/* * dlls/rsaenh/rsaenh.c * RSAENH - RSA encryption for Wine * * Copyright 2002 TransGaming Technologies (David Hammerton) * Copyright 2004 Mike McCormack for CodeWeavers * Copyright 2004, 2005 Michael Jung * Copyright 2007 Vijay Kiran Kamuju * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include "windef.h" #include "winbase.h" #include "winreg.h" #include "wincrypt.h" #include "handle.h" #include "implglue.h" #include "objbase.h" #include "rpcproxy.h" #include "aclapi.h" #include "wine/debug.h" WINE_DEFAULT_DEBUG_CHANNEL(crypt); static HINSTANCE instance; /****************************************************************************** * CRYPTHASH - hash objects */ #define RSAENH_MAGIC_HASH 0x85938417u #define RSAENH_HASHSTATE_HASHING 1 #define RSAENH_HASHSTATE_FINISHED 2 typedef struct _RSAENH_TLS1PRF_PARAMS { CRYPT_DATA_BLOB blobLabel; CRYPT_DATA_BLOB blobSeed; } RSAENH_TLS1PRF_PARAMS; typedef struct tagCRYPTHASH { OBJECTHDR header; ALG_ID aiAlgid; HCRYPTKEY hKey; HCRYPTPROV hProv; DWORD dwHashSize; DWORD dwState; HASH_CONTEXT context; BYTE abHashValue[RSAENH_MAX_HASH_SIZE]; PHMAC_INFO pHMACInfo; RSAENH_TLS1PRF_PARAMS tpPRFParams; } CRYPTHASH; /****************************************************************************** * CRYPTKEY - key objects */ #define RSAENH_MAGIC_KEY 0x73620457u #define RSAENH_MAX_KEY_SIZE 64 #define RSAENH_MAX_BLOCK_SIZE 24 #define RSAENH_KEYSTATE_IDLE 0 #define RSAENH_KEYSTATE_ENCRYPTING 1 #define RSAENH_KEYSTATE_MASTERKEY 2 typedef struct _RSAENH_SCHANNEL_INFO { SCHANNEL_ALG saEncAlg; SCHANNEL_ALG saMACAlg; CRYPT_DATA_BLOB blobClientRandom; CRYPT_DATA_BLOB blobServerRandom; } RSAENH_SCHANNEL_INFO; typedef struct tagCRYPTKEY { OBJECTHDR header; ALG_ID aiAlgid; HCRYPTPROV hProv; DWORD dwMode; DWORD dwModeBits; DWORD dwPermissions; DWORD dwKeyLen; DWORD dwEffectiveKeyLen; DWORD dwSaltLen; DWORD dwBlockLen; DWORD dwState; KEY_CONTEXT context; BYTE abKeyValue[RSAENH_MAX_KEY_SIZE]; BYTE abInitVector[RSAENH_MAX_BLOCK_SIZE]; BYTE abChainVector[RSAENH_MAX_BLOCK_SIZE]; RSAENH_SCHANNEL_INFO siSChannelInfo; CRYPT_DATA_BLOB blobHmacKey; } CRYPTKEY; /****************************************************************************** * KEYCONTAINER - key containers */ #define RSAENH_PERSONALITY_BASE 0u #define RSAENH_PERSONALITY_STRONG 1u #define RSAENH_PERSONALITY_ENHANCED 2u #define RSAENH_PERSONALITY_SCHANNEL 3u #define RSAENH_PERSONALITY_AES 4u #define RSAENH_MAGIC_CONTAINER 0x26384993u typedef struct tagKEYCONTAINER { OBJECTHDR header; DWORD dwFlags; DWORD dwPersonality; DWORD dwEnumAlgsCtr; DWORD dwEnumContainersCtr; CHAR szName[MAX_PATH]; CHAR szProvName[MAX_PATH]; HCRYPTKEY hKeyExchangeKeyPair; HCRYPTKEY hSignatureKeyPair; } KEYCONTAINER; /****************************************************************************** * Some magic constants */ #define RSAENH_ENCRYPT 1 #define RSAENH_DECRYPT 0 #define RSAENH_HMAC_DEF_IPAD_CHAR 0x36 #define RSAENH_HMAC_DEF_OPAD_CHAR 0x5c #define RSAENH_HMAC_DEF_PAD_LEN 64 #define RSAENH_HMAC_BLOCK_LEN 64 #define RSAENH_DES_EFFECTIVE_KEYLEN 56 #define RSAENH_DES_STORAGE_KEYLEN 64 #define RSAENH_3DES112_EFFECTIVE_KEYLEN 112 #define RSAENH_3DES112_STORAGE_KEYLEN 128 #define RSAENH_3DES_EFFECTIVE_KEYLEN 168 #define RSAENH_3DES_STORAGE_KEYLEN 192 #define RSAENH_MAGIC_RSA2 0x32415352 #define RSAENH_MAGIC_RSA1 0x31415352 #define RSAENH_PKC_BLOCKTYPE 0x02 #define RSAENH_SSL3_VERSION_MAJOR 3 #define RSAENH_SSL3_VERSION_MINOR 0 #define RSAENH_TLS1_VERSION_MAJOR 3 #define RSAENH_TLS1_VERSION_MINOR 1 #define RSAENH_REGKEY "Software\\Wine\\Crypto\\RSA\\%s" #define RSAENH_MIN(a,b) ((a)<(b)?(a):(b)) /****************************************************************************** * aProvEnumAlgsEx - Defines the capabilities of the CSP personalities. */ #define RSAENH_MAX_ENUMALGS 24 #define RSAENH_PCT1_SSL2_SSL3_TLS1 (CRYPT_FLAG_PCT1|CRYPT_FLAG_SSL2|CRYPT_FLAG_SSL3|CRYPT_FLAG_TLS1) #define S(s) sizeof(s), s static const PROV_ENUMALGS_EX aProvEnumAlgsEx[5][RSAENH_MAX_ENUMALGS+1] = { { {CALG_RC2, 40, 40, 56, 0, S("RC2"), S("RSA Data Security's RC2")}, {CALG_RC4, 40, 40, 56, 0, S("RC4"), S("RSA Data Security's RC4")}, {CALG_DES, 56, 56, 56, 0, S("DES"), S("Data Encryption Standard (DES)")}, {CALG_SHA, 160, 160, 160, CRYPT_FLAG_SIGNING, S("SHA-1"), S("Secure Hash Algorithm (SHA-1)")}, {CALG_MD2, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD2"), S("Message Digest 2 (MD2)")}, {CALG_MD4, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD4"), S("Message Digest 4 (MD4)")}, {CALG_MD5, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD5"), S("Message Digest 5 (MD5)")}, {CALG_SSL3_SHAMD5, 288, 288, 288, 0, S("SSL3 SHAMD5"), S("SSL3 SHAMD5")}, {CALG_MAC, 0, 0, 0, 0, S("MAC"), S("Message Authentication Code")}, {CALG_RSA_SIGN, 512, 384, 16384, CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC, S("RSA_SIGN"), S("RSA Signature")}, {CALG_RSA_KEYX, 512, 384, 1024, CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC, S("RSA_KEYX"), S("RSA Key Exchange")}, {CALG_HMAC, 0, 0, 0, 0, S("HMAC"), S("Hugo's MAC (HMAC)")}, {0, 0, 0, 0, 0, S(""), S("")} }, { {CALG_RC2, 128, 40, 128, 0, S("RC2"), S("RSA Data Security's RC2")}, {CALG_RC4, 128, 40, 128, 0, S("RC4"), S("RSA Data Security's RC4")}, {CALG_DES, 56, 56, 56, 0, S("DES"), S("Data Encryption Standard (DES)")}, {CALG_3DES_112, 112, 112, 112, 0, S("3DES TWO KEY"), S("Two Key Triple DES")}, {CALG_3DES, 168, 168, 168, 0, S("3DES"), S("Three Key Triple DES")}, {CALG_SHA, 160, 160, 160, CRYPT_FLAG_SIGNING, S("SHA-1"), S("Secure Hash Algorithm (SHA-1)")}, {CALG_MD2, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD2"), S("Message Digest 2 (MD2)")}, {CALG_MD4, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD4"), S("Message Digest 4 (MD4)")}, {CALG_MD5, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD5"), S("Message Digest 5 (MD5)")}, {CALG_SSL3_SHAMD5, 288, 288, 288, 0, S("SSL3 SHAMD5"), S("SSL3 SHAMD5")}, {CALG_MAC, 0, 0, 0, 0, S("MAC"), S("Message Authentication Code")}, {CALG_RSA_SIGN, 1024, 384, 16384, CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC, S("RSA_SIGN"), S("RSA Signature")}, {CALG_RSA_KEYX, 1024, 384, 16384, CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC, S("RSA_KEYX"), S("RSA Key Exchange")}, {CALG_HMAC, 0, 0, 0, 0, S("HMAC"), S("Hugo's MAC (HMAC)")}, {0, 0, 0, 0, 0, S(""), S("")} }, { {CALG_RC2, 128, 40, 128, 0, S("RC2"), S("RSA Data Security's RC2")}, {CALG_RC4, 128, 40, 128, 0, S("RC4"), S("RSA Data Security's RC4")}, {CALG_DES, 56, 56, 56, 0, S("DES"), S("Data Encryption Standard (DES)")}, {CALG_3DES_112, 112, 112, 112, 0, S("3DES TWO KEY"), S("Two Key Triple DES")}, {CALG_3DES, 168, 168, 168, 0, S("3DES"), S("Three Key Triple DES")}, {CALG_SHA, 160, 160, 160, CRYPT_FLAG_SIGNING, S("SHA-1"), S("Secure Hash Algorithm (SHA-1)")}, {CALG_MD2, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD2"), S("Message Digest 2 (MD2)")}, {CALG_MD4, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD4"), S("Message Digest 4 (MD4)")}, {CALG_MD5, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD5"), S("Message Digest 5 (MD5)")}, {CALG_SSL3_SHAMD5, 288, 288, 288, 0, S("SSL3 SHAMD5"), S("SSL3 SHAMD5")}, {CALG_MAC, 0, 0, 0, 0, S("MAC"), S("Message Authentication Code")}, {CALG_RSA_SIGN, 1024, 384, 16384, CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC, S("RSA_SIGN"), S("RSA Signature")}, {CALG_RSA_KEYX, 1024, 384, 16384, CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC, S("RSA_KEYX"), S("RSA Key Exchange")}, {CALG_HMAC, 0, 0, 0, 0, S("HMAC"), S("Hugo's MAC (HMAC)")}, {0, 0, 0, 0, 0, S(""), S("")} }, { {CALG_RC2, 128, 40, 128, RSAENH_PCT1_SSL2_SSL3_TLS1, S("RC2"), S("RSA Data Security's RC2")}, {CALG_RC4, 128, 40, 128, RSAENH_PCT1_SSL2_SSL3_TLS1, S("RC4"), S("RSA Data Security's RC4")}, {CALG_DES, 56, 56, 56, RSAENH_PCT1_SSL2_SSL3_TLS1, S("DES"), S("Data Encryption Standard (DES)")}, {CALG_3DES_112, 112, 112, 112, RSAENH_PCT1_SSL2_SSL3_TLS1, S("3DES TWO KEY"), S("Two Key Triple DES")}, {CALG_3DES, 168, 168, 168, RSAENH_PCT1_SSL2_SSL3_TLS1, S("3DES"), S("Three Key Triple DES")}, {CALG_SHA, 160, 160, 160, CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1, S("SHA-1"), S("Secure Hash Algorithm (SHA-1)")}, {CALG_MD5, 128, 128, 128, CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1, S("MD5"), S("Message Digest 5 (MD5)")}, {CALG_SSL3_SHAMD5, 288, 288, 288, 0, S("SSL3 SHAMD5"), S("SSL3 SHAMD5")}, {CALG_MAC, 0, 0, 0, 0, S("MAC"), S("Message Authentication Code")}, {CALG_RSA_SIGN, 1024, 384, 16384, CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1, S("RSA_SIGN"), S("RSA Signature")}, {CALG_RSA_KEYX, 1024, 384, 16384, CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1, S("RSA_KEYX"), S("RSA Key Exchange")}, {CALG_HMAC, 0, 0, 0, 0, S("HMAC"), S("Hugo's MAC (HMAC)")}, {CALG_PCT1_MASTER, 128, 128, 128, CRYPT_FLAG_PCT1, S("PCT1 MASTER"), S("PCT1 Master")}, {CALG_SSL2_MASTER, 40, 40, 192, CRYPT_FLAG_SSL2, S("SSL2 MASTER"), S("SSL2 Master")}, {CALG_SSL3_MASTER, 384, 384, 384, CRYPT_FLAG_SSL3, S("SSL3 MASTER"), S("SSL3 Master")}, {CALG_TLS1_MASTER, 384, 384, 384, CRYPT_FLAG_TLS1, S("TLS1 MASTER"), S("TLS1 Master")}, {CALG_SCHANNEL_MASTER_HASH, 0, 0, -1, 0, S("SCH MASTER HASH"), S("SChannel Master Hash")}, {CALG_SCHANNEL_MAC_KEY, 0, 0, -1, 0, S("SCH MAC KEY"), S("SChannel MAC Key")}, {CALG_SCHANNEL_ENC_KEY, 0, 0, -1, 0, S("SCH ENC KEY"), S("SChannel Encryption Key")}, {CALG_TLS1PRF, 0, 0, -1, 0, S("TLS1 PRF"), S("TLS1 Pseudo Random Function")}, {0, 0, 0, 0, 0, S(""), S("")} }, { {CALG_RC2, 128, 40, 128, 0, S("RC2"), S("RSA Data Security's RC2")}, {CALG_RC4, 128, 40, 128, 0, S("RC4"), S("RSA Data Security's RC4")}, {CALG_DES, 56, 56, 56, 0, S("DES"), S("Data Encryption Standard (DES)")}, {CALG_3DES_112, 112, 112, 112, 0, S("3DES TWO KEY"), S("Two Key Triple DES")}, {CALG_3DES, 168, 168, 168, 0, S("3DES"), S("Three Key Triple DES")}, {CALG_AES_128, 128, 128, 128, 0, S("AES-128"), S("Advanced Encryption Standard (AES-128)")}, {CALG_AES_192, 192, 192, 192, 0, S("AES-192"), S("Advanced Encryption Standard (AES-192)")}, {CALG_AES_256, 256, 256, 256, 0, S("AES-256"), S("Advanced Encryption Standard (AES-256)")}, {CALG_SHA, 160, 160, 160, CRYPT_FLAG_SIGNING, S("SHA-1"), S("Secure Hash Algorithm (SHA-1)")}, {CALG_SHA_256, 256, 256, 256, CRYPT_FLAG_SIGNING, S("SHA-256"), S("Secure Hash Algorithm (SHA-256)")}, {CALG_SHA_384, 384, 384, 384, CRYPT_FLAG_SIGNING, S("SHA-384"), S("Secure Hash Algorithm (SHA-384)")}, {CALG_SHA_512, 512, 512, 512, CRYPT_FLAG_SIGNING, S("SHA-512"), S("Secure Hash Algorithm (SHA-512)")}, {CALG_MD2, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD2"), S("Message Digest 2 (MD2)")}, {CALG_MD4, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD4"), S("Message Digest 4 (MD4)")}, {CALG_MD5, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD5"), S("Message Digest 5 (MD5)")}, {CALG_SSL3_SHAMD5, 288, 288, 288, 0, S("SSL3 SHAMD5"), S("SSL3 SHAMD5")}, {CALG_MAC, 0, 0, 0, 0, S("MAC"), S("Message Authentication Code")}, {CALG_RSA_SIGN, 1024, 384, 16384, CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC, S("RSA_SIGN"), S("RSA Signature")}, {CALG_RSA_KEYX, 1024, 384, 16384, CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC, S("RSA_KEYX"), S("RSA Key Exchange")}, {CALG_HMAC, 0, 0, 0, 0, S("HMAC"), S("Hugo's MAC (HMAC)")}, {0, 0, 0, 0, 0, S(""), S("")} } }; #undef S /****************************************************************************** * API forward declarations */ BOOL WINAPI RSAENH_CPGetKeyParam( HCRYPTPROV hProv, HCRYPTKEY hKey, DWORD dwParam, BYTE *pbData, DWORD *pdwDataLen, DWORD dwFlags ); BOOL WINAPI RSAENH_CPEncrypt( HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTHASH hHash, BOOL Final, DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen, DWORD dwBufLen ); BOOL WINAPI RSAENH_CPCreateHash( HCRYPTPROV hProv, ALG_ID Algid, HCRYPTKEY hKey, DWORD dwFlags, HCRYPTHASH *phHash ); BOOL WINAPI RSAENH_CPSetHashParam( HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwParam, BYTE *pbData, DWORD dwFlags ); BOOL WINAPI RSAENH_CPGetHashParam( HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwParam, BYTE *pbData, DWORD *pdwDataLen, DWORD dwFlags ); BOOL WINAPI RSAENH_CPDestroyHash( HCRYPTPROV hProv, HCRYPTHASH hHash ); static BOOL crypt_export_key( CRYPTKEY *pCryptKey, HCRYPTKEY hPubKey, DWORD dwBlobType, DWORD dwFlags, BOOL force, BYTE *pbData, DWORD *pdwDataLen ); static BOOL import_key( HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen, HCRYPTKEY hPubKey, DWORD dwFlags, BOOL fStoreKey, HCRYPTKEY *phKey ); BOOL WINAPI RSAENH_CPHashData( HCRYPTPROV hProv, HCRYPTHASH hHash, const BYTE *pbData, DWORD dwDataLen, DWORD dwFlags ); /****************************************************************************** * CSP's handle table (used by all acquired key containers) */ static struct handle_table handle_table; /****************************************************************************** * DllMain (RSAENH.