_STATUS_UNFILTERED; struct association *assoc; if (!(assoc = get_logicaldisktopartition_pairs( &count ))) return FILL_STATUS_FAILED; if (!count) { free_associations( assoc, count ); return FILL_STATUS_UNFILTERED; } if (!resize_table( table, count, sizeof(*rec) )) { free_associations( assoc, count ); return FILL_STATUS_FAILED; } for (i = 0; i < count; i++) { rec = (struct record_logicaldisktopartition *)(table->data + offset); rec->antecedent = assoc[i].ref; rec->dependent = assoc[i].ref2; if (!match_row( table, row, cond, &status )) { free_row_values( table, row ); continue; } offset += sizeof(*rec); row++; } heap_free( assoc ); TRACE("created %u rows\n", row); table->num_rows = row; return status; } static UINT16 get_connection_status( IF_OPER_STATUS status ) { switch (status) { case IfOperStatusDown: return 0; /* Disconnected */ case IfOperStatusUp: return 2; /* Connected */ default: ERR("unhandled status %u\n", status); break; } return 0; } static WCHAR *get_mac_address( const BYTE *addr, DWORD len ) { WCHAR *ret; if (len != 6 || !(ret = heap_alloc( 18 * sizeof(WCHAR) ))) return NULL; swprintf( ret, 18, L"%02x:%02x:%02x:%02x:%02x:%02x", addr[0], addr[1], addr[2], addr[3], addr[4], addr[5] ); return ret; } static const WCHAR *get_adaptertype( DWORD type, int *id, int *physical ) { switch (type) { case IF_TYPE_ETHERNET_CSMACD: *id = 0; *physical = -1; return L"Ethernet 802.3"; case IF_TYPE_IEEE80211: *id = 9; *physical = -1; return L"Wireless"; case IF_TYPE_IEEE1394: *id = 13; *physical = -1; return L"1394"; case IF_TYPE_TUNNEL: *id = 15; *physical = 0; return L"Tunnel"; default: *id = -1; *physical = 0; return NULL; } } static enum fill_status fill_networkadapter( struct table *table, const struct expr *cond ) { WCHAR device_id[11]; struct record_networkadapter *rec; IP_ADAPTER_ADDRESSES *aa, *buffer; UINT row = 0, offset = 0, count = 0; DWORD size = 0, ret; int adaptertypeid, physical; enum fill_status status = FILL_STATUS_UNFILTERED; ret = GetAdaptersAddresses( AF_UNSPEC, 0, NULL, NULL, &size ); if (ret != ERROR_BUFFER_OVERFLOW) return FILL_STATUS_FAILED; if (!(buffer = heap_alloc( size ))) return FILL_STATUS_FAILED; if (GetAdaptersAddresses( AF_UNSPEC, 0, NULL, buffer, &size )) { heap_free( buffer ); return FILL_STATUS_FAILED; } for (aa = buffer; aa; aa = aa->Next) { if (aa->IfType != IF_TYPE_SOFTWARE_LOOPBACK) count++; } if (!resize_table( table, count, sizeof(*rec) )) { heap_free( buffer ); return FILL_STATUS_FAILED; } for (aa = buffer; aa; aa = aa->Next) { if (aa->IfType == IF_TYPE_SOFTWARE_LOOPBACK) continue; rec = (struct record_networkadapter *)(table->data + offset); swprintf( device_id, ARRAY_SIZE( device_id ), L"%u", aa->u.s.IfIndex ); rec->adaptertype = get_adaptertype( aa->IfType, &adaptertypeid, &physical ); rec->adaptertypeid = adaptertypeid; rec->description = heap_strdupW( aa->Description ); rec->device_id = heap_strdupW( device_id ); rec->index = aa->u.s.IfIndex; rec->interface_index = aa->u.s.IfIndex; rec->mac_address = get_mac_address( aa->PhysicalAddress, aa->PhysicalAddressLength ); rec->manufacturer = L"The Wine Project"; rec->name = heap_strdupW( aa->FriendlyName ); rec->netconnection_status = get_connection_status( aa->OperStatus ); rec->physicaladapter = physical; rec->pnpdevice_id = L"PCI\\VEN_8086&DEV_100E&SUBSYS_001E8086&REV_02\\3&267A616A&1&18"; rec->speed = 1000000; if (!match_row( table, row, cond, &status )) { free_row_values( table, row ); continue; } offset += sizeof(*rec); row++; } TRACE("created %u rows\n", row); table->num_rows = row; heap_free( buffer ); return status; } static WCHAR *get_dnshostname( IP_ADAPTER_UNICAST_ADDRESS *addr ) { const SOCKET_ADDRESS *sa = &addr->Address; WCHAR buf[NI_MAXHOST]; if (!addr) return NULL; if (GetNameInfoW( sa->lpSockaddr, sa->iSockaddrLength, buf, ARRAY_SIZE( buf ), NULL, 0, NI_NAMEREQD )) return NULL; return heap_strdupW( buf ); } static struct array *get_defaultipgateway( IP_ADAPTER_GATEWAY_ADDRESS *list ) { IP_ADAPTER_GATEWAY_ADDRESS *gateway; struct array *ret; ULONG buflen, i = 0, count = 0; WCHAR **ptr, buf[54]; /* max IPv6 address length */ if (!list) return NULL; for (gateway = list; gateway; gateway = gateway->Next) count++; if (!(ret = heap_alloc( sizeof(*ret) ))) return NULL; if (!(ptr = heap_alloc( sizeof(*ptr) * count ))) { heap_free( ret ); return NULL; } for (gateway = list; gateway; gateway = gateway->Next) { buflen = ARRAY_SIZE( buf ); if (WSAAddressToStringW( gateway->Address.lpSockaddr, gateway->Address.iSockaddrLength, NULL, buf, &buflen) || !(ptr[i++] = heap_strdupW( buf ))) { for (; i > 0; i--) heap_free( ptr[i - 1] ); heap_free( ptr ); heap_free( ret ); return NULL; } } ret->elem_size = sizeof(*ptr); ret->count = count; ret->ptr = ptr; return ret; } static struct array *get_dnsserversearchorder( IP_ADAPTER_DNS_SERVER_ADDRESS *list ) { IP_ADAPTER_DNS_SERVER_ADDRESS *server; struct array *ret; ULONG buflen, i = 0, count = 0; WCHAR **ptr, *p, buf[54]; /* max IPv6 address length */ if (!list) return NULL; for (server = list; server; server = server->Next) count++; if (!(ret = heap_alloc( sizeof(*ret) ))) return NULL; if (!(ptr = heap_alloc( sizeof(*ptr) * count ))) { heap_free( ret ); return NULL; } for (server = list; server; server = server->Next) { buflen = ARRAY_SIZE( buf ); if (WSAAddressToStringW( server->Address.lpSockaddr, server->Address.iSockaddrLength, NULL, buf, &buflen) || !