/* * dlls/rsaenh/tomcrypt.h * Function prototypes, type definitions and constant definitions * for LibTomCrypt code. * * Copyright 2004 Michael Jung * Based on public domain code by Tom St Denis (tomstdenis@iahu.ca) * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA */ /* * This file contains code from the LibTomCrypt cryptographic * library written by Tom St Denis (tomstdenis@iahu.ca). LibTomCrypt * is in the public domain. The code in this file is tailored to * special requirements. Take a look at http://libtomcrypt.org for the * original version. */ #ifndef __WINE_TOMCRYPT_H_ #define __WINE_TOMCRYPT_H_ #include #include #include #include #include "basetsd.h" /* error codes [will be expanded in future releases] */ enum { CRYPT_OK=0, /* Result OK */ CRYPT_ERROR, /* Generic Error */ CRYPT_NOP, /* Not a failure but no operation was performed */ CRYPT_INVALID_KEYSIZE, /* Invalid key size given */ CRYPT_INVALID_ROUNDS, /* Invalid number of rounds */ CRYPT_FAIL_TESTVECTOR, /* Algorithm failed test vectors */ CRYPT_BUFFER_OVERFLOW, /* Not enough space for output */ CRYPT_INVALID_PACKET, /* Invalid input packet given */ CRYPT_INVALID_PRNGSIZE, /* Invalid number of bits for a PRNG */ CRYPT_ERROR_READPRNG, /* Could not read enough from PRNG */ CRYPT_INVALID_CIPHER, /* Invalid cipher specified */ CRYPT_INVALID_HASH, /* Invalid hash specified */ CRYPT_INVALID_PRNG, /* Invalid PRNG specified */ CRYPT_MEM, /* Out of memory */ CRYPT_PK_TYPE_MISMATCH, /* Not equivalent types of PK keys */ CRYPT_PK_NOT_PRIVATE, /* Requires a private PK key */ CRYPT_INVALID_ARG, /* Generic invalid argument */ CRYPT_FILE_NOTFOUND, /* File Not Found */ CRYPT_PK_INVALID_TYPE, /* Invalid type of PK key */ CRYPT_PK_INVALID_SYSTEM,/* Invalid PK system specified */ CRYPT_PK_DUP, /* Duplicate key already in key ring */ CRYPT_PK_NOT_FOUND, /* Key not found in keyring */ CRYPT_PK_INVALID_SIZE, /* Invalid size input for PK parameters */ CRYPT_INVALID_PRIME_SIZE/* Invalid size of prime requested */ }; #define CONST64(a,b) ((((ULONG64)(a)) << 32) | (b)) typedef ULONG64 ulong64; /* this is the "32-bit at least" data type * Re-define it to suit your platform but it must be at least 32-bits */ typedef ULONG32 ulong32; /* ---- HELPER MACROS ---- */ #define STORE32H(x, y) \ { (y)[0] = (unsigned char)(((x)>>24)&255); (y)[1] = (unsigned char)(((x)>>16)&255); \ (y)[2] = (unsigned char)(((x)>>8)&255); (y)[3] = (unsigned char)((x)&255); } #define LOAD32H(x, y) \ { x = ((unsigned long)((y)[0] & 255)<<24) | \ ((unsigned long)((y)[1] & 255)<<16) | \ ((unsigned long)((y)[2] & 255)<<8) | \ ((unsigned long)((y)[3] & 255)); } #if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) && !defined(INTEL_CC) static inline unsigned ROR(unsigned word, int i) { __asm__("rorl %%cl,%0" :"=r" (word) :"0" (word),"c" (i)); return word; } #else /* rotates the hard way */ #define ROR(x, y) ( ((((unsigned long)(x)&0xFFFFFFFFUL)>>(unsigned long)((y)&31)) | \ ((unsigned long)(x)<<(unsigned long)(32-((y)&31)))) & 0xFFFFFFFFUL) #endif #undef MIN #define MIN(x, y) ( ((x)<(y))?(x):(y) ) #define byte(x, n) (((x) >> (8 * (n))) & 255) typedef struct tag_rc2_key { unsigned xkey[64]; } rc2_key; typedef struct tag_des_key { ulong32 ek[32], dk[32]; } des_key; typedef struct tag_des3_key { ulong32 ek[3][32], dk[3][32]; } des3_key; typedef struct tag_aes_key { ulong32 eK[64], dK[64]; int Nr; } aes_key; int rc2_setup(const unsigned char *key, int keylen, int bits, int num_rounds, rc2_key *skey); void rc2_ecb_encrypt(const unsigned char *pt, unsigned char *ct, rc2_key *key); void rc2_ecb_decrypt(const unsigned char *ct, unsigned char *pt, rc2_key *key); int des_setup(const unsigned char *key, int keylen, int num_rounds, des_key *skey); void des_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const des_key *key); void des_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const des_key *key); int des3_setup(const unsigned char *key, int keylen, int num_rounds, des3_key *skey); void des3_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const des3_key *key); void des3_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const des3_key *key); int aes_setup(const unsigned char *key, int keylen, int rounds, aes_key *skey); void aes_ecb_encrypt(const unsigned char *pt, unsigned char *ct, aes_key *skey); void aes_ecb_decrypt(const unsigned char *ct, unsigned char *pt, aes_key *skey); struct rc4_prng { int x, y; unsigned char buf[256]; }; typedef union Prng_state { struct rc4_prng rc4; } prng_state; int rc4_start(prng_state *prng); int rc4_add_entropy(const unsigned char *buf, unsigned long len, prng_state *prng); int rc4_ready(prng_state *prng); unsigned long rc4_read(unsigned char *buf, unsigned long len, prng_state *prng); /* some default configurations. * * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits * * At the very least a mp_digit must be able to hold 7 bits * [any size beyond that is ok provided it doesn't overflow the data type] */ typedef unsigned long mp_digit; typedef ulong64 mp_word; #define DIGIT_BIT 28 #define MP_DIGIT_BIT DIGIT_BIT #define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1)) #define MP_DIGIT_MAX MP_MASK /* equalities */ #define MP_LT -1 /* less than */ #define MP_EQ 0 /* equal to */ #define MP_GT 1 /* greater than */ #define MP_ZPOS 0 /* positive integer */ #define MP_NEG 1 /* negative */ #define MP_OKAY 0 /* ok result */ #define MP_MEM -2 /* out of mem */ #define MP_VAL -3 /* invalid input */ #define MP_RANGE MP_VAL #define MP_YES 1 /* yes response */ #define MP_NO 0 /* no response */ /* Primality generation flags */ #define LTM_PRIME_BBS 0x0001 /* BBS style prime */ #define LTM_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */ #define LTM_PRIME_2MSB_OFF 0x0004 /* force 2nd MSB to 0 */ #define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */ typedef int mp_err; /* define this to use lower memory usage routines (exptmods mostly) */ /* #define MP_LOW_MEM */ #define MP_PREC 64 /* default digits of precision */ /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */ #define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1)) /* the infamous mp_int structure */ typedef struct { int used, alloc, sign; mp_digit *dp; } mp_int; /* callback for mp_prime_random, should fill dst with random bytes and return how many read [up to len] */ typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat); #define DIGIT(m,k) ((m)->dp[(k)]) /* error code to char* string */ char *mp_error_to_string(int code); /* init a null terminated series of arguments */ int mp_init_multi(mp_int *mp, ...); /* clear a null terminated series of arguments */ void mp_clear_multi(mp_int *mp, ...); /* shrink ram required for a bignum */ int mp_shrink(mp_int *a); /* ---> Basic Manipulations <--- */ #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO) #define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO) #define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO) /* set a 32-bit const */ int mp_set_int(mp_int *a, unsigned long b); /* get a 32-bit value */ unsigned long mp_get_int(const mp_int * a); /* initialize and set a digit */ int mp_init_set (mp_int * a, mp_digit b); /* initialize and set 32-bit value */ int mp_init_set_int (mp_int * a, unsigned long b); /* copy, b = a */ int mp_copy(const mp_int *a, mp_int *b); /* inits and copies, a = b */ int mp_init_copy(mp_int *a, const mp_int *b); /* ---> digit manipulation <--- */ /* I Love Earth! */ /* makes a pseudo-random int of a given size */ int mp_rand(mp_int *a, int digits); /* ---> binary operations <--- */ /* c = a XOR b */ int mp_xor(mp_int *a, mp_int *b, mp_int *c); /* c = a OR b */ int mp_or(mp_int *a, mp_int *b, mp_int *c); /* c = a AND b */ int mp_and(mp_int *a, mp_int *b, mp_int *c); /* ---> Basic arithmetic <--- */ /* b = -a */ int mp_neg(mp_int *a, mp_int *b); /* compare a to b */ int mp_cmp(const mp_int *a, const mp_int *b); /* c = a + b */ int mp_add(mp_int *a, mp_int *b, mp_int *c); /* c = a - b */ int mp_sub(mp_int *a, mp_int *b, mp_int *c); /* c = a * b */ int mp_mul(const mp_int *a, const mp_int *b, mp_int *c); /* c = a mod b, 0 <= c < b */ int mp_mod(const mp_int *a, mp_int *b, mp_int *c); /* ---> single digit functions <--- */ /* compare against a single digit */ int mp_cmp_d(const mp_int *a, mp_digit b); /* c = a - b */ int mp_sub_d(mp_int *a, mp_digit b, mp_int *c); /* a/3 => 3c + d == a */ int mp_div_3(mp_int *a, mp_int *c, mp_digit *d); /* c = a**b */ int mp_expt_d(mp_int *a, mp_digit b, mp_int *c); /* ---> number theory <--- */ /* d = a + b (mod c) */ int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); /* d = a - b (mod c) */ int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); /* d = a * b (mod c) */ int mp_mulmod(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d); /* c = 1/a (mod b) */ int mp_invmod(const mp_int *a, mp_int *b, mp_int *c); /* c = (a, b) */ int mp_gcd(const mp_int *a, const mp_int *b, mp_int *c); /* produces value such that U1*a + U2*b = U3 */ int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3); /* c = [a, b] or (a*b)/(a, b) */ int mp_lcm(const mp_int *a, const mp_int *b, mp_int *c); /* finds one of the b'th root of a, such that |c|**b <= |a| * * returns error if a < 0 and b is even */ int mp_n_root(mp_int *a, mp_digit b, mp_int *c); /* special sqrt algo */ int mp_sqrt(mp_int *arg, mp_int *ret); /* is number a square? */ int mp_is_square(mp_int *arg, int *ret); /* computes the jacobi c = (a | n) (or Legendre if b is prime) */ int mp_jacobi(mp_int *a, mp_int *n, int *c); /* returns 1 if a is a valid DR modulus */ int mp_dr_is_modulus(mp_int *a); /* returns true if a can be reduced with mp_reduce_2k */ int mp_reduce_is_2k(mp_int *a); /* d = a**b (mod c) */ int mp_exptmod(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d); /* ---> Primes <--- */ /* number of primes */ #define PRIME_SIZE 256 /* performs one Fermat test of "a" using base "b". * Sets result to 0 if composite or 1 if probable prime */ int mp_prime_fermat(mp_int *a, mp_int *b, int *result); /* This gives [for a given bit size] the number of trials required * such that Miller-Rabin gives a prob of failure lower than 2^-96 */ int mp_prime_rabin_miller_trials(int size); /* finds the next prime after the number "a" using "t" trials * of Miller-Rabin. * * bbs_style = 1 means the prime must be congruent to 3 mod 4 */ int mp_prime_next_prime(mp_int *a, int t, int bbs_style); /* makes a truly random prime of a given size (bytes), * call with bbs = 1 if you want it to be congruent to 3 mod 4 * * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself * so it can be NULL * * The prime generated will be larger than 2^(8*size). */ #define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat) /* makes a truly random prime of a given size (bits), * * Flags are as follows: * * LTM_PRIME_BBS - make prime congruent to 3 mod 4 * LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS) * LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero * LTM_PRIME_2MSB_ON - make the 2nd highest bit one * * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself * so it can be NULL * */ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat); /* ---> radix conversion <--- */ int mp_count_bits(const mp_int *a); int mp_unsigned_bin_size(const mp_int *a); int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c); int mp_to_unsigned_bin(const mp_int *a, unsigned char *b); int mp_read_signed_bin(mp_int *a, unsigned char *b, int c); int mp_to_signed_bin(mp_int *a, unsigned char *b); int mp_read_radix(mp_int *a, char *str, int radix); int mp_toradix(mp_int *a, char *str, int radix); int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen); int mp_radix_size(mp_int *a, int radix, int *size); int mp_fread(mp_int *a, int radix, FILE *stream); int mp_fwrite(mp_int *a, int radix, FILE *stream); #define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len)) #define mp_raw_size(mp) mp_signed_bin_size(mp) #define mp_toraw(mp, str) mp_to_signed_bin((mp), (str)) #define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len)) #define mp_mag_size(mp) mp_unsigned_bin_size(mp) #define mp_tomag(mp, str) mp_to_unsigned_bin((mp), (str)) #define mp_tobinary(M, S) mp_toradix((M), (S), 2) #define mp_tooctal(M, S) mp_toradix((M), (S), 8) #define mp_todecimal(M, S) mp_toradix((M), (S), 10) #define mp_tohex(M, S) mp_toradix((M), (S), 16) extern const char *mp_s_rmap; #define PK_PRIVATE 0 /* PK private keys */ #define PK_PUBLIC 1 /* PK public keys */ /* Min and Max RSA key sizes (in bits) */ #define MIN_RSA_SIZE 384 #define MAX_RSA_SIZE 16384 typedef struct Rsa_key { int type; mp_int e, d, N, p, q, qP, dP, dQ; } rsa_key; int rsa_make_key(int size, long e, rsa_key *key); int rsa_exptmod(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, int which, rsa_key *key); void rsa_free(rsa_key *key); #endif /* __WINE_TOMCRYPT_H_ */