@) * * Initializes and destroys the handle table for the CSP's handles. */ BOOL WINAPI DllMain(HINSTANCE hInstance, DWORD fdwReason, PVOID reserved) { switch (fdwReason) { case DLL_PROCESS_ATTACH: instance = hInstance; DisableThreadLibraryCalls(hInstance); init_handle_table(&handle_table); break; case DLL_PROCESS_DETACH: if (reserved) break; destroy_handle_table(&handle_table); break; } return TRUE; } /****************************************************************************** * copy_param [Internal] * * Helper function that supports the standard WINAPI protocol for querying data * of dynamic size. * * PARAMS * pbBuffer [O] Buffer where the queried parameter is copied to, if it is large enough. * May be NUL if the required buffer size is to be queried only. * pdwBufferSize [I/O] In: Size of the buffer at pbBuffer * Out: Size of parameter pbParam * pbParam [I] Parameter value. * dwParamSize [I] Size of pbParam * * RETURN * Success: TRUE (pbParam was copied into pbBuffer or pbBuffer is NULL) * Failure: FALSE (pbBuffer is not large enough to hold pbParam). Last error: ERROR_MORE_DATA */ static inline BOOL copy_param(BYTE *pbBuffer, DWORD *pdwBufferSize, const BYTE *pbParam, DWORD dwParamSize) { if (pbBuffer) { if (dwParamSize > *pdwBufferSize) { SetLastError(ERROR_MORE_DATA); *pdwBufferSize = dwParamSize; return FALSE; } memcpy(pbBuffer, pbParam, dwParamSize); } *pdwBufferSize = dwParamSize; return TRUE; } static inline KEYCONTAINER* get_key_container(HCRYPTPROV hProv) { KEYCONTAINER *pKeyContainer; if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER, (OBJECTHDR**)&pKeyContainer)) { SetLastError(NTE_BAD_UID); return NULL; } return pKeyContainer; } /****************************************************************************** * get_algid_info [Internal] * * Query CSP capabilities for a given crypto algorithm. * * PARAMS * hProv [I] Handle to a key container of the CSP whose capabilities are to be queried. * algid [I] Identifier of the crypto algorithm about which information is requested. * * RETURNS * Success: Pointer to a PROV_ENUMALGS_EX struct containing information about the crypto algorithm. * Failure: NULL (algid not supported) */ static inline const PROV_ENUMALGS_EX* get_algid_info(HCRYPTPROV hProv, ALG_ID algid) { const PROV_ENUMALGS_EX *iterator; KEYCONTAINER *pKeyContainer; if (!(pKeyContainer = get_key_container(hProv))) return NULL; for (iterator = aProvEnumAlgsEx[pKeyContainer->dwPersonality]; iterator->aiAlgid; iterator++) { if (iterator->aiAlgid == algid) return iterator; } SetLastError(NTE_BAD_ALGID); return NULL; } /****************************************************************************** * copy_data_blob [Internal] * * deeply copies a DATA_BLOB * * PARAMS * dst [O] That's where the blob will be copied to * src [I] Source blob * * RETURNS * Success: TRUE * Failure: FALSE (GetLastError() == NTE_NO_MEMORY * * NOTES * Use free_data_blob to release resources occupied by copy_data_blob. */ static inline BOOL copy_data_blob(PCRYPT_DATA_BLOB dst, const PCRYPT_DATA_BLOB src) { dst->pbData = HeapAlloc(GetProcessHeap(), 0, src->cbData); if (!dst->pbData) { SetLastError(NTE_NO_MEMORY); return FALSE; } dst->cbData = src->cbData; memcpy(dst->pbData, src->pbData, src->cbData); return TRUE; } /****************************************************************************** * concat_data_blobs [Internal] * * Concatenates two blobs * * PARAMS * dst [O] The new blob will be copied here * src1 [I] Prefix blob * src2 [I] Appendix blob * * RETURNS * Success: TRUE * Failure: FALSE (GetLastError() == NTE_NO_MEMORY) * * NOTES * Release resources occupied by concat_data_blobs with free_data_blobs */ static inline BOOL concat_data_blobs(PCRYPT_DATA_BLOB dst, const PCRYPT_DATA_BLOB src1, const PCRYPT_DATA_BLOB src2) { dst->cbData = src1->cbData + src2->cbData; dst->pbData = HeapAlloc(GetProcessHeap(), 0, dst->cbData); if (!dst->pbData) { SetLastError(NTE_NO_MEMORY); return FALSE; } memcpy(dst->pbData, src1->pbData, src1->cbData); memcpy(dst->pbData + src1->cbData, src2->pbData, src2->cbData); return TRUE; } /****************************************************************************** * free_data_blob [Internal] * * releases resource occupied by a dynamically allocated CRYPT_DATA_BLOB * * PARAMS * pBlob [I] Heap space occupied by pBlob->pbData is released */ static inline void free_data_blob(PCRYPT_DATA_BLOB pBlob) { HeapFree(GetProcessHeap(), 0, pBlob->pbData); } /****************************************************************************** * init_data_blob [Internal] */ static inline void init_data_blob(PCRYPT_DATA_BLOB pBlob) { pBlob->pbData = NULL; pBlob->cbData = 0; } /****************************************************************************** * free_hmac_info [Internal] * * Deeply free an HMAC_INFO struct. * * PARAMS * hmac_info [I] Pointer to the HMAC_INFO struct to be freed. * * NOTES * See Internet RFC 2104 for details on the HMAC algorithm. */ static inline void free_hmac_info(PHMAC_INFO hmac_info) { if (!hmac_info) return; HeapFree(GetProcessHeap(), 0, hmac_info->pbInnerString); HeapFree(GetProcessHeap(), 0, hmac_info->pbOuterString); HeapFree(GetProcessHeap(), 0, hmac_info); } /****************************************************************************** * copy_hmac_info [Internal] * * Deeply copy an HMAC_INFO struct * * PARAMS * dst [O] Pointer to a location where the pointer to the HMAC_INFO copy will be stored. * src [I] Pointer to the HMAC_INFO struct to be copied. * * RETURNS * Success: TRUE * Failure: FALSE * * NOTES * See Internet RFC 2104 for details on the HMAC algorithm. */ static BOOL copy_hmac_info(PHMAC_INFO *dst, const HMAC_INFO *src) { if (!src) return FALSE; *dst = HeapAlloc(GetProcessHeap(), 0, sizeof(HMAC_INFO)); if (!*dst) return FALSE; **dst = *src; (*dst)->pbInnerString = NULL; (*dst)->pbOuterString = NULL; if ((*dst)->cbInnerString == 0) (*dst)->cbInnerString = RSAENH_HMAC_DEF_PAD_LEN; (*dst)->pbInnerString = HeapAlloc(GetProcessHeap(), 0, (*dst)->cbInnerString); if (!(*dst)->pbInnerString) { free_hmac_info(*dst); return FALSE; } if (src->cbInnerString) memcpy((*dst)->pbInnerString, src->pbInnerString, src->cbInnerString); else memset((*dst)->pbInnerString, RSAENH_HMAC_DEF_IPAD_CHAR, RSAENH_HMAC_DEF_PAD_LEN); if ((*dst)->cbOuterString == 0) (*dst)->cbOuterString = RSAENH_HMAC_DEF_PAD_LEN; (*dst)->pbOuterString = HeapAlloc(GetProcessHeap(), 0, (*dst)->cbOuterString); if (!(*dst)->pbOuterString) { free_hmac_info(*dst); return FALSE; } if (src->cbOuterString) memcpy((*dst)->pbOuterString, src->pbOuterString, src->cbOuterString); else memset((*dst)->pbOuterString, RSAENH_HMAC_DEF_OPAD_CHAR, RSAENH_HMAC_DEF_PAD_LEN); return TRUE; } /****************************************************************************** * destroy_hash [Internal] * * Destructor for hash objects * * PARAMS * pCryptHash [I] Pointer to the hash object to be destroyed. * Will be invalid after function returns! */ static void destroy_hash(OBJECTHDR *pObject) { CRYPTHASH *pCryptHash = (CRYPTHASH*)pObject; free_hmac_info(pCryptHash->pHMACInfo); free_data_blob(&pCryptHash->tpPRFParams.blobLabel); free_data_blob(&pCryptHash->tpPRFParams.blobSeed); HeapFree(GetProcessHeap(), 0, pCryptHash); } /****************************************************************************** * init_hash [Internal] * * Initialize (or reset) a hash object * * PARAMS * pCryptHash [I] The hash object to be initialized. */ static inline BOOL init_hash(CRYPTHASH *pCryptHash) { DWORD dwLen; switch (pCryptHash->aiAlgid) { case CALG_HMAC: if (pCryptHash->pHMACInfo) { const PROV_ENUMALGS_EX *pAlgInfo; pAlgInfo = get_algid_info(pCryptHash->hProv, pCryptHash->pHMACInfo->HashAlgid); if (!pAlgInfo) return FALSE; pCryptHash->dwHashSize = pAlgInfo->dwDefaultLen >> 3; init_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context); update_hash_impl(&pCryptHash->context, pCryptHash->pHMACInfo->pbInnerString, pCryptHash->pHMACInfo->cbInnerString); } return TRUE; case CALG_MAC: dwLen = sizeof(DWORD); RSAENH_CPGetKeyParam(pCryptHash->hProv, pCryptHash->hKey, KP_BLOCKLEN, (BYTE*)&pCryptHash->dwHashSize, &dwLen, 0); pCryptHash->dwHashSize >>= 3; return TRUE; default: return init_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context); } } /****************************************************************************** * update_hash [Internal] * * Hashes the given data and updates the hash object's state accordingly * * PARAMS * pCryptHash [I] Hash object to be updated. * pbData [I] Pointer to data stream to be hashed. * dwDataLen [I] Length of data stream. */ static inline void update_hash(CRYPTHASH *pCryptHash, const BYTE *pbData, DWORD dwDataLen) { BYTE *pbTemp; switch (pCryptHash->aiAlgid) { case CALG_HMAC: if (pCryptHash->pHMACInfo) update_hash_impl(&pCryptHash->context, pbData, dwDataLen); break; case CALG_MAC: pbTemp = HeapAlloc(GetProcessHeap(), 0, dwDataLen); if (!pbTemp) return; memcpy(pbTemp, pbData, dwDataLen); RSAENH_CPEncrypt(pCryptHash->hProv, pCryptHash->hKey, 0, FALSE, 0, pbTemp, &dwDataLen, dwDataLen); HeapFree(GetProcessHeap(), 0, pbTemp); break; default: update_hash_impl(&pCryptHash->context, pbData, dwDataLen); } } /****************************************************************************** * finalize_hash [Internal] * * Finalizes the hash, after all data has been hashed with update_hash. * No additional data can be hashed afterwards until the hash gets initialized again. * * PARAMS * pCryptHash [I] Hash object to be finalized. */ static inline void finalize_hash(CRYPTHASH *pCryptHash) { DWORD dwDataLen; switch (pCryptHash->aiAlgid) { case CALG_HMAC: if (pCryptHash->pHMACInfo) { BYTE abHashValue[RSAENH_MAX_HASH_SIZE]; finalize_hash_impl(&pCryptHash->context, pCryptHash->abHashValue); memcpy(abHashValue, pCryptHash->abHashValue, pCryptHash->dwHashSize); init_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context); update_hash_impl(&pCryptHash->context, pCryptHash->pHMACInfo->pbOuterString, pCryptHash->pHMACInfo->cbOuterString); update_hash_impl(&pCryptHash->context, abHashValue, pCryptHash->dwHashSize); finalize_hash_impl(&pCryptHash->context, pCryptHash->abHashValue); } break; case CALG_MAC: dwDataLen = 0; RSAENH_CPEncrypt(pCryptHash->hProv, pCryptHash->hKey, 0, TRUE, 0, pCryptHash->abHashValue, &dwDataLen, pCryptHash->dwHashSize); break; default: finalize_hash_impl(&pCryptHash->context, pCryptHash->abHashValue); } } /****************************************************************************** * destroy_key [Internal] * * Destructor for key objects * * PARAMS * pCryptKey [I] Pointer to the key object to be destroyed. * Will be invalid after function returns! */ static void destroy_key(OBJECTHDR *pObject) { CRYPTKEY *pCryptKey = (CRYPTKEY*)pObject; free_key_impl(pCryptKey->aiAlgid, &pCryptKey->context); free_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom); free_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom); free_data_blob(&pCryptKey->blobHmacKey); HeapFree(GetProcessHeap(), 0, pCryptKey); } /****************************************************************************** * setup_key [Internal] * * Initialize (or reset) a key object * * PARAMS * pCryptKey [I] The key object to be initialized. */ static inline void setup_key(CRYPTKEY *pCryptKey) { pCryptKey->dwState = RSAENH_KEYSTATE_IDLE; memcpy(pCryptKey->abChainVector, pCryptKey->abInitVector, sizeof(pCryptKey->abChainVector)); setup_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen, pCryptKey->dwEffectiveKeyLen, pCryptKey->dwSaltLen, pCryptKey->abKeyValue); } /****************************************************************************** * new_key [Internal] * * Creates a new key object without assigning the actual binary key value. * This is done by CPDeriveKey, CPGenKey or CPImportKey, which call this function. * * PARAMS * hProv [I] Handle to the provider to which the created key will belong. * aiAlgid [I] The new key shall use the crypto algorithm identified by aiAlgid. * dwFlags [I] Upper 16 bits give the key length. * Lower 16 bits: CRYPT_EXPORTABLE, CRYPT_CREATE_SALT, * CRYPT_NO_SALT * ppCryptKey [O] Pointer to the created key * * RETURNS * Success: Handle to the created key. * Failure: INVALID_HANDLE_VALUE */ static HCRYPTKEY new_key(HCRYPTPROV hProv, ALG_ID aiAlgid, DWORD dwFlags, CRYPTKEY **ppCryptKey) { HCRYPTKEY hCryptKey; CRYPTKEY *pCryptKey; DWORD dwKeyLen = HIWORD(dwFlags); const PROV_ENUMALGS_EX *peaAlgidInfo; *ppCryptKey = NULL; /* * Retrieve the CSP's capabilities for the given ALG_ID value */ peaAlgidInfo = get_algid_info(hProv, aiAlgid); if (!peaAlgidInfo) return (HCRYPTKEY)INVALID_HANDLE_VALUE; TRACE("alg = %s, dwKeyLen = %d\n", debugstr_a(peaAlgidInfo->szName), dwKeyLen); /* * Assume the default key length, if none is specified explicitly */ if (dwKeyLen == 0) dwKeyLen = peaAlgidInfo->dwDefaultLen; /* * Check if the requested key length is supported by the current CSP. * Adjust key length's for DES algorithms. */ switch (aiAlgid) { case CALG_DES: if (dwKeyLen == RSAENH_DES_EFFECTIVE_KEYLEN) { dwKeyLen = RSAENH_DES_STORAGE_KEYLEN; } if (dwKeyLen != RSAENH_DES_STORAGE_KEYLEN) { SetLastError(NTE_BAD_FLAGS); return (HCRYPTKEY)INVALID_HANDLE_VALUE; } break; case CALG_3DES_112: if (dwKeyLen == RSAENH_3DES112_EFFECTIVE_KEYLEN) { dwKeyLen = RSAENH_3DES112_STORAGE_KEYLEN; } if (dwKeyLen != RSAENH_3DES112_STORAGE_KEYLEN) { SetLastError(NTE_BAD_FLAGS); return (HCRYPTKEY)INVALID_HANDLE_VALUE; } break; case CALG_3DES: if (dwKeyLen == RSAENH_3DES_EFFECTIVE_KEYLEN) { dwKeyLen = RSAENH_3DES_STORAGE_KEYLEN; } if (dwKeyLen != RSAENH_3DES_STORAGE_KEYLEN) { SetLastError(NTE_BAD_FLAGS); return (HCRYPTKEY)INVALID_HANDLE_VALUE; } break; case CALG_HMAC: /* Avoid the key length check for HMAC keys, which have unlimited * length. */ break; default: if (dwKeyLen % 8 || dwKeyLen > peaAlgidInfo->dwMaxLen || dwKeyLen < peaAlgidInfo->dwMinLen) { TRACE("key len %d out of bounds (%d, %d)\n", dwKeyLen, peaAlgidInfo->dwMinLen, peaAlgidInfo->dwMaxLen); SetLastError(NTE_BAD_DATA); return (HCRYPTKEY)INVALID_HANDLE_VALUE; } } hCryptKey = new_object(&handle_table, sizeof(CRYPTKEY), RSAENH_MAGIC_KEY, destroy_key, (OBJECTHDR**)&pCryptKey); if (hCryptKey != (HCRYPTKEY)INVALID_HANDLE_VALUE) { KEYCONTAINER *pKeyContainer = get_key_container(hProv); pCryptKey->aiAlgid = aiAlgid; pCryptKey->hProv = hProv; pCryptKey->dwModeBits = 0; pCryptKey->dwPermissions = CRYPT_ENCRYPT | CRYPT_DECRYPT | CRYPT_READ | CRYPT_WRITE | CRYPT_MAC; if (dwFlags & CRYPT_EXPORTABLE) pCryptKey->dwPermissions |= CRYPT_EXPORT; pCryptKey->dwKeyLen = dwKeyLen >> 3; pCryptKey->dwEffectiveKeyLen = 0; /* * For compatibility reasons a 40 bit key on the Enhanced * provider will not have salt */ if (pKeyContainer->dwPersonality == RSAENH_PERSONALITY_ENHANCED && (aiAlgid == CALG_RC2 || aiAlgid == CALG_RC4) && (dwFlags & CRYPT_CREATE_SALT) && dwKeyLen == 40) pCryptKey->dwSaltLen = 0; else if ((dwFlags & CRYPT_CREATE_SALT) || (dwKeyLen == 40 && !