(ptr[i++] = heap_strdupW( buf ))) { for (; i > 0; i--) heap_free( ptr[i - 1] ); heap_free( ptr ); heap_free( ret ); return NULL; } if ((p = wcsrchr( ptr[i - 1], ':' ))) *p = 0; } ret->elem_size = sizeof(*ptr); ret->count = count; ret->ptr = ptr; return ret; } static struct array *get_ipaddress( IP_ADAPTER_UNICAST_ADDRESS_LH *list ) { IP_ADAPTER_UNICAST_ADDRESS_LH *address; struct array *ret; ULONG buflen, i = 0, count = 0; WCHAR **ptr, buf[54]; /* max IPv6 address length */ if (!list) return NULL; for (address = list; address; address = address->Next) count++; if (!(ret = heap_alloc( sizeof(*ret) ))) return NULL; if (!(ptr = heap_alloc( sizeof(*ptr) * count ))) { heap_free( ret ); return NULL; } for (address = list; address; address = address->Next) { buflen = ARRAY_SIZE( buf ); if (WSAAddressToStringW( address->Address.lpSockaddr, address->Address.iSockaddrLength, NULL, buf, &buflen) || !(ptr[i++] = heap_strdupW( buf ))) { for (; i > 0; i--) heap_free( ptr[i - 1] ); heap_free( ptr ); heap_free( ret ); return NULL; } } ret->elem_size = sizeof(*ptr); ret->count = count; ret->ptr = ptr; return ret; } static struct array *get_ipsubnet( IP_ADAPTER_UNICAST_ADDRESS_LH *list ) { IP_ADAPTER_UNICAST_ADDRESS_LH *address; struct array *ret; ULONG i = 0, count = 0; WCHAR **ptr; if (!list) return NULL; for (address = list; address; address = address->Next) count++; if (!(ret = heap_alloc( sizeof(*ret) ))) return NULL; if (!(ptr = heap_alloc( sizeof(*ptr) * count ))) { heap_free( ret ); return NULL; } for (address = list; address; address = address->Next) { if (address->Address.lpSockaddr->sa_family == AF_INET) { WCHAR buf[INET_ADDRSTRLEN]; SOCKADDR_IN addr; ULONG buflen = ARRAY_SIZE( buf ); memset( &addr, 0, sizeof(addr) ); addr.sin_family = AF_INET; if (ConvertLengthToIpv4Mask( address->OnLinkPrefixLength, &addr.sin_addr.S_un.S_addr ) != NO_ERROR || WSAAddressToStringW( (SOCKADDR*)&addr, sizeof(addr), NULL, buf, &buflen)) ptr[i] = NULL; else ptr[i] = heap_strdupW( buf ); } else { WCHAR buf[11]; swprintf( buf, ARRAY_SIZE( buf ), L"%u", address->OnLinkPrefixLength ); ptr[i] = heap_strdupW( buf ); } if (!ptr[i++]) { for (; i > 0; i--) heap_free( ptr[i - 1] ); heap_free( ptr ); heap_free( ret ); return NULL; } } ret->elem_size = sizeof(*ptr); ret->count = count; ret->ptr = ptr; return ret; } static WCHAR *get_settingid( UINT32 index ) { GUID guid; WCHAR *ret, *str; memset( &guid, 0, sizeof(guid) ); guid.Data1 = index; UuidToStringW( &guid, &str ); ret = heap_strdupW( str ); RpcStringFreeW( &str ); return ret; } static enum fill_status fill_networkadapterconfig( struct table *table, const struct expr *cond ) { struct record_networkadapterconfig *rec; IP_ADAPTER_ADDRESSES *aa, *buffer; UINT row = 0, offset = 0, count = 0; DWORD size = 0, ret; enum fill_status status = FILL_STATUS_UNFILTERED; ret = GetAdaptersAddresses( AF_UNSPEC, GAA_FLAG_INCLUDE_ALL_GATEWAYS, NULL, NULL, &size ); if (ret != ERROR_BUFFER_OVERFLOW) return FILL_STATUS_FAILED; if (!(buffer = heap_alloc( size ))) return FILL_STATUS_FAILED; if (GetAdaptersAddresses( AF_UNSPEC, GAA_FLAG_INCLUDE_ALL_GATEWAYS, NULL, buffer, &size )) { heap_free( buffer ); return FILL_STATUS_FAILED; } for (aa = buffer; aa; aa = aa->Next) { if (aa->IfType != IF_TYPE_SOFTWARE_LOOPBACK) count++; } if (!resize_table( table, count, sizeof(*rec) )) { heap_free( buffer ); return FILL_STATUS_FAILED; } for (aa = buffer; aa; aa = aa->Next) { if (aa->IfType == IF_TYPE_SOFTWARE_LOOPBACK) continue; rec = (struct record_networkadapterconfig *)(table->data + offset); rec->defaultipgateway = get_defaultipgateway( aa->FirstGatewayAddress ); rec->description = heap_strdupW( aa->Description ); rec->dhcpenabled = -1; rec->dnshostname = get_dnshostname( aa->FirstUnicastAddress ); rec->dnsserversearchorder = get_dnsserversearchorder( aa->FirstDnsServerAddress ); rec->index = aa->u.s.IfIndex; rec->ipaddress = get_ipaddress( aa->FirstUnicastAddress ); rec->ipconnectionmetric = 20; rec->ipenabled = -1; rec->ipsubnet = get_ipsubnet( aa->FirstUnicastAddress ); rec->mac_address = get_mac_address( aa->PhysicalAddress, aa->PhysicalAddressLength ); rec->settingid = get_settingid( rec->index ); if (!match_row( table, row, cond, &status )) { free_row_values( table, row ); continue; } offset += sizeof(*rec); row++; } TRACE("created %u rows\n", row); table->num_rows = row; heap_free( buffer ); return status; } static enum fill_status fill_physicalmemory( struct table *table, const struct expr *cond ) { struct record_physicalmemory *rec; enum fill_status status = FILL_STATUS_UNFILTERED; UINT row = 0; if (!resize_table( table, 1, sizeof(*rec) )) return FILL_STATUS_FAILED; rec = (struct record_physicalmemory *)table->data; rec->capacity = get_total_physical_memory(); rec->configuredclockspeed = 0; rec->devicelocator = L"DIMM 0"; rec->formfactor = 8; /* DIMM */ rec->memorytype = 9; /* RAM */ rec->partnumber = NULL; if (!match_row( table, row, cond, &status )) free_row_values( table, row ); else row++; TRACE("created %u rows\n", row); table->num_rows = row; return status; } static enum fill_status fill_pnpentity( struct table *table, const struct expr *cond ) { struct record_pnpentity *rec; enum fill_status status = FILL_STATUS_UNFILTERED; HDEVINFO device_info_set; SP_DEVINFO_DATA devinfo = {0}; DWORD idx; device_info_set = SetupDiGetClassDevsW( NULL, NULL, NULL, DIGCF_ALLCLASSES|DIGCF_PRESENT ); devinfo.cbSize = sizeof(devinfo); idx = 0; while (SetupDiEnumDeviceInfo( device_info_set, idx++, &devinfo )) { /* noop */ } resize_table( table, idx, sizeof(*rec) ); table->num_rows = 0; rec = (struct record_pnpentity *)table->data; idx = 0; while (SetupDiEnumDeviceInfo( device_info_set, idx++, &devinfo )) { WCHAR device_id[MAX_PATH]; if (SetupDiGetDeviceInstanceIdW( device_info_set, &devinfo, device_id, ARRAY_SIZE(device_id), NULL )) { rec->device_id = heap_strdupW( device_id ); table->num_rows++; if (!match_row( table, table->num_rows - 1, cond, &status )) { free_row_values( table, table->num_rows - 1 ); table->num_rows--; } else rec++; } } SetupDiDestroyDeviceInfoList( device_info_set ); return status; } static enum fill_status fill_printer( struct table *table, const struct expr *cond ) { struct record_printer *rec; enum fill_status status = FILL_STATUS_UNFILTERED; PRINTER_INFO_2W *info; DWORD i, offset = 0, count = 0, size = 0, num_rows = 0; WCHAR id[20]; EnumPrintersW( PRINTER_ENUM_LOCAL, NULL, 2, NULL, 0, &size, &count ); if (!count) return FILL_STATUS_UNFILTERED; if (!(info = heap_alloc( size ))) return FILL_STATUS_FAILED; if (!EnumPrintersW( PRINTER_ENUM_LOCAL, NULL, 2, (BYTE *)info, size, &size, &count )) { heap_free( info ); return FILL_STATUS_FAILED; } if (!resize_table( table, count, sizeof(*rec) )) { heap_free( info ); return FILL_STATUS_FAILED; } for (i = 0; i < count; i++) { rec = (struct record_printer *)(table->data + offset); rec->attributes = info[i].Attributes; swprintf( id, ARRAY_SIZE( id ), L"Printer%u", i ); rec->device_id = heap_strdupW( id ); rec->drivername = heap_strdupW( info[i].pDriverName ); rec->horizontalresolution = info[i].pDevMode->u1.s1.dmPrintQuality; rec->local = -1; rec->location = heap_strdupW( info[i].pLocation ); rec->name = heap_strdupW( info[i].pPrinterName ); rec->network = 0; rec->portname = heap_strdupW( info[i].pPortName ); if (!match_row( table, i, cond, &status )) { free_row_values( table, i ); continue; } offset += sizeof(*rec); num_rows++; } TRACE("created %u rows\n", num_rows); table->num_rows = num_rows; heap_free( info ); return status; } static WCHAR *get_cmdline( DWORD process_id ) { if (process_id == GetCurrentProcessId()) return heap_strdupW( GetCommandLineW() ); return NULL; /* FIXME handle different process case */ } static enum fill_status fill_process( struct table *table, const struct expr *cond ) { WCHAR handle[11]; struct record_process *rec; PROCESSENTRY32W entry; HANDLE snap; enum fill_status status = FILL_STATUS_FAILED; UINT row = 0, offset = 0; snap = CreateToolhelp32Snapshot( TH32CS_SNAPPROCESS, 0 ); if (snap == INVALID_HANDLE_VALUE) return FILL_STATUS_FAILED; entry.dwSize = sizeof(entry); if (!Process32FirstW( snap, &entry )) goto done; if (!resize_table( table, 8, sizeof(*rec) )) goto done; do { if (!resize_table( table, row + 1, sizeof(*rec) )) { status = FILL_STATUS_FAILED; goto done; } rec = (struct record_process *)(table->data + offset); rec->caption = heap_strdupW( entry.szExeFile ); rec->commandline = get_cmdline( entry.th32ProcessID ); rec->description = heap_strdupW( entry.szExeFile ); swprintf( handle, ARRAY_SIZE( handle ), L"%u", entry.th32ProcessID ); rec->handle = heap_strdupW( handle ); rec->name = heap_strdupW( entry.szExeFile ); rec->process_id = entry.th32ProcessID; rec->pprocess_id = entry.th32ParentProcessID; rec->thread_count = entry.cntThreads; rec->workingsetsize = 0; rec->get_owner = process_get_owner; if (!match_row( table, row, cond, &status )) { free_row_values( table, row ); continue; } offset += sizeof(*rec); row++; } while (Process32NextW( snap, &entry )); TRACE("created %u rows\n", row); table->num_rows = row; done: CloseHandle( snap ); return status; } void do_cpuid( unsigned int ax, int *p ) { #if defined(__i386__) || defined(__x86_64__) __cpuid( p, ax ); #else FIXME("\n"); #endif } static unsigned int get_processor_model( unsigned int reg0, unsigned int *stepping, unsigned int *family ) { unsigned int model, family_id = (reg0 & (0x0f << 8)) >> 8; model = (reg0 & (0x0f << 4)) >> 4; if (family_id == 6 || family_id == 15) model |= (reg0 & (0x0f << 16)) >> 12; if (family) { *family = family_id; if (family_id == 15) *family += (reg0 & (0xff << 20)) >> 20; } *stepping = reg0 & 0x0f; return model; } static void regs_to_str( int *regs, unsigned int len, WCHAR *buffer ) { unsigned int i; unsigned char *p = (unsigned char *)regs; for (i = 0; i < len; i++) { buffer[i] = *p++; } buffer[i] = 0; } static void get_processor_manufacturer( WCHAR *manufacturer, UINT len ) { int tmp, regs[4] = {0, 0, 0, 0}; do_cpuid( 0, regs ); tmp = regs[2]; /* swap edx and ecx */ regs[2] = regs[3]; regs[3] = tmp; regs_to_str( regs + 1, min( 12, len ), manufacturer ); } static const WCHAR *get_osarchitecture(void) { SYSTEM_INFO info; GetNativeSystemInfo( &info ); if (info.u.s.