(dwFlags & CRYPT_NO_SALT))) pCryptKey->dwSaltLen = 16 /*FIXME*/ - pCryptKey->dwKeyLen; else pCryptKey->dwSaltLen = 0; memset(pCryptKey->abKeyValue, 0, sizeof(pCryptKey->abKeyValue)); memset(pCryptKey->abInitVector, 0, sizeof(pCryptKey->abInitVector)); memset(&pCryptKey->siSChannelInfo.saEncAlg, 0, sizeof(pCryptKey->siSChannelInfo.saEncAlg)); memset(&pCryptKey->siSChannelInfo.saMACAlg, 0, sizeof(pCryptKey->siSChannelInfo.saMACAlg)); init_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom); init_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom); init_data_blob(&pCryptKey->blobHmacKey); switch(aiAlgid) { case CALG_PCT1_MASTER: case CALG_SSL2_MASTER: case CALG_SSL3_MASTER: case CALG_TLS1_MASTER: case CALG_RC4: pCryptKey->dwBlockLen = 0; pCryptKey->dwMode = 0; break; case CALG_RC2: case CALG_DES: case CALG_3DES_112: case CALG_3DES: pCryptKey->dwBlockLen = 8; pCryptKey->dwMode = CRYPT_MODE_CBC; break; case CALG_AES_128: case CALG_AES_192: case CALG_AES_256: pCryptKey->dwBlockLen = 16; pCryptKey->dwMode = CRYPT_MODE_CBC; break; case CALG_RSA_KEYX: case CALG_RSA_SIGN: pCryptKey->dwBlockLen = dwKeyLen >> 3; pCryptKey->dwMode = 0; break; case CALG_HMAC: pCryptKey->dwBlockLen = 0; pCryptKey->dwMode = 0; break; } *ppCryptKey = pCryptKey; } return hCryptKey; } /****************************************************************************** * map_key_spec_to_key_pair_name [Internal] * * Returns the name of the registry value associated with a key spec. * * PARAMS * dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE * * RETURNS * Success: Name of registry value. * Failure: NULL */ static LPCSTR map_key_spec_to_key_pair_name(DWORD dwKeySpec) { LPCSTR szValueName; switch (dwKeySpec) { case AT_KEYEXCHANGE: szValueName = "KeyExchangeKeyPair"; break; case AT_SIGNATURE: szValueName = "SignatureKeyPair"; break; default: WARN("invalid key spec %d\n", dwKeySpec); szValueName = NULL; } return szValueName; } /****************************************************************************** * store_key_pair [Internal] * * Stores a key pair to the registry * * PARAMS * hCryptKey [I] Handle to the key to be stored * hKey [I] Registry key where the key pair is to be stored * dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE * dwFlags [I] Flags for protecting the key */ static void store_key_pair(HCRYPTKEY hCryptKey, HKEY hKey, DWORD dwKeySpec, DWORD dwFlags) { LPCSTR szValueName; DATA_BLOB blobIn, blobOut; CRYPTKEY *pKey; DWORD dwLen; BYTE *pbKey; if (!(szValueName = map_key_spec_to_key_pair_name(dwKeySpec))) return; if (lookup_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pKey)) { if (crypt_export_key(pKey, 0, PRIVATEKEYBLOB, 0, TRUE, 0, &dwLen)) { pbKey = HeapAlloc(GetProcessHeap(), 0, dwLen); if (pbKey) { if (crypt_export_key(pKey, 0, PRIVATEKEYBLOB, 0, TRUE, pbKey, &dwLen)) { blobIn.pbData = pbKey; blobIn.cbData = dwLen; if (CryptProtectData(&blobIn, NULL, NULL, NULL, NULL, dwFlags, &blobOut)) { RegSetValueExA(hKey, szValueName, 0, REG_BINARY, blobOut.pbData, blobOut.cbData); LocalFree(blobOut.pbData); } } HeapFree(GetProcessHeap(), 0, pbKey); } } } } /****************************************************************************** * map_key_spec_to_permissions_name [Internal] * * Returns the name of the registry value associated with the permissions for * a key spec. * * PARAMS * dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE * * RETURNS * Success: Name of registry value. * Failure: NULL */ static LPCSTR map_key_spec_to_permissions_name(DWORD dwKeySpec) { LPCSTR szValueName; switch (dwKeySpec) { case AT_KEYEXCHANGE: szValueName = "KeyExchangePermissions"; break; case AT_SIGNATURE: szValueName = "SignaturePermissions"; break; default: WARN("invalid key spec %d\n", dwKeySpec); szValueName = NULL; } return szValueName; } /****************************************************************************** * store_key_permissions [Internal] * * Stores a key's permissions to the registry * * PARAMS * hCryptKey [I] Handle to the key whose permissions are to be stored * hKey [I] Registry key where the key permissions are to be stored * dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE */ static void store_key_permissions(HCRYPTKEY hCryptKey, HKEY hKey, DWORD dwKeySpec) { LPCSTR szValueName; CRYPTKEY *pKey; if (!(szValueName = map_key_spec_to_permissions_name(dwKeySpec))) return; if (lookup_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pKey)) RegSetValueExA(hKey, szValueName, 0, REG_DWORD, (BYTE *)&pKey->dwPermissions, sizeof(pKey->dwPermissions)); } /****************************************************************************** * create_container_key [Internal] * * Creates the registry key for a key container's persistent storage. * * PARAMS * pKeyContainer [I] Pointer to the key container * sam [I] Desired registry access * phKey [O] Returned key */ static BOOL create_container_key(KEYCONTAINER *pKeyContainer, REGSAM sam, HKEY *phKey) { CHAR szRSABase[sizeof(RSAENH_REGKEY) + MAX_PATH]; HKEY hRootKey; sprintf(szRSABase, RSAENH_REGKEY, pKeyContainer->szName); if (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET) hRootKey = HKEY_LOCAL_MACHINE; else hRootKey = HKEY_CURRENT_USER; /* @@ Wine registry key: HKLM\Software\Wine\Crypto\RSA */ /* @@ Wine registry key: HKCU\Software\Wine\Crypto\RSA */ return RegCreateKeyExA(hRootKey, szRSABase, 0, NULL, REG_OPTION_NON_VOLATILE, sam, NULL, phKey, NULL) == ERROR_SUCCESS; } /****************************************************************************** * open_container_key [Internal] * * Opens a key container's persistent storage for reading. * * PARAMS * pszContainerName [I] Name of the container to be opened. May be the empty * string if the parent key of all containers is to be * opened. * dwFlags [I] Flags indicating which keyset to be opened. * phKey [O] Returned key */ static BOOL open_container_key(LPCSTR pszContainerName, DWORD dwFlags, REGSAM access, HKEY *phKey) { CHAR szRSABase[sizeof(RSAENH_REGKEY) + MAX_PATH]; HKEY hRootKey; sprintf(szRSABase, RSAENH_REGKEY, pszContainerName); if (dwFlags & CRYPT_MACHINE_KEYSET) hRootKey = HKEY_LOCAL_MACHINE; else hRootKey = HKEY_CURRENT_USER; /* @@ Wine registry key: HKLM\Software\Wine\Crypto\RSA */ /* @@ Wine registry key: HKCU\Software\Wine\Crypto\RSA */ return RegOpenKeyExA(hRootKey, szRSABase, 0, access, phKey) == ERROR_SUCCESS; } /****************************************************************************** * delete_container_key [Internal] * * Deletes a key container's persistent storage. * * PARAMS * pszContainerName [I] Name of the container to be opened. * dwFlags [I] Flags indicating which keyset to be opened. */ static BOOL delete_container_key(LPCSTR pszContainerName, DWORD dwFlags) { CHAR szRegKey[sizeof(RSAENH_REGKEY) + MAX_PATH]; HKEY hRootKey; sprintf(szRegKey, RSAENH_REGKEY, pszContainerName); if (dwFlags & CRYPT_MACHINE_KEYSET) hRootKey = HKEY_LOCAL_MACHINE; else hRootKey = HKEY_CURRENT_USER; if (!RegDeleteKeyA(hRootKey, szRegKey)) { SetLastError(ERROR_SUCCESS); return TRUE; } else { SetLastError(NTE_BAD_KEYSET); return FALSE; } } /****************************************************************************** * store_key_container_keys [Internal] * * Stores key container's keys in a persistent location. * * PARAMS * pKeyContainer [I] Pointer to the key container whose keys are to be saved */ static void store_key_container_keys(KEYCONTAINER *pKeyContainer) { HKEY hKey; DWORD dwFlags; /* On WinXP, persistent keys are stored in a file located at: * $AppData$\\Microsoft\\Crypto\\RSA\\$SID$\\some_hex_string */ if (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET) dwFlags = CRYPTPROTECT_LOCAL_MACHINE; else dwFlags = 0; if (create_container_key(pKeyContainer, KEY_WRITE, &hKey)) { store_key_pair(pKeyContainer->hKeyExchangeKeyPair, hKey, AT_KEYEXCHANGE, dwFlags); store_key_pair(pKeyContainer->hSignatureKeyPair, hKey, AT_SIGNATURE, dwFlags); RegCloseKey(hKey); } } /****************************************************************************** * store_key_container_permissions [Internal] * * Stores key container's key permissions in a persistent location. * * PARAMS * pKeyContainer [I] Pointer to the key container whose key permissions are to * be saved */ static void store_key_container_permissions(KEYCONTAINER *pKeyContainer) { HKEY hKey; if (create_container_key(pKeyContainer, KEY_WRITE, &hKey)) { store_key_permissions(pKeyContainer->hKeyExchangeKeyPair, hKey, AT_KEYEXCHANGE); store_key_permissions(pKeyContainer->hSignatureKeyPair, hKey, AT_SIGNATURE); RegCloseKey(hKey); } } /****************************************************************************** * release_key_container_keys [Internal] * * Releases key container's keys. * * PARAMS * pKeyContainer [I] Pointer to the key container whose keys are to be released. */ static void release_key_container_keys(KEYCONTAINER *pKeyContainer) { release_handle(&handle_table, pKeyContainer->hKeyExchangeKeyPair, RSAENH_MAGIC_KEY); release_handle(&handle_table, pKeyContainer->hSignatureKeyPair, RSAENH_MAGIC_KEY); } /****************************************************************************** * destroy_key_container [Internal] * * Destructor for key containers. * * PARAMS * pObjectHdr [I] Pointer to the key container to be destroyed. */ static void destroy_key_container(OBJECTHDR *pObjectHdr) { KEYCONTAINER *pKeyContainer = (KEYCONTAINER*)pObjectHdr; if (!(pKeyContainer->dwFlags & CRYPT_VERIFYCONTEXT)) { store_key_container_keys(pKeyContainer); store_key_container_permissions(pKeyContainer); release_key_container_keys(pKeyContainer); } else release_key_container_keys(pKeyContainer); HeapFree( GetProcessHeap(), 0, pKeyContainer ); } /****************************************************************************** * new_key_container [Internal] * * Create a new key container. The personality (RSA Base, Strong or Enhanced CP) * of the CSP is determined via the pVTable->pszProvName string. * * PARAMS * pszContainerName [I] Name of the key container. * pVTable [I] Callback functions and context info provided by the OS * * RETURNS * Success: Handle to the new key container. * Failure: INVALID_HANDLE_VALUE */ static HCRYPTPROV new_key_container(PCCH pszContainerName, DWORD dwFlags, const VTableProvStruc *pVTable) { KEYCONTAINER *pKeyContainer; HCRYPTPROV hKeyContainer; hKeyContainer = new_object(&handle_table, sizeof(KEYCONTAINER), RSAENH_MAGIC_CONTAINER, destroy_key_container, (OBJECTHDR**)&pKeyContainer); if (hKeyContainer != (HCRYPTPROV)INVALID_HANDLE_VALUE) { lstrcpynA(pKeyContainer->szName, pszContainerName, MAX_PATH); pKeyContainer->dwFlags = dwFlags; pKeyContainer->dwEnumAlgsCtr = 0; pKeyContainer->hKeyExchangeKeyPair = (HCRYPTKEY)INVALID_HANDLE_VALUE; pKeyContainer->hSignatureKeyPair = (HCRYPTKEY)INVALID_HANDLE_VALUE; if (pVTable && pVTable->pszProvName) { lstrcpynA(pKeyContainer->szProvName, pVTable->pszProvName, MAX_PATH); if (!strcmp(pVTable->pszProvName, MS_DEF_PROV_A)) { pKeyContainer->dwPersonality = RSAENH_PERSONALITY_BASE; } else if (!strcmp(pVTable->pszProvName, MS_ENHANCED_PROV_A)) { pKeyContainer->dwPersonality = RSAENH_PERSONALITY_ENHANCED; } else if (!strcmp(pVTable->pszProvName, MS_DEF_RSA_SCHANNEL_PROV_A)) { pKeyContainer->dwPersonality = RSAENH_PERSONALITY_SCHANNEL; } else if (!strcmp(pVTable->pszProvName, MS_ENH_RSA_AES_PROV_A) || !strcmp(pVTable->pszProvName, MS_ENH_RSA_AES_PROV_XP_A)) { pKeyContainer->dwPersonality = RSAENH_PERSONALITY_AES; } else { pKeyContainer->dwPersonality = RSAENH_PERSONALITY_STRONG; } } /* The new key container has to be inserted into the CSP immediately * after creation to be available for CPGetProvParam's PP_ENUMCONTAINERS. */ if (!(dwFlags & CRYPT_VERIFYCONTEXT)) { HKEY hKey; if (create_container_key(pKeyContainer, KEY_WRITE, &hKey)) RegCloseKey(hKey); } } return hKeyContainer; } /****************************************************************************** * read_key_value [Internal] * * Reads a key pair value from the registry * * PARAMS * hKeyContainer [I] Crypt provider to use to import the key * hKey [I] Registry key from which to read the key pair * dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE * dwFlags [I] Flags for unprotecting the key * phCryptKey [O] Returned key */ static BOOL read_key_value(HCRYPTPROV hKeyContainer, HKEY hKey, DWORD dwKeySpec, DWORD dwFlags, HCRYPTKEY *phCryptKey) { LPCSTR szValueName; DWORD dwValueType, dwLen; BYTE *pbKey; DATA_BLOB blobIn, blobOut; BOOL ret = FALSE; if (!(szValueName = map_key_spec_to_key_pair_name(dwKeySpec))) return FALSE; if (RegQueryValueExA(hKey, szValueName, 0, &dwValueType, NULL, &dwLen) == ERROR_SUCCESS) { pbKey = HeapAlloc(GetProcessHeap(), 0, dwLen); if (pbKey) { if (RegQueryValueExA(hKey, szValueName, 0, &dwValueType, pbKey, &dwLen) == ERROR_SUCCESS) { blobIn.pbData = pbKey; blobIn.cbData = dwLen; if (CryptUnprotectData(&blobIn, NULL, NULL, NULL, NULL, dwFlags, &blobOut)) { ret = import_key(hKeyContainer, blobOut.pbData, blobOut.cbData, 0, 0, FALSE, phCryptKey); LocalFree(blobOut.pbData); } } HeapFree(GetProcessHeap(), 0, pbKey); } } if (ret) { CRYPTKEY *pKey; if (lookup_handle(&handle_table, *phCryptKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pKey)) { if ((szValueName = map_key_spec_to_permissions_name(dwKeySpec))) { dwLen = sizeof(pKey->dwPermissions); RegQueryValueExA(hKey, szValueName, 0, NULL, (BYTE *)&pKey->dwPermissions, &dwLen); } } } return ret; } /****************************************************************************** * read_key_container [Internal] * * Tries to read the persistent state of the key container (mainly the signature * and key exchange private keys) given by pszContainerName. * * PARAMS * pszContainerName [I] Name of the key container to read from the registry * pVTable [I] Pointer to context data provided by the operating system * * RETURNS * Success: Handle to the key container read from the registry * Failure: INVALID_HANDLE_VALUE */ static HCRYPTPROV read_key_container(PCHAR pszContainerName, DWORD dwFlags, const VTableProvStruc *pVTable) { HKEY hKey; KEYCONTAINER *pKeyContainer; HCRYPTPROV hKeyContainer; HCRYPTKEY hCryptKey; if (!open_container_key(pszContainerName, dwFlags, KEY_READ, &hKey)) { SetLastError(NTE_BAD_KEYSET); return (HCRYPTPROV)INVALID_HANDLE_VALUE; } hKeyContainer = new_key_container(pszContainerName, dwFlags, pVTable); if (hKeyContainer != (HCRYPTPROV)INVALID_HANDLE_VALUE) { DWORD dwProtectFlags = (dwFlags & CRYPT_MACHINE_KEYSET) ? CRYPTPROTECT_LOCAL_MACHINE : 0; if (!lookup_handle(&handle_table, hKeyContainer, RSAENH_MAGIC_CONTAINER, (OBJECTHDR**)&pKeyContainer)) return (HCRYPTPROV)INVALID_HANDLE_VALUE; /* read_key_value calls import_key, which calls import_private_key, * which implicitly installs the key value into the appropriate key * container key. Thus the ref count is incremented twice, once for * the output key value, and once for the implicit install, and needs * to be decremented to balance the two. */ if (read_key_value(hKeyContainer, hKey, AT_KEYEXCHANGE, dwProtectFlags, &hCryptKey)) release_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY); if (read_key_value(hKeyContainer, hKey, AT_SIGNATURE, dwProtectFlags, &hCryptKey)) release_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY); } return hKeyContainer; } /****************************************************************************** * build_hash_signature [Internal] * * Builds a padded version of a hash to match the length of the RSA key modulus. * * PARAMS * pbSignature [O] The padded hash object is stored here. * dwLen [I] Length of the pbSignature buffer. * aiAlgid [I] Algorithm identifier of the hash to be padded. * abHashValue [I] The value of the hash object. * dwHashLen [I] Length of the hash value. * dwFlags [I] Selection of padding algorithm. * * RETURNS * Success: TRUE * Failure: FALSE (NTE_BAD_ALGID) */ static BOOL build_hash_signature(BYTE *pbSignature, DWORD dwLen, ALG_ID aiAlgid, const BYTE *abHashValue, DWORD dwHashLen, DWORD dwFlags) { /* These prefixes are meant to be concatenated with hash values of the * respective kind to form a PKCS #7 DigestInfo. */ static const struct tagOIDDescriptor { ALG_ID aiAlgid; DWORD dwLen; const BYTE abOID[19]; } aOIDDescriptor[] = { { CALG_MD2, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x02, 0x05, 0x00, 0x04, 0x10 } }, { CALG_MD4, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x04, 0x05, 0x00, 0x04, 0x10 } }, { CALG_MD5, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10 } }, { CALG_SHA, 15, { 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14 } }, { CALG_SHA_256, 19, { 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20 } }, { CALG_SHA_384, 19, { 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30 } }, { CALG_SHA_512, 19, { 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40 } }, { CALG_SSL3_SHAMD5, 0, { 0 } }, { 0, 0, { 0 } } }; DWORD dwIdxOID, i, j; for (dwIdxOID = 0; aOIDDescriptor[dwIdxOID].aiAlgid; dwIdxOID++) { if (aOIDDescriptor[dwIdxOID].aiAlgid == aiAlgid) break; } if (!aOIDDescriptor[dwIdxOID].aiAlgid) { SetLastError(NTE_BAD_ALGID); return FALSE; } /* Build the padded signature */ if (dwFlags & CRYPT_X931_FORMAT) { pbSignature[0] = 0x6b; for (i=1; i < dwLen - dwHashLen - 3; i++) { pbSignature[i] = 0xbb; } pbSignature[i++] = 0xba; for (j=0; j < dwHashLen; j++, i++) { pbSignature[i] = abHashValue[j]; } pbSignature[i++] = 0x33; pbSignature[i++] = 0xcc; } else { pbSignature[0] = 0x00; pbSignature[1] = 0x01; if (dwFlags & CRYPT_NOHASHOID) { for (i=2; i < dwLen - 1 - dwHashLen; i++) { pbSignature[i] = 0xff; } pbSignature[i++] = 0x00; } else { for (i=2; i < dwLen - 1 - aOIDDescriptor[dwIdxOID].dwLen - dwHashLen; i++) { pbSignature[i] = 0xff; } pbSignature[i++] = 0x00; for (j=0; j < aOIDDescriptor[dwIdxOID].dwLen; j++) { pbSignature[i++] = aOIDDescriptor[dwIdxOID].abOID[j]; } } for (j=0; j < dwHashLen; j++) { pbSignature[i++] = abHashValue[j]; } } return TRUE; } /****************************************************************************** * tls1_p [Internal] * * This is an implementation of the 'P_hash' helper function for TLS1's PRF. * It is used exclusively by tls1_prf. For details see RFC 2246, chapter 5. * The pseudo random stream generated by this function is exclusive or'ed with * the data in pbBuffer. * * PARAMS * hHMAC [I] HMAC object, which will be used in pseudo random generation * pblobSeed [I] Seed value * pbBuffer [I/O] Pseudo random stream will be xor'ed to the provided data * dwBufferLen [I] Number of pseudo random bytes desired * * RETURNS * Success: TRUE * Failure: FALSE */ static BOOL tls1_p(HCRYPTHASH hHMAC, const PCRYPT_DATA_BLOB pblobSeed, BYTE *pbBuffer, DWORD dwBufferLen) { CRYPTHASH *pHMAC; BYTE abAi[RSAENH_MAX_HASH_SIZE]; DWORD i = 0; if (!lookup_handle(&handle_table, hHMAC, RSAENH_MAGIC_HASH, (OBJECTHDR**)&pHMAC)) { SetLastError(NTE_BAD_HASH); return FALSE; } /* compute A_1 = HMAC(seed) */ init_hash(pHMAC); update_hash(pHMAC, pblobSeed->pbData, pblobSeed->cbData); finalize_hash(pHMAC); memcpy(abAi, pHMAC->abHashValue, pHMAC->dwHashSize); do { /* compute HMAC(A_i + seed) */ init_hash(pHMAC); update_hash(pHMAC, abAi, pHMAC->dwHashSize); update_hash(pHMAC, pblobSeed->pbData, pblobSeed->cbData); finalize_hash(pHMAC); /* pseudo random stream := CONCAT_{i=1..n} ( HMAC(A_i + seed) ) */ do { if (i >= dwBufferLen) break; pbBuffer[i] ^= pHMAC->abHashValue[i % pHMAC->dwHashSize]; i++; } while (i % pHMAC->dwHashSize); /* compute A_{i+1} = HMAC(A_i) */ init_hash(pHMAC); update_hash(pHMAC, abAi, pHMAC->dwHashSize); finalize_hash(pHMAC); memcpy(abAi, pHMAC->abHashValue, pHMAC->dwHashSize); } while (i < dwBufferLen); return TRUE; } /****************************************************************************** * tls1_prf [Internal] * * TLS1 pseudo random function as specified in RFC 2246, chapter 5 * * PARAMS * hProv [I] Key container used to compute the pseudo random stream * hSecret [I] Key that holds the (pre-)master secret * pblobLabel [I] Descriptive label * pblobSeed [I] Seed value * pbBuffer [O] Pseudo random numbers will be stored here * dwBufferLen [I] Number of pseudo random bytes desired * * RETURNS * Success: TRUE * Failure: FALSE */ static BOOL tls1_prf(HCRYPTPROV hProv, HCRYPTPROV hSecret, const PCRYPT_DATA_BLOB pblobLabel, const PCRYPT_DATA_BLOB pblobSeed, BYTE *pbBuffer, DWORD dwBufferLen) { HMAC_INFO hmacInfo = { 0, NULL, 0, NULL, 0 }; HCRYPTHASH hHMAC = (HCRYPTHASH)INVALID_HANDLE_VALUE; HCRYPTKEY hHalfSecret = (HCRYPTKEY)INVALID_HANDLE_VALUE; CRYPTKEY *pHalfSecret, *pSecret; DWORD dwHalfSecretLen; BOOL result = FALSE; CRYPT_DATA_BLOB blobLabelSeed; TRACE("(hProv=%08lx, hSecret=%08lx, pblobLabel=%p, pblobSeed=%p, pbBuffer=%p, dwBufferLen=%d)\n", hProv, hSecret, pblobLabel, pblobSeed, pbBuffer, dwBufferLen); if (!lookup_handle(&handle_table, hSecret, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pSecret)) { SetLastError(NTE_FAIL); return FALSE; } dwHalfSecretLen = (pSecret->dwKeyLen+1)/2; /* concatenation of the label and the seed */ if (!concat_data_blobs(&blobLabelSeed, pblobLabel, pblobSeed)) goto exit; /* zero out the buffer, since two random streams will be xor'ed into it. */ memset(pbBuffer, 0, dwBufferLen); /* build a 'fake' key, to hold the secret. CALG_SSL2_MASTER is used since it provides * the biggest range of valid key lengths. */ hHalfSecret = new_key(hProv, CALG_SSL2_MASTER, MAKELONG(0,dwHalfSecretLen*8), &pHalfSecret); if (hHalfSecret == (HCRYPTKEY)INVALID_HANDLE_VALUE) goto exit; /* Derive an HMAC_MD5 hash and call the helper function. */ memcpy(pHalfSecret->abKeyValue, pSecret->abKeyValue, dwHalfSecretLen); if (!RSAENH_CPCreateHash(hProv, CALG_HMAC, hHalfSecret, 0, &hHMAC)) goto exit; hmacInfo.HashAlgid = CALG_MD5; if (!RSAENH_CPSetHashParam(hProv, hHMAC, HP_HMAC_INFO, (BYTE*)&hmacInfo, 0)) goto exit; if (!tls1_p(hHMAC, &blobLabelSeed, pbBuffer, dwBufferLen)) goto exit; /* Reconfigure to HMAC_SHA hash and call helper function again. */ memcpy(pHalfSecret->abKeyValue, pSecret->abKeyValue + (pSecret->dwKeyLen/2), dwHalfSecretLen); hmacInfo.HashAlgid = CALG_SHA; if (!RSAENH_CPSetHashParam(hProv, hHMAC, HP_HMAC_INFO, (BYTE*)&hmacInfo, 0)) goto exit; if (!tls1_p(hHMAC, &blobLabelSeed, pbBuffer, dwBufferLen)) goto exit; result = TRUE; exit: release_handle(&handle_table, hHalfSecret, RSAENH_MAGIC_KEY); if (hHMAC != (HCRYPTHASH)INVALID_HANDLE_VALUE) RSAENH_CPDestroyHash(hProv, hHMAC); free_data_blob(&blobLabelSeed); return result; } /****************************************************************************** * pad_data_pkcs1 [Internal] * * Helper function for data padding according to PKCS1 #2 * * PARAMS * abData [I] The data to be padded * dwDataLen [I] Length of the data * abBuffer [O] Padded data will be stored here * dwBufferLen [I] Length of the buffer (also length of padded data) * dwFlags [I] Padding format (CRYPT_SSL2_FALLBACK) * * RETURN * Success: TRUE * Failure: FALSE (NTE_BAD_LEN, too much data to pad) */ static BOOL pad_data_pkcs1(const BYTE *abData, DWORD dwDataLen, BYTE *abBuffer, DWORD dwBufferLen, DWORD dwFlags) { DWORD i; /* Ensure there is enough space for PKCS1 #2 padding */ if (dwDataLen > dwBufferLen-11) { SetLastError(NTE_BAD_LEN); return FALSE; } memmove(abBuffer + dwBufferLen - dwDataLen, abData, dwDataLen); abBuffer[0] = 0x00; abBuffer[1] = RSAENH_PKC_BLOCKTYPE; for (i=2; i < dwBufferLen - dwDataLen - 1; i++) do gen_rand_impl(&abBuffer[i], 1); while (!abBuffer[i]); if (dwFlags & CRYPT_SSL2_FALLBACK) for (i-=8; i < dwBufferLen - dwDataLen - 1; i++) abBuffer[i] = 0x03; abBuffer[i] = 0x00; return TRUE; } /****************************************************************************** * pkcs1_mgf1 [Internal] * * MGF function for RSA EM-OAEP as specified in RFC 8017 PKCS #1 V2.2, Appendix B.2.1. MGF1 * * PARAMS * hProv [I] Cryptographic provider handle * pbSeed [I] Seed from which mask is generated * dwSeedLength [I] Length of pbSeed * dwLength [I] Intended length in octets of the mask * pbMask [O] Generated mask if success. Caller is responsible for freeing the mask when it's done * * RETURNS * Success: TRUE * Failure: FALSE */ static BOOL pkcs1_mgf1(HCRYPTPROV hProv, const BYTE *pbSeed, DWORD dwSeedLength, DWORD dwLength, PCRYPT_DATA_BLOB pbMask) { HCRYPTHASH hHash; BYTE *pbHashInput, *pbCounter; DWORD dwCounter; DWORD dwLen, dwHashLen; RSAENH_CPCreateHash(hProv, CALG_SHA1, 0, 0, &hHash); RSAENH_CPHashData(hProv, hHash, 0, 0, 0); dwLen = sizeof(dwHashLen); RSAENH_CPGetHashParam(hProv, hHash, HP_HASHSIZE, (BYTE *)&dwHashLen, &dwLen, 0); RSAENH_CPDestroyHash(hProv, hHash); /* Allocate multiples of hash value */ pbMask->pbData = HeapAlloc(GetProcessHeap(), 0, (dwLength + dwHashLen - 1) / dwHashLen * dwHashLen); if (!pbMask->pbData) { SetLastError(NTE_NO_MEMORY); return FALSE; } pbMask->cbData = dwLength; pbHashInput = HeapAlloc(GetProcessHeap(), 0, dwSeedLength + sizeof(DWORD)); if (!pbHashInput) { free_data_blob(pbMask); SetLastError(NTE_NO_MEMORY); return FALSE; } dwLen = dwHashLen; memcpy(pbHashInput, pbSeed, dwSeedLength); pbCounter = pbHashInput + dwSeedLength; for (dwCounter = 0; dwCounter < (dwLength + dwHashLen - 1) / dwHashLen; dwCounter++) { *(pbCounter) = (BYTE)((dwCounter >> 24) & 0xff); *(pbCounter + 1) = (BYTE)((dwCounter >> 16) & 0xff); *(pbCounter + 2) = (BYTE)((dwCounter >> 8) & 0xff); *(pbCounter + 3) = (BYTE)(dwCounter & 0xff); RSAENH_CPCreateHash(hProv, CALG_SHA1, 0, 0, &hHash); RSAENH_CPHashData(hProv, hHash, pbHashInput, dwSeedLength + sizeof(DWORD), 0); /* pbMask->pbData = old pbMask->pbData || Hash(Seed || Counter) */ RSAENH_CPGetHashParam(hProv, hHash, HP_HASHVAL, pbMask->pbData + dwCounter * dwHashLen, &dwLen, 0); RSAENH_CPDestroyHash(hProv, hHash); } HeapFree(GetProcessHeap(), 0, pbHashInput); return TRUE; } /****************************************************************************** * pad_data_oaep [Internal] * * Helper function for data OAEP padding scheme according to RFC 8017 PKCS #1 V2.2 * * PARAMS * hProv [I] Cryptographic provider handle * abData [I] The data to be padded * dwDataLen [I] Length of the data * abBuffer [O] Padded data will be stored here * dwBufferLen [I] Length of the buffer (also length of padded data) * dwFlags [I] Currently only CRYPT_OAEP is defined * * RETURN * Success: TRUE * Failure: FALSE */ static BOOL pad_data_oaep(HCRYPTPROV hProv, const BYTE *abData, DWORD dwDataLen, BYTE *abBuffer, DWORD dwBufferLen, DWORD dwFlags) { CRYPT_DATA_BLOB blobDbMask = {0}, blobSeedMask = {0}; HCRYPTHASH hHash; BYTE *pbPadded = NULL, *pbDb, *pbSeed; DWORD dwLen, dwHashLen; DWORD dwDbLen, dwSeedLen; BOOL result, ret = FALSE; DWORD i; RSAENH_CPCreateHash(hProv, CALG_SHA1, 0, 0, &hHash); /* Empty label */ RSAENH_CPHashData(hProv, hHash, 0, 0, 0); dwLen = sizeof(dwHashLen); RSAENH_CPGetHashParam(hProv, hHash, HP_HASHSIZE, (BYTE *)&dwHashLen, &dwLen, 0); if (dwDataLen > dwBufferLen - 2 * dwHashLen - 2) { SetLastError(NTE_BAD_LEN); goto done; } if (dwBufferLen < 2 * dwHashLen + 