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) return L"64-bit"; return L"32-bit"; } static void get_processor_caption( WCHAR *caption, UINT len ) { const WCHAR *arch; WCHAR manufacturer[13]; int regs[4] = {0, 0, 0, 0}; unsigned int family, model, stepping; get_processor_manufacturer( manufacturer, ARRAY_SIZE( manufacturer ) ); if (!wcscmp( get_osarchitecture(), L"32-bit" )) arch = L"x86"; else if (!wcscmp( manufacturer, L"AuthenticAMD" )) arch = L"AMD64"; else arch = L"Intel64"; do_cpuid( 1, regs ); model = get_processor_model( regs[0], &stepping, &family ); swprintf( caption, len, L"%s Family %u Model %u Stepping %u", arch, family, model, stepping ); } static void get_processor_version( WCHAR *version, UINT len ) { int regs[4] = {0, 0, 0, 0}; unsigned int model, stepping; do_cpuid( 1, regs ); model = get_processor_model( regs[0], &stepping, NULL ); swprintf( version, len, L"Model %u Stepping %u", model, stepping ); } static UINT16 get_processor_revision(void) { int regs[4] = {0, 0, 0, 0}; do_cpuid( 1, regs ); return regs[0]; } static void get_processor_id( WCHAR *processor_id, UINT len ) { int regs[4] = {0, 0, 0, 0}; do_cpuid( 1, regs ); swprintf( processor_id, len, L"%08X%08X", regs[3], regs[0] ); } static void get_processor_name( WCHAR *name ) { int regs[4] = {0, 0, 0, 0}; int i; do_cpuid( 0x80000000, regs ); if (regs[0] >= 0x80000004) { do_cpuid( 0x80000002, regs ); regs_to_str( regs, 16, name ); do_cpuid( 0x80000003, regs ); regs_to_str( regs, 16, name + 16 ); do_cpuid( 0x80000004, regs ); regs_to_str( regs, 16, name + 32 ); } for (i = lstrlenW(name) - 1; i >= 0 && name[i] == ' '; i--) name[i] = 0; } static UINT get_processor_currentclockspeed( UINT index ) { PROCESSOR_POWER_INFORMATION *info; UINT ret = 1000, size = get_processor_count() * sizeof(PROCESSOR_POWER_INFORMATION); NTSTATUS status; if ((info = heap_alloc( size ))) { status = NtPowerInformation( ProcessorInformation, NULL, 0, info, size ); if (!status) ret = info[index].CurrentMhz; heap_free( info ); } return ret; } static UINT get_processor_maxclockspeed( UINT index ) { PROCESSOR_POWER_INFORMATION *info; UINT ret = 1000, size = get_processor_count() * sizeof(PROCESSOR_POWER_INFORMATION); NTSTATUS status; if ((info = heap_alloc( size ))) { status = NtPowerInformation( ProcessorInformation, NULL, 0, info, size ); if (!status) ret = info[index].MaxMhz; heap_free( info ); } return ret; } static enum fill_status fill_processor( struct table *table, const struct expr *cond ) { WCHAR caption[100], device_id[14], processor_id[17], manufacturer[13], name[49] = {0}, version[50]; struct record_processor *rec; UINT i, offset = 0, num_rows = 0, num_logical, num_physical, num_packages; enum fill_status status = FILL_STATUS_UNFILTERED; num_logical = get_logical_processor_count( &num_physical, &num_packages ); if (!resize_table( table, num_packages, sizeof(*rec) )) return FILL_STATUS_FAILED; get_processor_caption( caption, ARRAY_SIZE( caption ) ); get_processor_id( processor_id, ARRAY_SIZE( processor_id ) ); get_processor_manufacturer( manufacturer, ARRAY_SIZE( manufacturer ) ); get_processor_name( name ); get_processor_version( version, ARRAY_SIZE( version ) ); for (i = 0; i < num_packages; i++) { rec = (struct record_processor *)(table->data + offset); rec->addresswidth = !wcscmp( get_osarchitecture(), L"32-bit" ) ? 32 : 64; rec->architecture = !wcscmp( get_osarchitecture(), L"32-bit" ) ? 0 : 9; rec->caption = heap_strdupW( caption ); rec->cpu_status = 1; /* CPU Enabled */ rec->currentclockspeed = get_processor_currentclockspeed( i ); rec->datawidth = !wcscmp( get_osarchitecture(), L"32-bit" ) ? 32 : 64; rec->description = heap_strdupW( caption ); swprintf( device_id, ARRAY_SIZE( device_id ), L"CPU%u", i ); rec->device_id = heap_strdupW( device_id ); rec->family = 2; /* Unknown */ rec->level = 15; rec->manufacturer = heap_strdupW( manufacturer ); rec->maxclockspeed = get_processor_maxclockspeed( i ); rec->name = heap_strdupW( name ); rec->num_cores = num_physical / num_packages; rec->num_logical_processors = num_logical / num_packages; rec->processor_id = heap_strdupW( processor_id ); rec->processortype = 3; /* central processor */ rec->revision = get_processor_revision(); rec->unique_id = NULL; rec->version = heap_strdupW( version ); if (!match_row( table, i, cond, &status )) { free_row_values( table, i ); continue; } offset += sizeof(*rec); num_rows++; } TRACE("created %u rows\n", num_rows); table->num_rows = num_rows; return status; } static WCHAR *get_lastbootuptime(void) { SYSTEM_TIMEOFDAY_INFORMATION ti; TIME_FIELDS tf; WCHAR *ret; if (!(ret = heap_alloc( 26 * sizeof(WCHAR) ))) return NULL; NtQuerySystemInformation( SystemTimeOfDayInformation, &ti, sizeof(ti), NULL ); RtlTimeToTimeFields( &ti.liKeBootTime, &tf ); swprintf( ret, 26, L"%04u%02u%02u%02u%02u%02u.%06u+000", tf.Year, tf.Month, tf.Day, tf.Hour, tf.Minute, tf.Second, tf.Milliseconds * 1000 ); return ret; } static WCHAR *get_localdatetime(void) { TIME_ZONE_INFORMATION tzi; SYSTEMTIME st; WCHAR *ret; DWORD Status; LONG Bias; Status = GetTimeZoneInformation(&tzi); if(Status == TIME_ZONE_ID_INVALID) return NULL; Bias = tzi.Bias; if(Status == TIME_ZONE_ID_DAYLIGHT) Bias+= tzi.DaylightBias; else Bias+= tzi.StandardBias; if (!(ret = heap_alloc( 26 * sizeof(WCHAR) ))) return NULL; GetLocalTime(&st); swprintf( ret, 26, L"%04u%02u%02u%02u%02u%02u.%06u%+03d", st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond, st.wMilliseconds * 1000, -Bias ); return ret; } static WCHAR *get_systemdirectory(void) { void *redir; WCHAR *ret; if (!