2) { SetLastError(ERROR_MORE_DATA); goto done; } pbPadded = HeapAlloc(GetProcessHeap(), 0, dwBufferLen); if (!pbPadded) { SetLastError(NTE_NO_MEMORY); goto done; } /* EM = 00 || maskedSeed || maskedDB */ pbPadded[0] = 0; pbSeed = pbPadded + 1; dwSeedLen = dwHashLen; pbDb = pbPadded + 1 + dwHashLen; dwDbLen = dwBufferLen - dwSeedLen - 1; /* DB = pHash || PS || 01 || M */ /* Set pHash in DB */ dwLen = dwHashLen; RSAENH_CPGetHashParam(hProv, hHash, HP_HASHVAL, pbDb, &dwLen, 0); /* Set PS(zeros) in DB */ memset(pbDb + dwHashLen, 0, dwDbLen - dwHashLen - 1 - dwDataLen); /* Set 01 in DB */ pbDb[dwDbLen - dwDataLen - 1] = 1; /* Set M in DB */ memcpy(pbDb + dwDbLen - dwDataLen, abData, dwDataLen); /* Get seed */ gen_rand_impl(pbSeed, dwHashLen); /* Get masked DB */ result = pkcs1_mgf1(hProv, pbSeed, dwHashLen, dwDbLen, &blobDbMask); if (!result) goto done; for (i = 0; i < dwDbLen; i++) pbDb[i] ^= blobDbMask.pbData[i]; /* Get masked seed */ result = pkcs1_mgf1(hProv, pbDb, dwDbLen, dwHashLen, &blobSeedMask); if (!result) goto done; for (i = 0; i < dwHashLen; i++) pbSeed[i] ^= blobSeedMask.pbData[i]; memcpy(abBuffer, pbPadded, dwBufferLen); ret = TRUE; done: RSAENH_CPDestroyHash(hProv, hHash); HeapFree(GetProcessHeap(), 0, pbPadded); free_data_blob(&blobDbMask); free_data_blob(&blobSeedMask); return ret; } /****************************************************************************** * pad_data [Internal] * * Helper function for data padding according to padding format * * PARAMS * hProv [I] Cryptographic provider handle * abData [I] The data to be padded * dwDataLen [I] Length of the data * abBuffer [O] Padded data will be stored here * dwBufferLen [I] Length of the buffer (also length of padded data) * dwFlags [I] 0, CRYPT_SSL2_FALLBACK or CRYPT_OAEP * * RETURN * Success: TRUE * Failure: FALSE */ static BOOL pad_data(HCRYPTPROV hProv, const BYTE *abData, DWORD dwDataLen, BYTE *abBuffer, DWORD dwBufferLen, DWORD dwFlags) { if (dwFlags == CRYPT_OAEP) return pad_data_oaep(hProv, abData, dwDataLen, abBuffer, dwBufferLen, dwFlags); else return pad_data_pkcs1(abData, dwDataLen, abBuffer, dwBufferLen, dwFlags); } /****************************************************************************** * unpad_data_pkcs1 [Internal] * * Remove the PKCS1 padding from RSA decrypted data * * PARAMS * abData [I] The padded data * dwDataLen [I] Length of the padded data * abBuffer [O] Data without padding will be stored here * dwBufferLen [I/O] I: Length of the buffer, O: Length of unpadded data * dwFlags [I] Currently none defined * * RETURNS * Success: TRUE * Failure: FALSE, (NTE_BAD_DATA, no valid PKCS1 padding or buffer too small) */ static BOOL unpad_data_pkcs1(const BYTE *abData, DWORD dwDataLen, BYTE *abBuffer, DWORD *dwBufferLen, DWORD dwFlags) { DWORD i; if (dwDataLen < 3) { SetLastError(NTE_BAD_DATA); return FALSE; } for (i=2; i dwDbLen || abData[0] || result || pbUnpaddedDb[dwHashLen + dwZeroCount] != 1 || *dwBufferLen < dwMsgCount) { SetLastError(NTE_BAD_DATA); goto done; } *dwBufferLen = dwMsgCount; memcpy(abBuffer, pbUnpaddedDb + dwHashLen + dwZeroCount + 1, dwMsgCount); ret = TRUE; done: RSAENH_CPDestroyHash(hProv, hHash); HeapFree(GetProcessHeap(), 0, pbHashValue); HeapFree(GetProcessHeap(), 0, pbBuffer); free_data_blob(&blobDbMask); free_data_blob(&blobSeedMask); return ret; } /****************************************************************************** * unpad_data [Internal] * * Remove the padding from RSA decrypted data according to padding format * * PARAMS * hProv [I] Cryptographic provider handle * abData [I] The padded data * dwDataLen [I] Length of the padded data * abBuffer [O] Data without padding will be stored here * dwBufferLen [I/O] I: Length of the buffer, O: Length of unpadded data * dwFlags [I] 0 or CRYPT_OAEP * * RETURNS * Success: TRUE * Failure: FALSE */ static BOOL unpad_data(HCRYPTPROV hProv, const BYTE *abData, DWORD dwDataLen, BYTE *abBuffer, DWORD *dwBufferLen, DWORD dwFlags) { if (dwFlags == CRYPT_OAEP) return unpad_data_oaep(hProv, abData, dwDataLen, abBuffer, dwBufferLen, dwFlags); else return unpad_data_pkcs1(abData, dwDataLen, abBuffer, dwBufferLen, dwFlags); } /****************************************************************************** * CPAcquireContext (RSAENH.@) * * Acquire a handle to the key container specified by pszContainer * * PARAMS * phProv [O] Pointer to the location the acquired handle will be written to. * pszContainer [I] Name of the desired key container. See Notes * dwFlags [I] Flags. See Notes. * pVTable [I] Pointer to a PVTableProvStruct containing callbacks. * * RETURNS * Success: TRUE * Failure: FALSE * * NOTES * If pszContainer is NULL or points to a zero length string the user's login * name will be used as the key container name. * * If the CRYPT_NEW_KEYSET flag is set in dwFlags a new keyset will be created. * If a keyset with the given name already exists, the function fails and sets * last error to NTE_EXISTS. If CRYPT_NEW_KEYSET is not set and the specified * key container does not exist, function fails and sets last error to * NTE_BAD_KEYSET. */ BOOL WINAPI RSAENH_CPAcquireContext(HCRYPTPROV *phProv, LPSTR pszContainer, DWORD dwFlags, PVTableProvStruc pVTable) { CHAR szKeyContainerName[MAX_PATH]; TRACE("(phProv=%p, pszContainer=%s, dwFlags=%08x, pVTable=%p)\n", phProv, debugstr_a(pszContainer), dwFlags, pVTable); if (pszContainer && *pszContainer) { lstrcpynA(szKeyContainerName, pszContainer, MAX_PATH); } else { DWORD dwLen = sizeof(szKeyContainerName); if (!GetUserNameA(szKeyContainerName, &dwLen)) return FALSE; } switch (dwFlags & (CRYPT_NEWKEYSET|CRYPT_VERIFYCONTEXT|CRYPT_DELETEKEYSET)) { case 0: *phProv = read_key_container(szKeyContainerName, dwFlags, pVTable); break; case CRYPT_DELETEKEYSET: return delete_container_key(szKeyContainerName, dwFlags); case CRYPT_NEWKEYSET: *phProv = read_key_container(szKeyContainerName, dwFlags, pVTable); if (*phProv != (HCRYPTPROV)INVALID_HANDLE_VALUE) { release_handle(&handle_table, *phProv, RSAENH_MAGIC_CONTAINER); TRACE("Can't create new keyset, already exists\n"); SetLastError(NTE_EXISTS); return FALSE; } *phProv = new_key_container(szKeyContainerName, dwFlags, pVTable); break; case CRYPT_VERIFYCONTEXT|CRYPT_NEWKEYSET: case CRYPT_VERIFYCONTEXT: if (pszContainer && *pszContainer) { TRACE("pszContainer should be empty\n"); SetLastError(NTE_BAD_FLAGS); return FALSE; } *phProv = new_key_container("", dwFlags, pVTable); break; default: *phProv = (HCRYPTPROV)INVALID_HANDLE_VALUE; SetLastError(NTE_BAD_FLAGS); return FALSE; } if (*phProv != (HCRYPTPROV)INVALID_HANDLE_VALUE) { SetLastError(ERROR_SUCCESS); return TRUE; } else { return FALSE; } } /****************************************************************************** * CPCreateHash (RSAENH.@) * * CPCreateHash creates and initializes a new hash object. * * PARAMS * hProv [I] Handle to the key container to which the new hash will belong. * Algid [I] Identifies the hash algorithm, which will be used for the hash. * hKey [I] Handle to a session key applied for keyed hashes. * dwFlags [I] Currently no flags defined. Must be zero. * phHash [O] Points to the location where a handle to the new hash will be stored. * * RETURNS * Success: TRUE * Failure: FALSE * * NOTES * hKey is a handle to a session key applied in keyed hashes like MAC and HMAC. * If a normal hash object is to be created (like e.g. MD2 or SHA1) hKey must be zero. */ BOOL WINAPI RSAENH_CPCreateHash(HCRYPTPROV hProv, ALG_ID Algid, HCRYPTKEY hKey, DWORD dwFlags, HCRYPTHASH *phHash) { CRYPTKEY *pCryptKey; CRYPTHASH *pCryptHash; const PROV_ENUMALGS_EX *peaAlgidInfo; TRACE("(hProv=%08lx, Algid=%08x, hKey=%08lx, dwFlags=%08x, phHash=%p)\n", hProv, Algid, hKey, dwFlags, phHash); peaAlgidInfo = get_algid_info(hProv, Algid); if (!peaAlgidInfo) return FALSE; if (dwFlags) { SetLastError(NTE_BAD_FLAGS); return FALSE; } if (Algid == CALG_MAC || Algid == CALG_HMAC || Algid == CALG_SCHANNEL_MASTER_HASH || Algid == CALG_TLS1PRF) { if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey)) { SetLastError(NTE_BAD_KEY); return FALSE; } if ((Algid == CALG_MAC) && (GET_ALG_TYPE(pCryptKey->aiAlgid) != ALG_TYPE_BLOCK)) { SetLastError(NTE_BAD_KEY); return FALSE; } if ((Algid == CALG_SCHANNEL_MASTER_HASH || Algid == CALG_TLS1PRF) && (pCryptKey->aiAlgid != CALG_TLS1_MASTER)) { SetLastError(NTE_BAD_KEY); return FALSE; } if (Algid == CALG_SCHANNEL_MASTER_HASH && ((!pCryptKey->siSChannelInfo.blobClientRandom.cbData) || (!pCryptKey->siSChannelInfo.blobServerRandom.cbData))) { SetLastError(ERROR_INVALID_PARAMETER); return FALSE; } if ((Algid == CALG_TLS1PRF) && (pCryptKey->dwState != RSAENH_KEYSTATE_MASTERKEY)) { SetLastError(NTE_BAD_KEY_STATE); return FALSE; } } *phHash = new_object(&handle_table, sizeof(CRYPTHASH), RSAENH_MAGIC_HASH, destroy_hash, (OBJECTHDR**)&pCryptHash); if (!pCryptHash) return FALSE; pCryptHash->aiAlgid = Algid; pCryptHash->hKey = hKey; pCryptHash->hProv = hProv; pCryptHash->dwState = RSAENH_HASHSTATE_HASHING; pCryptHash->pHMACInfo = NULL; pCryptHash->dwHashSize = peaAlgidInfo->dwDefaultLen >> 3; init_data_blob(&pCryptHash->tpPRFParams.blobLabel); init_data_blob(&pCryptHash->tpPRFParams.blobSeed); if (Algid == CALG_SCHANNEL_MASTER_HASH) { static const char keyex[] = "key expansion"; BYTE key_expansion[sizeof keyex]; CRYPT_DATA_BLOB blobRandom, blobKeyExpansion = { 13, key_expansion }; memcpy( key_expansion, keyex, sizeof keyex ); if (pCryptKey->dwState != RSAENH_KEYSTATE_MASTERKEY) { static const char msec[] = "master secret"; BYTE master_secret[sizeof msec]; CRYPT_DATA_BLOB blobLabel = { 13, master_secret }; BYTE abKeyValue[48]; memcpy( master_secret, msec, sizeof msec ); /* See RFC 2246, chapter 8.1 */ if (!concat_data_blobs(&blobRandom, &pCryptKey->siSChannelInfo.blobClientRandom, &pCryptKey->siSChannelInfo.blobServerRandom)) { return FALSE; } tls1_prf(hProv, hKey, &blobLabel, &blobRandom, abKeyValue, 48); pCryptKey->dwState = RSAENH_KEYSTATE_MASTERKEY; memcpy(pCryptKey->abKeyValue, abKeyValue, 48); free_data_blob(&blobRandom); } /* See RFC 2246, chapter 6.3 */ if (!concat_data_blobs(&blobRandom, &pCryptKey->siSChannelInfo.blobServerRandom, &pCryptKey->siSChannelInfo.blobClientRandom)) { return FALSE; } tls1_prf(hProv, hKey, &blobKeyExpansion, &blobRandom, pCryptHash->abHashValue, RSAENH_MAX_HASH_SIZE); free_data_blob(&blobRandom); } return init_hash(pCryptHash); } /****************************************************************************** * CPDestroyHash (RSAENH.@) * * Releases the handle to a hash object. The object is destroyed if its reference * count reaches zero. * * PARAMS * hProv [I] Handle to the key container to which the hash object belongs. * hHash [I] Handle to the hash object to be released. * * RETURNS * Success: TRUE * Failure: FALSE */ BOOL WINAPI RSAENH_CPDestroyHash(HCRYPTPROV hProv, HCRYPTHASH hHash) { TRACE("(hProv=%08lx, hHash=%08lx)\n", hProv, hHash); if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER)) { SetLastError(NTE_BAD_UID); return FALSE; } if (!release_handle(&handle_table, hHash, RSAENH_MAGIC_HASH)) { SetLastError(NTE_BAD_HASH); return FALSE; } return TRUE; } /****************************************************************************** * CPDestroyKey (RSAENH.@) * * Releases the handle to a key object. The object is destroyed if its reference * count reaches zero. * * PARAMS * hProv [I] Handle to the key container to which the key object belongs. * hKey [I] Handle to the key object to be released. * * RETURNS * Success: TRUE * Failure: FALSE */ BOOL WINAPI RSAENH_CPDestroyKey(HCRYPTPROV hProv, HCRYPTKEY hKey) { TRACE("(hProv=%08lx, hKey=%08lx)\n", hProv, hKey); if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER)) { SetLastError(NTE_BAD_UID); return FALSE; } if (!release_handle(&handle_table, hKey, RSAENH_MAGIC_KEY)) { SetLastError(NTE_BAD_KEY); return FALSE; } return TRUE; } /****************************************************************************** * CPDuplicateHash (RSAENH.@) * * Clones a hash object including its current state. * * PARAMS * hUID [I] Handle to the key container the hash belongs to. * hHash [I] Handle to the hash object to be cloned. * pdwReserved [I] Reserved. Must be NULL. * dwFlags [I] No flags are currently defined. Must be 0. * phHash [O] Handle to the cloned hash object. * * RETURNS * Success: TRUE. * Failure: FALSE. */ BOOL WINAPI RSAENH_CPDuplicateHash(HCRYPTPROV hUID, HCRYPTHASH hHash, DWORD *pdwReserved, DWORD dwFlags, HCRYPTHASH *phHash) { CRYPTHASH *pSrcHash, *pDestHash; TRACE("(hUID=%08lx, hHash=%08lx, pdwReserved=%p, dwFlags=%08x, phHash=%p)\n", hUID, hHash, pdwReserved, dwFlags, phHash); if (!is_valid_handle(&handle_table, hUID, RSAENH_MAGIC_CONTAINER)) { SetLastError(NTE_BAD_UID); return FALSE; } if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH, (OBJECTHDR**)&pSrcHash)) { SetLastError(NTE_BAD_HASH); return FALSE; } if (!phHash || pdwReserved || dwFlags) { SetLastError(ERROR_INVALID_PARAMETER); return FALSE; } *phHash = new_object(&handle_table, sizeof(CRYPTHASH), RSAENH_MAGIC_HASH, destroy_hash, (OBJECTHDR**)&pDestHash); if (*phHash != (HCRYPTHASH)INVALID_HANDLE_VALUE) { *pDestHash = *pSrcHash; duplicate_hash_impl(&pSrcHash->context, &pDestHash->context); copy_hmac_info(&pDestHash->pHMACInfo, pSrcHash->pHMACInfo); copy_data_blob(&pDestHash->tpPRFParams.blobLabel, &pSrcHash->tpPRFParams.blobLabel); copy_data_blob(&pDestHash->tpPRFParams.blobSeed, &pSrcHash->tpPRFParams.blobSeed); } return *phHash != (HCRYPTHASH)INVALID_HANDLE_VALUE; } /****************************************************************************** * CPDuplicateKey (RSAENH.