(ret = heap_alloc( MAX_PATH * sizeof(WCHAR) ))) return NULL; Wow64DisableWow64FsRedirection( &redir ); GetSystemDirectoryW( ret, MAX_PATH ); Wow64RevertWow64FsRedirection( redir ); return ret; } static WCHAR *get_systemdrive(void) { WCHAR *ret = heap_alloc( 3 * sizeof(WCHAR) ); /* "c:" */ if (ret && GetEnvironmentVariableW( L"SystemDrive", ret, 3 )) return ret; heap_free( ret ); return NULL; } static WCHAR *get_codeset(void) { WCHAR *ret = heap_alloc( 11 * sizeof(WCHAR) ); if (ret) swprintf( ret, 11, L"%u", GetACP() ); return ret; } static WCHAR *get_countrycode(void) { WCHAR *ret = heap_alloc( 6 * sizeof(WCHAR) ); if (ret) GetLocaleInfoW( LOCALE_SYSTEM_DEFAULT, LOCALE_ICOUNTRY, ret, 6 ); return ret; } static WCHAR *get_locale(void) { WCHAR *ret = heap_alloc( 5 * sizeof(WCHAR) ); if (ret) GetLocaleInfoW( LOCALE_SYSTEM_DEFAULT, LOCALE_ILANGUAGE, ret, 5 ); return ret; } static WCHAR *get_osbuildnumber( OSVERSIONINFOEXW *ver ) { WCHAR *ret = heap_alloc( 11 * sizeof(WCHAR) ); if (ret) swprintf( ret, 11, L"%u", ver->dwBuildNumber ); return ret; } static WCHAR *get_oscaption( OSVERSIONINFOEXW *ver ) { static const WCHAR windowsW[] = L"Microsoft Windows "; static const WCHAR win2000W[] = L"2000 Professional"; static const WCHAR win2003W[] = L"Server 2003 Standard Edition"; static const WCHAR winxpW[] = L"XP Professional"; static const WCHAR winxp64W[] = L"XP Professional x64 Edition"; static const WCHAR vistaW[] = L"Vista Ultimate"; static const WCHAR win2008W[] = L"Server 2008 Standard"; static const WCHAR win7W[] = L"7 Professional"; static const WCHAR win2008r2W[] = L"Server 2008 R2 Standard"; static const WCHAR win8W[] = L"8 Pro"; static const WCHAR win81W[] = L"8.1 Pro"; static const WCHAR win10W[] = L"10 Pro"; int len = ARRAY_SIZE( windowsW ) - 1; WCHAR *ret; if (!(ret = heap_alloc( len * sizeof(WCHAR) + sizeof(win2003W) ))) return NULL; memcpy( ret, windowsW, sizeof(windowsW) ); if (ver->dwMajorVersion == 10 && ver->dwMinorVersion == 0) memcpy( ret + len, win10W, sizeof(win10W) ); else if (ver->dwMajorVersion == 6 && ver->dwMinorVersion == 3) memcpy( ret + len, win8W, sizeof(win8W) ); else if (ver->dwMajorVersion == 6 && ver->dwMinorVersion == 2) memcpy( ret + len, win81W, sizeof(win81W) ); else if (ver->dwMajorVersion == 6 && ver->dwMinorVersion == 1) { if (ver->wProductType == VER_NT_WORKSTATION) memcpy( ret + len, win7W, sizeof(win7W) ); else memcpy( ret + len, win2008r2W, sizeof(win2008r2W) ); } else if (ver->dwMajorVersion == 6 && ver->dwMinorVersion == 0) { if (ver->wProductType == VER_NT_WORKSTATION) memcpy( ret + len, vistaW, sizeof(vistaW) ); else memcpy( ret + len, win2008W, sizeof(win2008W) ); } else if (ver->dwMajorVersion == 5 && ver->dwMinorVersion == 2) { if (ver->wProductType == VER_NT_WORKSTATION) memcpy( ret + len, winxp64W, sizeof(winxp64W) ); else memcpy( ret + len, win2003W, sizeof(win2003W) ); } else if (ver->dwMajorVersion == 5 && ver->dwMinorVersion == 1) memcpy( ret + len, winxpW, sizeof(winxpW) ); else memcpy( ret + len, win2000W, sizeof(win2000W) ); return ret; } static WCHAR *get_osname( const WCHAR *caption ) { static const WCHAR partitionW[] = L"|C:\\WINDOWS|\\Device\\Harddisk0\\Partition1"; int len = lstrlenW( caption ); WCHAR *ret; if (!(ret = heap_alloc( len * sizeof(WCHAR) + sizeof(partitionW) ))) return NULL; memcpy( ret, caption, len * sizeof(WCHAR) ); memcpy( ret + len, partitionW, sizeof(partitionW) ); return ret; } static WCHAR *get_osserialnumber(void) { HKEY hkey = 0; DWORD size, type; WCHAR *ret = NULL; if (!RegOpenKeyExW( HKEY_LOCAL_MACHINE, L"Software\\Microsoft\\Windows NT\\CurrentVersion", 0, KEY_READ, &hkey ) && !RegQueryValueExW( hkey, L"ProductId", NULL, &type, NULL, &size ) && type == REG_SZ && (ret = heap_alloc( size + sizeof(WCHAR) ))) { size += sizeof(WCHAR); if (RegQueryValueExW( hkey, L"ProductId", NULL, NULL, (BYTE *)ret, &size )) { heap_free( ret ); ret = NULL; } } if (hkey) RegCloseKey( hkey ); if (!ret) return heap_strdupW( L"12345-OEM-1234567-12345" ); return ret; } static WCHAR *get_osversion( OSVERSIONINFOEXW *ver ) { WCHAR *ret = heap_alloc( 33 * sizeof(WCHAR) ); if (ret) swprintf( ret, 33, L"%u.%u.%u", ver->dwMajorVersion, ver->dwMinorVersion, ver->dwBuildNumber ); return ret; } static DWORD get_operatingsystemsku(void) { DWORD ret = PRODUCT_UNDEFINED; GetProductInfo( 6, 0, 0, 0, &ret ); return ret; } static INT16 get_currenttimezone(void) { TIME_ZONE_INFORMATION info; DWORD status = GetTimeZoneInformation( &info ); if (status == TIME_ZONE_ID_INVALID) return 0; if (status == TIME_ZONE_ID_DAYLIGHT) return -(info.Bias + info.DaylightBias); return -(info.Bias + info.StandardBias); } static enum fill_status fill_operatingsystem( struct table *table, const struct expr *cond ) { struct record_operatingsystem *rec; enum fill_status status = FILL_STATUS_UNFILTERED; OSVERSIONINFOEXW ver; UINT row = 0; if (!resize_table( table, 1, sizeof(*rec) )) return FILL_STATUS_FAILED; ver.dwOSVersionInfoSize = sizeof(ver); GetVersionExW( (OSVERSIONINFOW *)&ver ); rec = (struct record_operatingsystem *)table->data; rec->buildnumber = get_osbuildnumber( &ver ); rec->caption = get_oscaption( &ver ); rec->codeset = get_codeset(); rec->countrycode = get_countrycode(); rec->csdversion = ver.szCSDVersion[0] ? heap_strdupW( ver.szCSDVersion ) : NULL; rec->csname = get_computername(); rec->currenttimezone = get_currenttimezone(); rec->freephysicalmemory = get_available_physical_memory() / 1024; rec->installdate = L"20140101000000.000000+000"; rec->lastbootuptime = get_lastbootuptime(); rec->localdatetime = get_localdatetime(); rec->locale = get_locale(); rec->manufacturer = L"The Wine Project"; rec->name = get_osname( rec->caption ); rec->operatingsystemsku = get_operatingsystemsku(); rec->osarchitecture = get_osarchitecture(); rec->oslanguage = GetSystemDefaultLangID(); rec->osproductsuite = 2461140; /* Windows XP Professional */ rec->ostype = 18; /* WINNT */ rec->primary = -1; rec->serialnumber = get_osserialnumber(); rec->servicepackmajor = ver.wServicePackMajor; rec->servicepackminor = ver.wServicePackMinor; rec->suitemask = 272; /* Single User + Terminal */ rec->systemdirectory = get_systemdirectory(); rec->systemdrive = get_systemdrive(); rec->totalvirtualmemorysize = get_total_physical_memory() / 1024; rec->totalvisiblememorysize = rec->totalvirtualmemorysize; rec->version = get_osversion( &ver ); if (!match_row( table, row, cond, &status )) free_row_values( table, row ); else row++; TRACE("created %u rows\n", row); table->num_rows = row; return status; } static const WCHAR *get_service_type( DWORD type ) { if (type & SERVICE_KERNEL_DRIVER) return L"Kernel Driver"; else if (type & SERVICE_FILE_SYSTEM_DRIVER) return L"File System Driver"; else if (type & SERVICE_WIN32_OWN_PROCESS) return L"Own Process"; else if (type & SERVICE_WIN32_SHARE_PROCESS) return L"Share Process"; else ERR("unhandled type 0x%08x\n", type); return NULL; } static const WCHAR *get_service_state( DWORD state ) { switch (state) { case SERVICE_STOPPED: return L"Stopped"; case SERVICE_START_PENDING: return L"Start Pending"; case SERVICE_STOP_PENDING: return L"Stop Pending"; case SERVICE_RUNNING: return L"Running"; default: ERR("unknown state %u\n", state); return L"Unknown"; } } static const WCHAR *get_service_startmode( DWORD mode ) { switch (mode) { case SERVICE_BOOT_START: return L"Boot"; case SERVICE_SYSTEM_START: return L"System"; case SERVICE_AUTO_START: return L"Auto"; case SERVICE_DEMAND_START: return L"Manual"; case SERVICE_DISABLED: return L"Disabled"; default: ERR("unknown mode 0x%x\n", mode); return L"Unknown"; } } static QUERY_SERVICE_CONFIGW *query_service_config( SC_HANDLE manager, const WCHAR *name ) { QUERY_SERVICE_CONFIGW *config = NULL; SC_HANDLE service; DWORD size; if (!(service = OpenServiceW( manager, name, SERVICE_QUERY_CONFIG ))) return NULL; QueryServiceConfigW( service, NULL, 0, &size ); if (GetLastError() != ERROR_INSUFFICIENT_BUFFER) goto done; if (!(config = heap_alloc( size ))) goto done; if (QueryServiceConfigW( service, config, size, &size )) goto done; heap_free( config ); config = NULL; done: CloseServiceHandle( service ); return config; } static enum fill_status fill_service( struct table *table, const struct expr *cond ) { struct record_service *rec; SC_HANDLE manager; ENUM_SERVICE_STATUS_PROCESSW *tmp, *services = NULL; SERVICE_STATUS_PROCESS *status; WCHAR sysnameW[MAX_COMPUTERNAME_LENGTH + 1]; DWORD len = ARRAY_SIZE( sysnameW ); UINT i, row = 0, offset = 0, size = 256, needed, count; enum fill_status fill_status = FILL_STATUS_FAILED; BOOL ret; if (!(manager = OpenSCManagerW( NULL, NULL, SC_MANAGER_ENUMERATE_SERVICE ))) return FILL_STATUS_FAILED; if (!(services = heap_alloc( size ))) goto done; ret = EnumServicesStatusExW( manager, SC_ENUM_PROCESS_INFO, SERVICE_TYPE_ALL, SERVICE_STATE_ALL, (BYTE *)services, size, &needed, &count, NULL, NULL ); if (!ret) { if (GetLastError() != ERROR_MORE_DATA) goto done; size = needed; if (!(tmp = heap_realloc( services, size ))) goto done; services = tmp; ret = EnumServicesStatusExW( manager, SC_ENUM_PROCESS_INFO, SERVICE_TYPE_ALL, SERVICE_STATE_ALL, (BYTE *)services, size, &needed, &count, NULL, NULL ); if (!ret) goto done; } if (!resize_table( table, count, sizeof(*rec) )) goto done; GetComputerNameW( sysnameW, &len ); fill_status = FILL_STATUS_UNFILTERED; for (i = 0; i < count; i++) { QUERY_SERVICE_CONFIGW *config; if (!(config = query_service_config( manager, services[i].lpServiceName ))) continue; status = &services[i].ServiceStatusProcess; rec = (struct record_service *)(table->data + offset); rec->accept_pause = (status->dwControlsAccepted & SERVICE_ACCEPT_PAUSE_CONTINUE) ? -1 : 0; rec->accept_stop = (status->dwControlsAccepted & SERVICE_ACCEPT_STOP) ? -1 : 0; rec->displayname = heap_strdupW( services[i].lpDisplayName ); rec->name = heap_strdupW( services[i].lpServiceName ); rec->process_id = status->dwProcessId; rec->servicetype = get_service_type( status->dwServiceType ); rec->startmode = get_service_startmode( config->dwStartType ); rec->state = get_service_state( status->dwCurrentState ); rec->systemname = heap_strdupW( sysnameW ); rec->pause_service = service_pause_service; rec->resume_service = service_resume_service; rec->start_service = service_start_service; rec->stop_service = service_stop_service; heap_free( config ); if (!match_row( table, row, cond, &fill_status )) { free_row_values( table, row ); continue; } offset += sizeof(*rec); row++; } TRACE("created %u rows\n", row); table->num_rows = row; done: CloseServiceHandle( manager ); heap_free( services ); return fill_status; } static WCHAR *get_accountname( LSA_TRANSLATED_NAME *name ) { if (!name || !name->Name.Buffer) return NULL; return heap_strdupW( name->Name.Buffer ); } static struct array *get_binaryrepresentation( PSID sid, UINT len ) { struct array *ret; UINT8 *ptr; if (!(ret = heap_alloc( sizeof(*ret) ))) return NULL; if (!(ptr = heap_alloc( len ))) { heap_free( ret ); return NULL; } memcpy( ptr, sid, len ); ret->elem_size = sizeof(*ptr); ret->count = len; ret->ptr = ptr; return ret; } static WCHAR *get_referenceddomainname( LSA_REFERENCED_DOMAIN_LIST *domain ) { if (!domain || !domain->Domains || !domain->Domains->Name.Buffer) return NULL; return heap_strdupW( domain->Domains->Name.Buffer ); } static const WCHAR *find_sid_str( const struct expr *cond ) { const struct expr *left, *right; const WCHAR *ret = NULL; if (!cond || cond->type != EXPR_COMPLEX || cond->u.expr.op != OP_EQ) return NULL; left = cond->u.expr.left; right = cond->u.expr.right; if (left->type == EXPR_PROPVAL && right->type == EXPR_SVAL && !wcsicmp( left->u.propval->name, L"SID" )) { ret = right->u.sval; } else if (left->type == EXPR_SVAL && right->type == EXPR_PROPVAL && !wcsicmp( right->u.propval->name, L"SID" )) { ret = left->u.sval; } return ret; } static enum fill_status fill_sid( struct table *table, const struct expr *cond ) { PSID sid; LSA_REFERENCED_DOMAIN_LIST *domain; LSA_TRANSLATED_NAME *name; LSA_HANDLE handle; LSA_OBJECT_ATTRIBUTES attrs; const WCHAR *str; struct record_sid *rec; UINT len; if (!(str = find_sid_str( cond ))) return FILL_STATUS_FAILED; if (!resize_table( table, 1, sizeof(*rec) )) return FILL_STATUS_FAILED; if (!ConvertStringSidToSidW( str, &sid )) return FILL_STATUS_FAILED; len = GetLengthSid( sid ); memset( &attrs, 0, sizeof(attrs) ); attrs.Length = sizeof(attrs); if (LsaOpenPolicy( NULL, &attrs, POLICY_ALL_ACCESS, &handle )) { LocalFree( sid ); return FILL_STATUS_FAILED; } if (LsaLookupSids( handle, 1, &sid, &domain, &name )) { LocalFree( sid ); LsaClose( handle ); return FILL_STATUS_FAILED; } rec = (struct record_sid *)table->data; rec->accountname = get_accountname( name ); rec->binaryrepresentation = get_binaryrepresentation( sid, len ); rec->referenceddomainname = get_referenceddomainname( domain ); rec->sid = heap_strdupW( str ); rec->sidlength = len; TRACE("created 1 row\n"); table->num_rows = 1; LsaFreeMemory( domain ); LsaFreeMemory( name ); LocalFree( sid ); LsaClose( handle ); return FILL_STATUS_FILTERED; } static WCHAR *get_systemenclosure_string( BYTE id, const char *buf, UINT len ) { const struct smbios_header *hdr; const struct smbios_chassis *chassis; UINT offset; if (!(hdr = find_smbios_entry( SMBIOS_TYPE_CHASSIS, buf, len ))) return NULL; chassis = (const struct smbios_chassis *)hdr; offset = (const char *)chassis - buf + chassis->hdr.length; return get_smbios_string( id, buf, offset, len ); } static WCHAR *get_systemenclosure_manufacturer( const char *buf, UINT len ) { WCHAR *ret = get_systemenclosure_string( 1, buf, len ); if (!ret) return heap_strdupW( L"Wine" ); return ret; } static int get_systemenclosure_lockpresent( const char *buf, UINT len ) { const struct smbios_header *hdr; const struct smbios_chassis *chassis; if (!(hdr = find_smbios_entry( SMBIOS_TYPE_CHASSIS, buf, len )) || hdr->length < sizeof(*chassis)) return 0; chassis = (const struct smbios_chassis *)hdr; return (chassis->type & 0x80) ? -1 : 0; } static struct array *dup_array( const struct array *src ) { struct array *dst; if (!(dst = heap_alloc( sizeof(*dst) ))) return NULL; if (!(dst->ptr = heap_alloc( src->count * src->elem_size ))) { heap_free( dst ); return NULL; } memcpy( dst->ptr, src->ptr, src->count * src->elem_size ); dst->elem_size = src->elem_size; dst->count = src->count; return dst; } static struct array *get_systemenclosure_chassistypes( const char *buf, UINT len ) { const struct smbios_header *hdr; const struct smbios_chassis *chassis; struct array *ret = NULL; UINT16 *types; if (!(hdr = find_smbios_entry( SMBIOS_TYPE_CHASSIS, buf, len )) || hdr->length < sizeof(*chassis)) goto done; chassis = (const struct smbios_chassis *)hdr; if (!(ret = heap_alloc( sizeof(*ret) ))) goto done; if (!(types = heap_alloc( sizeof(*types) ))) { heap_free( ret ); return NULL; } types[0] = chassis->type & ~0x80; ret->elem_size = sizeof(*types); ret->count = 1; ret->ptr = types; done: if (!ret) ret = dup_array( &systemenclosure_chassistypes_array ); return ret; } static enum fill_status fill_systemenclosure( struct table *table, const struct expr *cond ) { struct record_systemenclosure *rec; enum fill_status status = FILL_STATUS_UNFILTERED; UINT row = 0, len; char *buf; if (!resize_table( table, 1, sizeof(*rec) )) return FILL_STATUS_FAILED; len = GetSystemFirmwareTable( RSMB, 0, NULL, 0 ); if (!(buf = heap_alloc( len ))) return FILL_STATUS_FAILED; GetSystemFirmwareTable( RSMB, 0, buf, len ); rec = (struct record_systemenclosure *)table->data; rec->caption = L"System Enclosure"; rec->chassistypes = get_systemenclosure_chassistypes( buf, len ); rec->description = L"System Enclosure"; rec->lockpresent = get_systemenclosure_lockpresent( buf, len ); rec->manufacturer = get_systemenclosure_manufacturer( buf, len ); rec->name = L"System Enclosure"; rec->tag = L"System Enclosure 0"; if (!match_row( table, row, cond, &status )) free_row_values( table, row ); else row++; heap_free( buf ); TRACE("created %u rows\n", row); table->num_rows = row; return status; } static WCHAR *get_pnpdeviceid( DXGI_ADAPTER_DESC *desc ) { static const WCHAR fmtW[] = L"PCI\\VEN_%04X&DEV_%04X&SUBSYS_%08X&REV_%02X\\0&DEADBEEF&0&DEAD"; UINT len = sizeof(fmtW) + 2; WCHAR *ret; if (!