@) * * Clones a key object including its current state. * * PARAMS * hUID [I] Handle to the key container the hash belongs to. * hKey [I] Handle to the key object to be cloned. * pdwReserved [I] Reserved. Must be NULL. * dwFlags [I] No flags are currently defined. Must be 0. * phHash [O] Handle to the cloned key object. * * RETURNS * Success: TRUE. * Failure: FALSE. */ BOOL WINAPI RSAENH_CPDuplicateKey(HCRYPTPROV hUID, HCRYPTKEY hKey, DWORD *pdwReserved, DWORD dwFlags, HCRYPTKEY *phKey) { CRYPTKEY *pSrcKey, *pDestKey; TRACE("(hUID=%08lx, hKey=%08lx, pdwReserved=%p, dwFlags=%08x, phKey=%p)\n", hUID, hKey, pdwReserved, dwFlags, phKey); if (!is_valid_handle(&handle_table, hUID, RSAENH_MAGIC_CONTAINER)) { SetLastError(NTE_BAD_UID); return FALSE; } if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pSrcKey)) { SetLastError(NTE_BAD_KEY); return FALSE; } if (!phKey || pdwReserved || dwFlags) { SetLastError(ERROR_INVALID_PARAMETER); return FALSE; } *phKey = new_object(&handle_table, sizeof(CRYPTKEY), RSAENH_MAGIC_KEY, destroy_key, (OBJECTHDR**)&pDestKey); if (*phKey != (HCRYPTKEY)INVALID_HANDLE_VALUE) { *pDestKey = *pSrcKey; copy_data_blob(&pDestKey->siSChannelInfo.blobServerRandom, &pSrcKey->siSChannelInfo.blobServerRandom); copy_data_blob(&pDestKey->siSChannelInfo.blobClientRandom, &pSrcKey->siSChannelInfo.blobClientRandom); duplicate_key_impl(pSrcKey->aiAlgid, &pSrcKey->context, &pDestKey->context); return TRUE; } else { return FALSE; } } /****************************************************************************** * CPEncrypt (RSAENH.@) * * Encrypt data. * * PARAMS * hProv [I] The key container hKey and hHash belong to. * hKey [I] The key used to encrypt the data. * hHash [I] An optional hash object for parallel hashing. See notes. * Final [I] Indicates if this is the last block of data to encrypt. * dwFlags [I] Must be zero or CRYPT_OAEP * pbData [I/O] Pointer to the data to encrypt. Encrypted data will also be stored there. * pdwDataLen [I/O] I: Length of data to encrypt, O: Length of encrypted data. * dwBufLen [I] Size of the buffer at pbData. * * RETURNS * Success: TRUE. * Failure: FALSE. * * NOTES * If a hash object handle is provided in hHash, it will be updated with the plaintext. * This is useful for message signatures. * * This function uses the standard WINAPI protocol for querying data of dynamic length. */ BOOL WINAPI RSAENH_CPEncrypt(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTHASH hHash, BOOL Final, DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen, DWORD dwBufLen) { CRYPTKEY *pCryptKey; BYTE *in, out[RSAENH_MAX_BLOCK_SIZE], o[RSAENH_MAX_BLOCK_SIZE]; DWORD dwEncryptedLen, i, j, k; TRACE("(hProv=%08lx, hKey=%08lx, hHash=%08lx, Final=%d, dwFlags=%08x, pbData=%p, " "pdwDataLen=%p, dwBufLen=%d)\n", hProv, hKey, hHash, Final, dwFlags, pbData, pdwDataLen, dwBufLen); if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER)) { SetLastError(NTE_BAD_UID); return FALSE; } if (dwFlags != 0 && dwFlags != CRYPT_OAEP) { SetLastError(NTE_BAD_FLAGS); return FALSE; } if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey)) { SetLastError(NTE_BAD_KEY); return FALSE; } if (pCryptKey->dwState == RSAENH_KEYSTATE_IDLE) pCryptKey->dwState = RSAENH_KEYSTATE_ENCRYPTING; if (pCryptKey->dwState != RSAENH_KEYSTATE_ENCRYPTING) { SetLastError(NTE_BAD_DATA); return FALSE; } if (is_valid_handle(&handle_table, hHash, RSAENH_MAGIC_HASH)) { if (!RSAENH_CPHashData(hProv, hHash, pbData, *pdwDataLen, 0)) return FALSE; } if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_BLOCK) { if (!Final && (*pdwDataLen % pCryptKey->dwBlockLen)) { SetLastError(NTE_BAD_DATA); return FALSE; } dwEncryptedLen = (*pdwDataLen/pCryptKey->dwBlockLen+(Final?1:0))*pCryptKey->dwBlockLen; if (pbData == NULL) { *pdwDataLen = dwEncryptedLen; return TRUE; } else if (dwEncryptedLen > dwBufLen) { *pdwDataLen = dwEncryptedLen; SetLastError(ERROR_MORE_DATA); return FALSE; } /* Pad final block with length bytes */ for (i=*pdwDataLen; idwBlockLen, in+=pCryptKey->dwBlockLen) { switch (pCryptKey->dwMode) { case CRYPT_MODE_ECB: encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out, RSAENH_ENCRYPT); break; case CRYPT_MODE_CBC: for (j=0; jdwBlockLen; j++) in[j] ^= pCryptKey->abChainVector[j]; encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out, RSAENH_ENCRYPT); memcpy(pCryptKey->abChainVector, out, pCryptKey->dwBlockLen); break; case CRYPT_MODE_CFB: for (j=0; jdwBlockLen; j++) { encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, pCryptKey->abChainVector, o, RSAENH_ENCRYPT); out[j] = in[j] ^ o[0]; for (k=0; kdwBlockLen-1; k++) pCryptKey->abChainVector[k] = pCryptKey->abChainVector[k+1]; pCryptKey->abChainVector[k] = out[j]; } break; default: SetLastError(NTE_BAD_ALGID); return FALSE; } memcpy(in, out, pCryptKey->dwBlockLen); } } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_STREAM) { if (pbData == NULL) { *pdwDataLen = dwBufLen; return TRUE; } encrypt_stream_impl(pCryptKey->aiAlgid, &pCryptKey->context, pbData, *pdwDataLen); } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_RSA) { if (pCryptKey->aiAlgid == CALG_RSA_SIGN) { SetLastError(NTE_BAD_KEY); return FALSE; } if (!pbData) { *pdwDataLen = pCryptKey->dwBlockLen; return TRUE; } if (dwBufLen < pCryptKey->dwBlockLen) { SetLastError(ERROR_MORE_DATA); return FALSE; } if (!pad_data(hProv, pbData, *pdwDataLen, pbData, pCryptKey->dwBlockLen, dwFlags)) return FALSE; encrypt_block_impl(pCryptKey->aiAlgid, PK_PUBLIC, &pCryptKey->context, pbData, pbData, RSAENH_ENCRYPT); *pdwDataLen = pCryptKey->dwBlockLen; Final = TRUE; } else { SetLastError(NTE_BAD_TYPE); return FALSE; } if (Final) setup_key(pCryptKey); return TRUE; } /****************************************************************************** * CPDecrypt (RSAENH.@) * * Decrypt data. * * PARAMS * hProv [I] The key container hKey and hHash belong to. * hKey [I] The key used to decrypt the data. * hHash [I] An optional hash object for parallel hashing. See notes. * Final [I] Indicates if this is the last block of data to decrypt. * dwFlags [I] Must be zero or CRYPT_OAEP * pbData [I/O] Pointer to the data to decrypt. Plaintext will also be stored there. * pdwDataLen [I/O] I: Length of ciphertext, O: Length of plaintext. * * RETURNS * Success: TRUE. * Failure: FALSE. * * NOTES * If a hash object handle is provided in hHash, it will be updated with the plaintext. * This is useful for message signatures. * * This function uses the standard WINAPI protocol for querying data of dynamic length. */ BOOL WINAPI RSAENH_CPDecrypt(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTHASH hHash, BOOL Final, DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen) { CRYPTKEY *pCryptKey; BYTE *in, out[RSAENH_MAX_BLOCK_SIZE], o[RSAENH_MAX_BLOCK_SIZE]; DWORD i, j, k; DWORD dwMax; TRACE("(hProv=%08lx, hKey=%08lx, hHash=%08lx, Final=%d, dwFlags=%08x, pbData=%p, " "pdwDataLen=%p)\n", hProv, hKey, hHash, Final, dwFlags, pbData, pdwDataLen); if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER)) { SetLastError(NTE_BAD_UID); return FALSE; } if (dwFlags != 0 && dwFlags != CRYPT_OAEP) { SetLastError(NTE_BAD_FLAGS); return FALSE; } if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey)) { SetLastError(NTE_BAD_KEY); return FALSE; } if (pCryptKey->dwState == RSAENH_KEYSTATE_IDLE) pCryptKey->dwState = RSAENH_KEYSTATE_ENCRYPTING; if (pCryptKey->dwState != RSAENH_KEYSTATE_ENCRYPTING) { SetLastError(NTE_BAD_DATA); return FALSE; } dwMax=*pdwDataLen; if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_BLOCK) { for (i=0, in=pbData; i<*pdwDataLen; i+=pCryptKey->dwBlockLen, in+=pCryptKey->dwBlockLen) { switch (pCryptKey->dwMode) { case CRYPT_MODE_ECB: encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out, RSAENH_DECRYPT); break; case CRYPT_MODE_CBC: encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out, RSAENH_DECRYPT); for (j=0; jdwBlockLen; j++) out[j] ^= pCryptKey->abChainVector[j]; memcpy(pCryptKey->abChainVector, in, pCryptKey->dwBlockLen); break; case CRYPT_MODE_CFB: for (j=0; jdwBlockLen; j++) { encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, pCryptKey->abChainVector, o, RSAENH_ENCRYPT); out[j] = in[j] ^ o[0]; for (k=0; kdwBlockLen-1; k++) pCryptKey->abChainVector[k] = pCryptKey->abChainVector[k+1]; pCryptKey->abChainVector[k] = in[j]; } break; default: SetLastError(NTE_BAD_ALGID); return FALSE; } memcpy(in, out, pCryptKey->dwBlockLen); } if (Final) { if (pbData[*pdwDataLen-1] && pbData[*pdwDataLen-1] <= pCryptKey->dwBlockLen && pbData[*pdwDataLen-1] <= *pdwDataLen) { BOOL padOkay = TRUE; /* check that every bad byte has the same value */ for (i = 1; padOkay && i < pbData[*pdwDataLen-1]; i++) if (pbData[*pdwDataLen - i - 1] != pbData[*pdwDataLen - 1]) padOkay = FALSE; if (padOkay) *pdwDataLen -= pbData[*pdwDataLen-1]; else { SetLastError(NTE_BAD_DATA); setup_key(pCryptKey); return FALSE; } } else { SetLastError(NTE_BAD_DATA); setup_key(pCryptKey); return FALSE; } } } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_STREAM) { encrypt_stream_impl(pCryptKey->aiAlgid, &pCryptKey->context, pbData, *pdwDataLen); } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_RSA) { if (pCryptKey->aiAlgid == CALG_RSA_SIGN) { SetLastError(NTE_BAD_KEY); return FALSE; } encrypt_block_impl(pCryptKey->aiAlgid, PK_PRIVATE, &pCryptKey->context, pbData, pbData, RSAENH_DECRYPT); if (!unpad_data(hProv, pbData, pCryptKey->dwBlockLen, pbData, pdwDataLen, dwFlags)) return FALSE; Final = TRUE; } else { SetLastError(NTE_BAD_TYPE); return FALSE; } if (Final) setup_key(pCryptKey); if (is_valid_handle(&handle_table, hHash, RSAENH_MAGIC_HASH)) { if (*pdwDataLen>dwMax || !RSAENH_CPHashData(hProv, hHash, pbData, *pdwDataLen, 0)) return FALSE; } return TRUE; } static BOOL crypt_export_simple(CRYPTKEY *pCryptKey, CRYPTKEY *pPubKey, DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen) { BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData; ALG_ID *pAlgid = (ALG_ID*)(pBlobHeader+1); DWORD dwDataLen; if (!(GET_ALG_CLASS(pCryptKey->aiAlgid)&(ALG_CLASS_DATA_ENCRYPT|ALG_CLASS_MSG_ENCRYPT))) { SetLastError(NTE_BAD_KEY); /* FIXME: error code? */ return FALSE; } dwDataLen = sizeof(BLOBHEADER) + sizeof(ALG_ID) + pPubKey->dwBlockLen; if (pbData) { if (*pdwDataLen < dwDataLen) { SetLastError(ERROR_MORE_DATA); *pdwDataLen = dwDataLen; return FALSE; } pBlobHeader->bType = SIMPLEBLOB; pBlobHeader->bVersion = CUR_BLOB_VERSION; pBlobHeader->reserved = 0; pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid; *pAlgid = pPubKey->aiAlgid; if (!pad_data(pCryptKey->hProv, pCryptKey->abKeyValue, pCryptKey->dwKeyLen, (BYTE*)(pAlgid+1), pPubKey->dwBlockLen, dwFlags)) { return FALSE; } encrypt_block_impl(pPubKey->aiAlgid, PK_PUBLIC, &pPubKey->context, (BYTE*)(pAlgid+1), (BYTE*)(pAlgid+1), RSAENH_ENCRYPT); } *pdwDataLen = dwDataLen; return TRUE; } static BOOL crypt_export_public_key(CRYPTKEY *pCryptKey, BYTE *pbData, DWORD *pdwDataLen) { BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData; RSAPUBKEY *pRSAPubKey = (RSAPUBKEY*)(pBlobHeader+1); DWORD dwDataLen; if ((pCryptKey->aiAlgid != CALG_RSA_KEYX) && (pCryptKey->aiAlgid != CALG_RSA_SIGN)) { SetLastError(NTE_BAD_KEY); return FALSE; } dwDataLen = sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + pCryptKey->dwKeyLen; if (pbData) { if (*pdwDataLen < dwDataLen) { SetLastError(ERROR_MORE_DATA); *pdwDataLen = dwDataLen; return FALSE; } pBlobHeader->bType = PUBLICKEYBLOB; pBlobHeader->bVersion = CUR_BLOB_VERSION; pBlobHeader->reserved = 0; pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid; pRSAPubKey->magic = RSAENH_MAGIC_RSA1; pRSAPubKey->bitlen = pCryptKey->dwKeyLen << 3; export_public_key_impl((BYTE*)(pRSAPubKey+1), &pCryptKey->context, pCryptKey->dwKeyLen, &pRSAPubKey->pubexp); } *pdwDataLen = dwDataLen; return TRUE; } static BOOL crypt_export_private_key(CRYPTKEY *pCryptKey, BOOL force, BYTE *pbData, DWORD *pdwDataLen) { BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData; RSAPUBKEY *pRSAPubKey = (RSAPUBKEY*)(pBlobHeader+1); DWORD dwDataLen; if ((pCryptKey->aiAlgid != CALG_RSA_KEYX) && (pCryptKey->aiAlgid != CALG_RSA_SIGN)) { SetLastError(NTE_BAD_KEY); return FALSE; } if (!force && !