(ret = heap_alloc( len * sizeof(WCHAR) ))) return NULL; swprintf( ret, len, fmtW, desc->VendorId, desc->DeviceId, desc->SubSysId, desc->Revision ); return ret; } #define HW_VENDOR_AMD 0x1002 #define HW_VENDOR_NVIDIA 0x10de #define HW_VENDOR_VMWARE 0x15ad #define HW_VENDOR_INTEL 0x8086 static const WCHAR *get_installeddriver( UINT vendorid ) { /* FIXME: wined3d has a better table, but we cannot access this information through dxgi */ if (vendorid == HW_VENDOR_AMD) return L"aticfx32.dll"; else if (vendorid == HW_VENDOR_NVIDIA) return L"nvd3dum.dll"; else if (vendorid == HW_VENDOR_INTEL) return L"igdudim32.dll"; return L"wine.dll"; } static enum fill_status fill_videocontroller( struct table *table, const struct expr *cond ) { struct record_videocontroller *rec; HRESULT hr; IDXGIFactory *factory = NULL; IDXGIAdapter *adapter = NULL; DXGI_ADAPTER_DESC desc; UINT row = 0, hres = 1024, vres = 768, vidmem = 512 * 1024 * 1024; const WCHAR *name = L"VideoController1"; enum fill_status status = FILL_STATUS_UNFILTERED; WCHAR mode[44]; if (!resize_table( table, 1, sizeof(*rec) )) return FILL_STATUS_FAILED; memset (&desc, 0, sizeof(desc)); hr = CreateDXGIFactory( &IID_IDXGIFactory, (void **)&factory ); if (FAILED(hr)) goto done; hr = IDXGIFactory_EnumAdapters( factory, 0, &adapter ); if (FAILED(hr)) goto done; hr = IDXGIAdapter_GetDesc( adapter, &desc ); if (SUCCEEDED(hr)) { vidmem = desc.DedicatedVideoMemory; name = desc.Description; } done: rec = (struct record_videocontroller *)table->data; rec->adapter_compatibility = L"(Standard display types)"; rec->adapter_dactype = L"Integrated RAMDAC"; rec->adapter_ram = vidmem; rec->availability = 3; /* Running or Full Power */ rec->config_errorcode = 0; /* no error */ rec->caption = heap_strdupW( name ); rec->current_bitsperpixel = get_bitsperpixel( &hres, &vres ); rec->current_horizontalres = hres; rec->current_refreshrate = 0; /* default refresh rate */ rec->current_scanmode = 2; /* Unknown */ rec->current_verticalres = vres; rec->description = heap_strdupW( name ); rec->device_id = L"VideoController1"; rec->driverdate = L"20170101000000.000000+000"; rec->driverversion = L"1.0"; rec->installeddriver = get_installeddriver( desc.VendorId ); rec->name = heap_strdupW( name ); rec->pnpdevice_id = get_pnpdeviceid( &desc ); rec->status = L"OK"; rec->videoarchitecture = 2; /* Unknown */ rec->videomemorytype = 2; /* Unknown */ swprintf( mode, ARRAY_SIZE( mode ), L"%u x %u x %I64u colors", hres, vres, (UINT64)1 << rec->current_bitsperpixel ); rec->videomodedescription = heap_strdupW( mode ); rec->videoprocessor = heap_strdupW( name ); if (!match_row( table, row, cond, &status )) free_row_values( table, row ); else row++; TRACE("created %u rows\n", row); table->num_rows = row; if (adapter) IDXGIAdapter_Release( adapter ); if (factory) IDXGIFactory_Release( factory ); return status; } #define C(c) sizeof(c)/sizeof(c[0]), c #define D(d) sizeof(d)/sizeof(d[0]), 0, (BYTE *)d static struct table builtin_classes[] = { { L"__ASSOCIATORS", C(col_associator), D(data_associator) }, { L"__PARAMETERS", C(col_param), D(data_param) }, { L"__QUALIFIERS", C(col_qualifier), D(data_qualifier) }, { L"__SystemSecurity", C(col_systemsecurity), D(data_systemsecurity) }, { L"CIM_DataFile", C(col_datafile), 0, 0, NULL, fill_datafile }, { L"CIM_LogicalDisk", C(col_logicaldisk), 0, 0, NULL, fill_logicaldisk }, { L"CIM_Processor", C(col_processor), 0, 0, NULL, fill_processor }, { L"StdRegProv", C(col_stdregprov), D(data_stdregprov) }, { L"Win32_BIOS", C(col_bios), 0, 0, NULL, fill_bios }, { L"Win32_BaseBoard", C(col_baseboard), 0, 0, NULL, fill_baseboard }, { L"Win32_CDROMDrive", C(col_cdromdrive), 0, 0, NULL, fill_cdromdrive }, { L"Win32_ComputerSystem", C(col_compsys), 0, 0, NULL, fill_compsys }, { L"Win32_ComputerSystemProduct", C(col_compsysproduct), 0, 0, NULL, fill_compsysproduct }, { L"Win32_DesktopMonitor", C(col_desktopmonitor), 0, 0, NULL, fill_desktopmonitor }, { L"Win32_Directory", C(col_directory), 0, 0, NULL, fill_directory }, { L"Win32_DiskDrive", C(col_diskdrive), 0, 0, NULL, fill_diskdrive }, { L"Win32_DiskDriveToDiskPartition", C(col_diskdrivetodiskpartition), 0, 0, NULL, fill_diskdrivetodiskpartition }, { L"Win32_DiskPartition", C(col_diskpartition), 0, 0, NULL, fill_diskpartition }, { L"Win32_DisplayControllerConfiguration", C(col_displaycontrollerconfig), 0, 0, NULL, fill_displaycontrollerconfig }, { L"Win32_IP4RouteTable", C(col_ip4routetable), 0, 0, NULL, fill_ip4routetable }, { L"Win32_LogicalDisk", C(col_logicaldisk), 0, 0, NULL, fill_logicaldisk }, { L"Win32_LogicalDiskToPartition", C(col_logicaldisktopartition), 0, 0, NULL, fill_logicaldisktopartition }, { L"Win32_NetworkAdapter", C(col_networkadapter), 0, 0, NULL, fill_networkadapter }, { L"Win32_NetworkAdapterConfiguration", C(col_networkadapterconfig), 0, 0, NULL, fill_networkadapterconfig }, { L"Win32_OperatingSystem", C(col_operatingsystem), 0, 0, NULL, fill_operatingsystem }, { L"Win32_PhysicalMedia", C(col_physicalmedia), D(data_physicalmedia) }, { L"Win32_PhysicalMemory", C(col_physicalmemory), 0, 0, NULL, fill_physicalmemory }, { L"Win32_PnPEntity", C(col_pnpentity), 0, 0, NULL, fill_pnpentity }, { L"Win32_Printer", C(col_printer), 0, 0, NULL, fill_printer }, { L"Win32_Process", C(col_process), 0, 0, NULL, fill_process }, { L"Win32_Processor", C(col_processor), 0, 0, NULL, fill_processor }, { L"Win32_QuickFixEngineering", C(col_quickfixengineering), D(data_quickfixengineering) }, { L"Win32_SID", C(col_sid), 0, 0, NULL, fill_sid }, { L"Win32_Service", C(col_service), 0, 0, NULL, fill_service }, { L"Win32_SoundDevice", C(col_sounddevice), D(data_sounddevice) }, { L"Win32_SystemEnclosure", C(col_systemenclosure), 0, 0, NULL, fill_systemenclosure }, { L"Win32_VideoController", C(col_videocontroller), 0, 0, NULL, fill_videocontroller }, { L"Win32_WinSAT", C(col_winsat), D(data_winsat) }, }; #undef C #undef D void init_table_list( void ) { static struct list tables = LIST_INIT( tables ); UINT i; for (i = 0; i < ARRAY_SIZE(builtin_classes); i++) list_add_tail( &tables, &builtin_classes[i].entry ); table_list = &tables; }