(pCryptKey->dwPermissions & CRYPT_EXPORT)) { SetLastError(NTE_BAD_KEY_STATE); return FALSE; } dwDataLen = sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + 2 * pCryptKey->dwKeyLen + 5 * ((pCryptKey->dwKeyLen + 1) >> 1); if (pbData) { if (*pdwDataLen < dwDataLen) { SetLastError(ERROR_MORE_DATA); *pdwDataLen = dwDataLen; return FALSE; } pBlobHeader->bType = PRIVATEKEYBLOB; pBlobHeader->bVersion = CUR_BLOB_VERSION; pBlobHeader->reserved = 0; pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid; pRSAPubKey->magic = RSAENH_MAGIC_RSA2; pRSAPubKey->bitlen = pCryptKey->dwKeyLen << 3; export_private_key_impl((BYTE*)(pRSAPubKey+1), &pCryptKey->context, pCryptKey->dwKeyLen, &pRSAPubKey->pubexp); } *pdwDataLen = dwDataLen; return TRUE; } static BOOL crypt_export_plaintext_key(CRYPTKEY *pCryptKey, BYTE *pbData, DWORD *pdwDataLen) { BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData; DWORD *pKeyLen = (DWORD*)(pBlobHeader+1); BYTE *pbKey = (BYTE*)(pKeyLen+1); DWORD dwDataLen; dwDataLen = sizeof(BLOBHEADER) + sizeof(DWORD) + pCryptKey->dwKeyLen; if (pbData) { if (*pdwDataLen < dwDataLen) { SetLastError(ERROR_MORE_DATA); *pdwDataLen = dwDataLen; return FALSE; } pBlobHeader->bType = PLAINTEXTKEYBLOB; pBlobHeader->bVersion = CUR_BLOB_VERSION; pBlobHeader->reserved = 0; pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid; *pKeyLen = pCryptKey->dwKeyLen; memcpy(pbKey, pCryptKey->abKeyValue, pCryptKey->dwKeyLen); } *pdwDataLen = dwDataLen; return TRUE; } /****************************************************************************** * crypt_export_key [Internal] * * Export a key into a binary large object (BLOB). Called by CPExportKey and * by store_key_pair. * * PARAMS * pCryptKey [I] Key to be exported. * hPubKey [I] Key used to encrypt sensitive BLOB data. * dwBlobType [I] SIMPLEBLOB, PUBLICKEYBLOB or PRIVATEKEYBLOB. * dwFlags [I] Currently none defined. * force [I] If TRUE, the key is written no matter what the key's * permissions are. Otherwise the key's permissions are * checked before exporting. * pbData [O] Pointer to a buffer where the BLOB will be written to. * pdwDataLen [I/O] I: Size of buffer at pbData, O: Size of BLOB * * RETURNS * Success: TRUE. * Failure: FALSE. */ static BOOL crypt_export_key(CRYPTKEY *pCryptKey, HCRYPTKEY hPubKey, DWORD dwBlobType, DWORD dwFlags, BOOL force, BYTE *pbData, DWORD *pdwDataLen) { CRYPTKEY *pPubKey; if (dwFlags & CRYPT_SSL2_FALLBACK) { if (pCryptKey->aiAlgid != CALG_SSL2_MASTER) { SetLastError(NTE_BAD_KEY); return FALSE; } } switch ((BYTE)dwBlobType) { case SIMPLEBLOB: if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pPubKey)){ SetLastError(NTE_BAD_PUBLIC_KEY); /* FIXME: error_code? */ return FALSE; } return crypt_export_simple(pCryptKey, pPubKey, dwFlags, pbData, pdwDataLen); case PUBLICKEYBLOB: if (is_valid_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY)) { SetLastError(NTE_BAD_KEY); /* FIXME: error code? */ return FALSE; } return crypt_export_public_key(pCryptKey, pbData, pdwDataLen); case PRIVATEKEYBLOB: return crypt_export_private_key(pCryptKey, force, pbData, pdwDataLen); case PLAINTEXTKEYBLOB: return crypt_export_plaintext_key(pCryptKey, pbData, pdwDataLen); default: SetLastError(NTE_BAD_TYPE); /* FIXME: error code? */ return FALSE; } } /****************************************************************************** * CPExportKey (RSAENH.@) * * Export a key into a binary large object (BLOB). * * PARAMS * hProv [I] Key container from which a key is to be exported. * hKey [I] Key to be exported. * hPubKey [I] Key used to encrypt sensitive BLOB data. * dwBlobType [I] SIMPLEBLOB, PUBLICKEYBLOB or PRIVATEKEYBLOB. * dwFlags [I] Currently none defined. * pbData [O] Pointer to a buffer where the BLOB will be written to. * pdwDataLen [I/O] I: Size of buffer at pbData, O: Size of BLOB * * RETURNS * Success: TRUE. * Failure: FALSE. */ BOOL WINAPI RSAENH_CPExportKey(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTKEY hPubKey, DWORD dwBlobType, DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen) { CRYPTKEY *pCryptKey; TRACE("(hProv=%08lx, hKey=%08lx, hPubKey=%08lx, dwBlobType=%08x, dwFlags=%08x, pbData=%p," "pdwDataLen=%p)\n", hProv, hKey, hPubKey, dwBlobType, dwFlags, pbData, pdwDataLen); if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER)) { SetLastError(NTE_BAD_UID); return FALSE; } if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey)) { SetLastError(NTE_BAD_KEY); return FALSE; } return crypt_export_key(pCryptKey, hPubKey, dwBlobType, dwFlags, FALSE, pbData, pdwDataLen); } /****************************************************************************** * release_and_install_key [Internal] * * Release an existing key, if present, and replaces it with a new one. * * PARAMS * hProv [I] Key container into which the key is to be imported. * src [I] Key which will replace *dest * dest [I] Points to key to be released and replaced with src * fStoreKey [I] If TRUE, the newly installed key is stored to the registry. */ static void release_and_install_key(HCRYPTPROV hProv, HCRYPTKEY src, HCRYPTKEY *dest, DWORD fStoreKey) { RSAENH_CPDestroyKey(hProv, *dest); copy_handle(&handle_table, src, RSAENH_MAGIC_KEY, dest); if (fStoreKey) { KEYCONTAINER *pKeyContainer; if ((pKeyContainer = get_key_container(hProv))) { store_key_container_keys(pKeyContainer); store_key_container_permissions(pKeyContainer); } } } /****************************************************************************** * import_private_key [Internal] * * Import a BLOB'ed private key into a key container. * * PARAMS * hProv [I] Key container into which the private key is to be imported. * pbData [I] Pointer to a buffer which holds the private key BLOB. * dwDataLen [I] Length of data in buffer at pbData. * dwFlags [I] One of: * CRYPT_EXPORTABLE: the imported key is marked exportable * fStoreKey [I] If TRUE, the imported key is stored to the registry. * phKey [O] Handle to the imported key. * * * NOTES * Assumes the caller has already checked the BLOBHEADER at pbData to ensure * it's a PRIVATEKEYBLOB. * * RETURNS * Success: TRUE. * Failure: FALSE. */ static BOOL import_private_key(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen, DWORD dwFlags, BOOL fStoreKey, HCRYPTKEY *phKey) { KEYCONTAINER *pKeyContainer; CRYPTKEY *pCryptKey; const BLOBHEADER *pBlobHeader = (const BLOBHEADER*)pbData; const RSAPUBKEY *pRSAPubKey = (const RSAPUBKEY*)(pBlobHeader+1); BOOL ret; if (dwFlags & CRYPT_IPSEC_HMAC_KEY) { FIXME("unimplemented for CRYPT_IPSEC_HMAC_KEY\n"); SetLastError(NTE_BAD_FLAGS); return FALSE; } if (!(pKeyContainer = get_key_container(hProv))) return FALSE; if ((dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY))) { ERR("datalen %d not long enough for a BLOBHEADER + RSAPUBKEY\n", dwDataLen); SetLastError(NTE_BAD_DATA); return FALSE; } if (pRSAPubKey->magic != RSAENH_MAGIC_RSA2) { ERR("unexpected magic %08x\n", pRSAPubKey->magic); SetLastError(NTE_BAD_DATA); return FALSE; } if ((dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + (pRSAPubKey->bitlen >> 3) + (5 * ((pRSAPubKey->bitlen+8)>>4)))) { DWORD expectedLen = sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + (pRSAPubKey->bitlen >> 3) + (5 * ((pRSAPubKey->bitlen+8)>>4)); ERR("blob too short for pub key: expect %d, got %d\n", expectedLen, dwDataLen); SetLastError(NTE_BAD_DATA); return FALSE; } *phKey = new_key(hProv, pBlobHeader->aiKeyAlg, MAKELONG(0,pRSAPubKey->bitlen), &pCryptKey); if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE; setup_key(pCryptKey); ret = import_private_key_impl((const BYTE*)(pRSAPubKey+1), &pCryptKey->context, pRSAPubKey->bitlen/8, dwDataLen, pRSAPubKey->pubexp); if (ret) { if (dwFlags & CRYPT_EXPORTABLE) pCryptKey->dwPermissions |= CRYPT_EXPORT; switch (pBlobHeader->aiKeyAlg) { case AT_SIGNATURE: case CALG_RSA_SIGN: TRACE("installing signing key\n"); release_and_install_key(hProv, *phKey, &pKeyContainer->hSignatureKeyPair, fStoreKey); break; case AT_KEYEXCHANGE: case CALG_RSA_KEYX: TRACE("installing key exchange key\n"); release_and_install_key(hProv, *phKey, &pKeyContainer->hKeyExchangeKeyPair, fStoreKey); break; } } return ret; } /****************************************************************************** * import_public_key [Internal] * * Import a BLOB'ed public key. * * PARAMS * hProv [I] A CSP. * pbData [I] Pointer to a buffer which holds the public key BLOB. * dwDataLen [I] Length of data in buffer at pbData. * dwFlags [I] One of: * CRYPT_EXPORTABLE: the imported key is marked exportable * phKey [O] Handle to the imported key. * * * NOTES * Assumes the caller has already checked the BLOBHEADER at pbData to ensure * it's a PUBLICKEYBLOB. * * RETURNS * Success: TRUE. * Failure: FALSE. */ static BOOL import_public_key(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen, DWORD dwFlags, HCRYPTKEY *phKey) { CRYPTKEY *pCryptKey; const BLOBHEADER *pBlobHeader = (const BLOBHEADER*)pbData; const RSAPUBKEY *pRSAPubKey = (const RSAPUBKEY*)(pBlobHeader+1); ALG_ID algID; BOOL ret; if (dwFlags & CRYPT_IPSEC_HMAC_KEY) { FIXME("unimplemented for CRYPT_IPSEC_HMAC_KEY\n"); SetLastError(NTE_BAD_FLAGS); return FALSE; } if ((dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY)) || (pRSAPubKey->magic != RSAENH_MAGIC_RSA1) || (dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + (pRSAPubKey->bitlen >> 3))) { SetLastError(NTE_BAD_DATA); return FALSE; } /* Since this is a public key blob, only the public key is * available, so only signature verification is possible. */ algID = pBlobHeader->aiKeyAlg; *phKey = new_key(hProv, algID, MAKELONG(0,pRSAPubKey->bitlen), &pCryptKey); if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE; setup_key(pCryptKey); ret = import_public_key_impl((const BYTE*)(pRSAPubKey+1), &pCryptKey->context, pRSAPubKey->bitlen >> 3, pRSAPubKey->pubexp); if (ret) { if (dwFlags & CRYPT_EXPORTABLE) pCryptKey->dwPermissions |= CRYPT_EXPORT; } return ret; } /****************************************************************************** * import_symmetric_key [Internal] * * Import a BLOB'ed symmetric key into a key container. * * PARAMS * hProv [I] Key container into which the symmetric key is to be imported. * pbData [I] Pointer to a buffer which holds the symmetric key BLOB. * dwDataLen [I] Length of data in buffer at pbData. * hPubKey [I] Key used to decrypt sensitive BLOB data. * dwFlags [I] One of: * CRYPT_EXPORTABLE: the imported key is marked exportable * phKey [O] Handle to the imported key. * * * NOTES * Assumes the caller has already checked the BLOBHEADER at pbData to ensure * it's a SIMPLEBLOB. * * RETURNS * Success: TRUE. * Failure: FALSE. */ static BOOL import_symmetric_key(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen, HCRYPTKEY hPubKey, DWORD dwFlags, HCRYPTKEY *phKey) { CRYPTKEY *pCryptKey, *pPubKey; const BLOBHEADER *pBlobHeader = (const BLOBHEADER*)pbData; const ALG_ID *pAlgid = (const ALG_ID*)(pBlobHeader+1); const BYTE *pbKeyStream = (const BYTE*)(pAlgid + 1); BYTE *pbDecrypted; DWORD dwKeyLen; if (dwFlags & CRYPT_IPSEC_HMAC_KEY) { FIXME("unimplemented for CRYPT_IPSEC_HMAC_KEY\n"); SetLastError(NTE_BAD_FLAGS); return FALSE; } if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pPubKey) || pPubKey->aiAlgid != CALG_RSA_KEYX) { SetLastError(NTE_BAD_PUBLIC_KEY); /* FIXME: error code? */ return FALSE; } if (dwDataLen < sizeof(BLOBHEADER)+sizeof(ALG_ID)+pPubKey->dwBlockLen) { SetLastError(NTE_BAD_DATA); /* FIXME: error code */ return FALSE; } pbDecrypted = HeapAlloc(GetProcessHeap(), 0, pPubKey->dwBlockLen); if (!pbDecrypted) return FALSE; encrypt_block_impl(pPubKey->aiAlgid, PK_PRIVATE, &pPubKey->context, pbKeyStream, pbDecrypted, RSAENH_DECRYPT); dwKeyLen = RSAENH_MAX_KEY_SIZE; if (!unpad_data(hProv, pbDecrypted, pPubKey->dwBlockLen, pbDecrypted, &dwKeyLen, dwFlags)) { HeapFree(GetProcessHeap(), 0, pbDecrypted); return FALSE; } *phKey = new_key(hProv, pBlobHeader->aiKeyAlg, dwKeyLen<<19, &pCryptKey); if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) { HeapFree(GetProcessHeap(), 0, pbDecrypted); return FALSE; } memcpy(pCryptKey->abKeyValue, pbDecrypted, dwKeyLen); HeapFree(GetProcessHeap(), 0, pbDecrypted); setup_key(pCryptKey); if (dwFlags & CRYPT_EXPORTABLE) pCryptKey->dwPermissions |= CRYPT_EXPORT; return TRUE; } /****************************************************************************** * import_plaintext_key [Internal] * * Import a plaintext key into a key container. * * PARAMS * hProv [I] Key container into which the symmetric key is to be imported. * pbData [I] Pointer to a buffer which holds the plaintext key BLOB. * dwDataLen [I] Length of data in buffer at pbData. * dwFlags [I] One of: * CRYPT_EXPORTABLE: the imported key is marked exportable * phKey [O] Handle to the imported key. * * * NOTES * Assumes the caller has already checked the BLOBHEADER at pbData to ensure * it's a PLAINTEXTKEYBLOB. * * RETURNS * Success: TRUE. * Failure: FALSE. */ static BOOL import_plaintext_key(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen, DWORD dwFlags, HCRYPTKEY *phKey) { CRYPTKEY *pCryptKey; const BLOBHEADER *pBlobHeader = (const BLOBHEADER*)pbData; const DWORD *pKeyLen = (const DWORD *)(pBlobHeader + 1); const BYTE *pbKeyStream = (const BYTE*)(pKeyLen + 1); if (dwDataLen < sizeof(BLOBHEADER)+sizeof(DWORD)+*pKeyLen) { SetLastError(NTE_BAD_DATA); /* FIXME: error code */ return FALSE; } if (dwFlags & CRYPT_IPSEC_HMAC_KEY) { *phKey = new_key(hProv, CALG_HMAC, 0, &pCryptKey); if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE; if (*pKeyLen <= RSAENH_MIN(sizeof(pCryptKey->abKeyValue), RSAENH_HMAC_BLOCK_LEN)) { memcpy(pCryptKey->abKeyValue, pbKeyStream, *pKeyLen); pCryptKey->dwKeyLen = *pKeyLen; } else { CRYPT_DATA_BLOB blobHmacKey = { *pKeyLen, (BYTE *)pbKeyStream }; /* In order to initialize an HMAC key, the key material is hashed, * and the output of the hash function is used as the key material. * Unfortunately, the way the Crypto API is designed, we don't know * the hash algorithm yet, so we have to copy the entire key * material. */ if (!copy_data_blob(&pCryptKey->blobHmacKey, &blobHmacKey)) { release_handle(&handle_table, *phKey, RSAENH_MAGIC_KEY); *phKey = (HCRYPTKEY)INVALID_HANDLE_VALUE; return FALSE; } } setup_key(pCryptKey); if (dwFlags & CRYPT_EXPORTABLE) pCryptKey->dwPermissions |= CRYPT_EXPORT; } else { *phKey = new_key(hProv, pBlobHeader->aiKeyAlg, *pKeyLen<<19, &pCryptKey); if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE; memcpy(pCryptKey->abKeyValue, pbKeyStream, *pKeyLen); setup_key(pCryptKey); if (dwFlags & CRYPT_EXPORTABLE) pCryptKey->dwPermissions |= CRYPT_EXPORT; } return TRUE; } /****************************************************************************** * import_key [Internal] * * Import a BLOB'ed key into a key container, optionally storing the key's * value to the registry. * * PARAMS * hProv [I] Key container into which the key is to be imported. * pbData [I] Pointer to a buffer which holds the BLOB. * dwDataLen [I] Length of data in buffer at pbData. * hPubKey [I] Key used to decrypt sensitive BLOB data. * dwFlags [I] One of: * CRYPT_EXPORTABLE: the imported key is marked exportable * fStoreKey [I] If TRUE, the imported key is stored to the registry. * phKey [O] Handle to the imported key. * * RETURNS * Success: TRUE. * Failure: FALSE. */ static BOOL import_key(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen, HCRYPTKEY hPubKey, DWORD dwFlags, BOOL fStoreKey, HCRYPTKEY *phKey) { KEYCONTAINER *pKeyContainer; const BLOBHEADER *pBlobHeader = (const BLOBHEADER*)pbData; if (!(pKeyContainer = get_key_container(hProv))) return FALSE; if (dwDataLen < sizeof(BLOBHEADER) || pBlobHeader->bVersion != CUR_BLOB_VERSION || pBlobHeader->reserved != 0) { TRACE("bVersion = %d, reserved = %d\n", pBlobHeader->bVersion, pBlobHeader->reserved); SetLastError(NTE_BAD_DATA); return FALSE; } /* If this is a verify-only context, the key is not persisted regardless of * fStoreKey's original value. */ fStoreKey = fStoreKey && !(dwFlags & CRYPT_VERIFYCONTEXT); TRACE("blob type: %x\n", pBlobHeader->bType); switch (pBlobHeader->bType) { case PRIVATEKEYBLOB: return import_private_key(hProv, pbData, dwDataLen, dwFlags, fStoreKey, phKey); case PUBLICKEYBLOB: return import_public_key(hProv, pbData, dwDataLen, dwFlags, phKey); case SIMPLEBLOB: return import_symmetric_key(hProv, pbData, dwDataLen, hPubKey, dwFlags, phKey); case PLAINTEXTKEYBLOB: return import_plaintext_key(hProv, pbData, dwDataLen, dwFlags, phKey); default: SetLastError(NTE_BAD_TYPE); /* FIXME: error code? */ return FALSE; } } /****************************************************************************** * CPImportKey (RSAENH.@) * * Import a BLOB'ed key into a key container. * * PARAMS * hProv [I] Key container into which the key is to be imported. * pbData [I] Pointer to a buffer which holds the BLOB. * dwDataLen [I] Length of data in buffer at pbData. * hPubKey [I] Key used to decrypt sensitive BLOB data. * dwFlags [I] One of: * CRYPT_EXPORTABLE: the imported key is marked exportable * phKey [O] Handle to the imported key. * * RETURNS * Success: TRUE. * Failure: FALSE. */ BOOL WINAPI RSAENH_CPImportKey(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen, HCRYPTKEY hPubKey, DWORD dwFlags, HCRYPTKEY *phKey) { TRACE("(hProv=%08lx, pbData=%p, dwDataLen=%d, hPubKey=%08lx, dwFlags=%08x, phKey=%p)\n", hProv, pbData, dwDataLen, hPubKey, dwFlags, phKey); return import_key(hProv, pbData, dwDataLen, hPubKey, dwFlags, TRUE, phKey); } /****************************************************************************** * CPGenKey (RSAENH.@) * * Generate a key in the key container * * PARAMS * hProv [I] Key container for which a key is to be generated. * Algid [I] Crypto algorithm identifier for the key to be generated. * dwFlags [I] Upper 16 bits: Binary length of key. Lower 16 bits: Flags. See Notes * phKey [O] Handle to the generated key. * * RETURNS * Success: TRUE. * Failure: FALSE. * * FIXME * Flags currently not considered. * * NOTES * Private key-exchange- and signature-keys can be generated with Algid AT_KEYEXCHANGE * and AT_SIGNATURE values. */ BOOL WINAPI RSAENH_CPGenKey(HCRYPTPROV hProv, ALG_ID Algid, DWORD dwFlags, HCRYPTKEY *phKey) { KEYCONTAINER *pKeyContainer; CRYPTKEY *pCryptKey; TRACE("(hProv=%08lx, aiAlgid=%d, dwFlags=%08x, phKey=%p)\n", hProv, Algid, dwFlags, phKey); if (!(pKeyContainer = get_key_container(hProv))) { /* MSDN: hProv not containing valid context handle */ return FALSE; } switch (Algid) { case AT_SIGNATURE: case CALG_RSA_SIGN: *phKey = new_key(hProv, CALG_RSA_SIGN, dwFlags, &pCryptKey); if (pCryptKey) { new_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen); setup_key(pCryptKey); release_and_install_key(hProv, *phKey, &pKeyContainer->hSignatureKeyPair, FALSE); } break; case AT_KEYEXCHANGE: case CALG_RSA_KEYX: *phKey = new_key(hProv, CALG_RSA_KEYX, dwFlags, &pCryptKey); if (pCryptKey) { new_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen); setup_key(pCryptKey); release_and_install_key(hProv, *phKey, &pKeyContainer->hKeyExchangeKeyPair, FALSE); } break; case CALG_RC2: case CALG_RC4: case CALG_DES: case CALG_3DES_112: case CALG_3DES: case CALG_AES_128: case CALG_AES_192: case CALG_AES_256: case CALG_PCT1_MASTER: case CALG_SSL2_MASTER: case CALG_SSL3_MASTER: case CALG_TLS1_MASTER: *phKey = new_key(hProv, Algid, dwFlags, &pCryptKey); if (pCryptKey) { gen_rand_impl(pCryptKey->abKeyValue, RSAENH_MAX_KEY_SIZE); switch (Algid) { case CALG_SSL3_MASTER: pCryptKey->abKeyValue[0] = RSAENH_SSL3_VERSION_MAJOR; pCryptKey->abKeyValue[1] = RSAENH_SSL3_VERSION_MINOR; break; case CALG_TLS1_MASTER: pCryptKey->abKeyValue[0] = RSAENH_TLS1_VERSION_MAJOR; pCryptKey->abKeyValue[1] = RSAENH_TLS1_VERSION_MINOR; break; } setup_key(pCryptKey); } break; default: /* MSDN: Algorithm not supported specified by Algid */ SetLastError(NTE_BAD_ALGID); return FALSE; } return *phKey != (HCRYPTKEY)INVALID_HANDLE_VALUE; } /****************************************************************************** * CPGenRandom (RSAENH.@) * * Generate a random byte stream. * * PARAMS * hProv [I] Key container that is used to generate random bytes. * dwLen [I] Specifies the number of requested random data bytes. * pbBuffer [O] Random bytes will be stored here. * * RETURNS * Success: TRUE * Failure: FALSE */ BOOL WINAPI RSAENH_CPGenRandom(HCRYPTPROV hProv, DWORD dwLen, BYTE *pbBuffer) { TRACE("(hProv=%08lx, dwLen=%d, pbBuffer=%p)\n", hProv, dwLen, pbBuffer); if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER)) { /* MSDN: hProv not containing valid context handle */ SetLastError(NTE_BAD_UID); return FALSE; } return gen_rand_impl(pbBuffer, dwLen); } /****************************************************************************** * CPGetHashParam (RSAENH.@) * * Query parameters of an hash object. * * PARAMS * hProv [I] The kea container, which the hash belongs to. * hHash [I] The hash object that is to be queried. * dwParam [I] Specifies the parameter that is to be queried. * pbData [I] Pointer to the buffer where the parameter value will be stored. * pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value. * dwFlags [I] None currently defined. * * RETURNS * Success: TRUE * Failure: FALSE * * NOTES * Valid dwParams are: HP_ALGID, HP_HASHSIZE, HP_HASHVALUE. The hash will be * finalized if HP_HASHVALUE is queried. */ BOOL WINAPI RSAENH_CPGetHashParam(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwParam, BYTE *pbData, DWORD *pdwDataLen, DWORD dwFlags) { CRYPTHASH *pCryptHash; TRACE("(hProv=%08lx, hHash=%08lx, dwParam=%08x, pbData=%p, pdwDataLen=%p, dwFlags=%08x)\n", hProv, hHash, dwParam, pbData, pdwDataLen, dwFlags); if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER)) { SetLastError(NTE_BAD_UID); return FALSE; } if (dwFlags) { SetLastError(NTE_BAD_FLAGS); return FALSE; } if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH, (OBJECTHDR**)&pCryptHash)) { SetLastError(NTE_BAD_HASH); return FALSE; } if (!pdwDataLen) { SetLastError(ERROR_INVALID_PARAMETER); return FALSE; } switch (dwParam) { case HP_ALGID: return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptHash->aiAlgid, sizeof(ALG_ID)); case HP_HASHSIZE: return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptHash->dwHashSize, sizeof(DWORD)); case HP_HASHVAL: if (pCryptHash->aiAlgid == CALG_TLS1PRF) { return tls1_prf(hProv, pCryptHash->hKey, &pCryptHash->tpPRFParams.blobLabel, &pCryptHash->tpPRFParams.blobSeed, pbData, *pdwDataLen); } if (pCryptHash->dwState != RSAENH_HASHSTATE_FINISHED) { finalize_hash(pCryptHash); pCryptHash->dwState = RSAENH_HASHSTATE_FINISHED; } if (!pbData) { *pdwDataLen = pCryptHash->dwHashSize; return TRUE; } return copy_param(pbData, pdwDataLen, pCryptHash->abHashValue, pCryptHash->dwHashSize); default: SetLastError(NTE_BAD_TYPE); return FALSE; } } /****************************************************************************** * CPSetKeyParam (RSAENH.@) * * Set a parameter of a key object * * PARAMS * hProv [I] The key container to which the key belongs. * hKey [I] The key for which a parameter is to be set. * dwParam [I] Parameter type. See Notes. * pbData [I] Pointer to the parameter value. * dwFlags [I] Currently none defined. * * RETURNS * Success: TRUE. * Failure: FALSE. * * NOTES: * Defined dwParam types are: * - KP_MODE: Values MODE_CBC, MODE_ECB, MODE_CFB. * - KP_MODE_BITS: Shift width for cipher feedback mode. (Currently ignored by MS CSP's) * - KP_PERMISSIONS: Or'ed combination of CRYPT_ENCRYPT, CRYPT_DECRYPT, * CRYPT_EXPORT, CRYPT_READ, CRYPT_WRITE, CRYPT_MAC * - KP_IV: Initialization vector */ BOOL WINAPI RSAENH_CPSetKeyParam(HCRYPTPROV hProv, HCRYPTKEY hKey, DWORD dwParam, BYTE *pbData, DWORD dwFlags) { CRYPTKEY *pCryptKey; TRACE("(hProv=%08lx, hKey=%08lx, dwParam=%08x, pbData=%p, dwFlags=%08x)\n", hProv, hKey, dwParam, pbData, dwFlags); if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER)) { SetLastError(NTE_BAD_UID); return FALSE; } if (dwFlags) { SetLastError(NTE_BAD_FLAGS); return FALSE; } if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey)) { SetLastError(NTE_BAD_KEY); return FALSE; } switch (dwParam) { case KP_PADDING: /* The MS providers only support PKCS5_PADDING */ if (*(DWORD *)pbData != PKCS5_PADDING) { SetLastError(NTE_BAD_DATA); return FALSE; } return TRUE; case KP_MODE: pCryptKey->dwMode = *(DWORD*)pbData; return TRUE; case KP_MODE_BITS: pCryptKey->dwModeBits = *(DWORD*)pbData; return TRUE; case KP_PERMISSIONS: { DWORD perms = *(DWORD *)pbData; if ((perms & CRYPT_EXPORT) && !(pCryptKey->dwPermissions & CRYPT_EXPORT)) { SetLastError(NTE_BAD_DATA); return FALSE; } else if (!(perms & CRYPT_EXPORT) && (pCryptKey->dwPermissions & CRYPT_EXPORT)) { /* Clearing the export permission appears to be ignored, * see tests. */ perms |= CRYPT_EXPORT; } pCryptKey->dwPermissions = perms; return TRUE; } case KP_IV: memcpy(pCryptKey->abInitVector, pbData, pCryptKey->dwBlockLen); setup_key(pCryptKey); return TRUE; case KP_SALT: switch (pCryptKey->aiAlgid) { case CALG_RC2: case CALG_RC4: { KEYCONTAINER *pKeyContainer = get_key_container(pCryptKey->hProv); if (!pbData) { SetLastError(ERROR_INVALID_PARAMETER); return FALSE; } /* MSDN: the base provider always sets eleven bytes of * salt value. */ memcpy(pCryptKey->abKeyValue + pCryptKey->dwKeyLen, pbData, 11); pCryptKey->dwSaltLen = 11; setup_key(pCryptKey); /* After setting the salt value if the provider is not base or * strong the salt length will be reset. */ if (pKeyContainer->dwPersonality != RSAENH_PERSONALITY_BASE && pKeyContainer->dwPersonality != RSAENH_PERSONALITY_STRONG) pCryptKey->dwSaltLen = 0; break; } default: SetLastError(NTE_BAD_KEY); return FALSE; } return TRUE; case KP_SALT_EX: { CRYPT_INTEGER_BLOB *blob = (CRYPT_INTEGER_BLOB *)pbData; /* salt length can't be greater than 184 bits = 24 bytes */ if (blob->cbData > 24) { SetLastError(NTE_BAD_DATA); return FALSE; } memcpy(pCryptKey->abKeyValue + pCryptKey->dwKeyLen, blob->pbData, blob->cbData); pCryptKey->dwSaltLen = blob->cbData; setup_key(pCryptKey); return TRUE; } case KP_EFFECTIVE_KEYLEN: switch (pCryptKey->aiAlgid) { case CALG_RC2: { DWORD keylen, deflen; BOOL ret = TRUE; KEYCONTAINER *pKeyContainer = get_key_container(pCryptKey->hProv); if (!pbData) { SetLastError(ERROR_INVALID_PARAMETER); return FALSE; } keylen = *(DWORD *)pbData; if (!keylen || keylen > 1024) { SetLastError(NTE_BAD_DATA); return FALSE; } /* * The Base provider will force the key length to default * and set an error state if a key length different from * the default is tried. */ deflen = aProvEnumAlgsEx[pKeyContainer->dwPersonality]->dwDefaultLen; if (pKeyContainer->dwPersonality == RSAENH_PERSONALITY_BASE && keylen != deflen) { keylen = deflen; SetLastError(NTE_BAD_DATA); ret = FALSE; } pCryptKey->dwEffectiveKeyLen = keylen; setup_key(pCryptKey); return ret; } default: SetLastError(NTE_BAD_TYPE); return FALSE; } return TRUE; case KP_SCHANNEL_ALG: switch (((PSCHANNEL_ALG)pbData)->dwUse) { case SCHANNEL_ENC_KEY: memcpy(&pCryptKey->siSChannelInfo.saEncAlg, pbData, sizeof(SCHANNEL_ALG)); break; case SCHANNEL_MAC_KEY: memcpy(&pCryptKey->siSChannelInfo.saMACAlg, pbData, sizeof(SCHANNEL_ALG)); break; default: SetLastError(NTE_FAIL); /* FIXME: error code */ return FALSE; } return TRUE; case KP_CLIENT_RANDOM: return copy_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom, (PCRYPT_DATA_BLOB)pbData); case KP_SERVER_RANDOM: return copy_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom, (PCRYPT_DATA_BLOB)pbData); default: SetLastError(NTE_BAD_TYPE); return FALSE; } } /****************************************************************************** * CPGetKeyParam (RSAENH.@) * * Query a key parameter. * * PARAMS * hProv [I] The key container, which the key belongs to. * hHash [I] The key object that is to be queried. * dwParam [I] Specifies the parameter that is to be queried. * pbData [I] Pointer to the buffer where the parameter value will be stored. * pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value. * dwFlags [I] None currently defined. * * RETURNS * Success: TRUE * Failure: FALSE * * NOTES * Defined dwParam types are: * - KP_MODE: Values MODE_CBC, MODE_ECB, MODE_CFB. * - KP_MODE_BITS: Shift width for cipher feedback mode. * (Currently ignored by MS CSP's - always eight) * - KP_PERMISSIONS: Or'ed combination of CRYPT_ENCRYPT, CRYPT_DECRYPT, * CRYPT_EXPORT, CRYPT_READ, CRYPT_WRITE, CRYPT_MAC * - KP_IV: Initialization vector. * - KP_KEYLEN: Bitwidth of the key. * - KP_BLOCKLEN: Size of a block cipher block. * - KP_SALT: Salt value. */ BOOL WINAPI RSAENH_CPGetKeyParam(HCRYPTPROV hProv, HCRYPTKEY hKey, DWORD dwParam, BYTE *pbData, DWORD *pdwDataLen, DWORD dwFlags) { CRYPTKEY *pCryptKey; DWORD dwValue; TRACE("(hProv=%08lx, hKey=%08lx, dwParam=%08x, pbData=%p, pdwDataLen=%p dwFlags=%08x)\n", hProv, hKey, dwParam, pbData, pdwDataLen, dwFlags); if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER)) { SetLastError(NTE_BAD_UID); return FALSE; } if (dwFlags) { SetLastError(NTE_BAD_FLAGS); return FALSE; } if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey)) { SetLastError(NTE_BAD_KEY); return FALSE; } switch (dwParam) { case KP_IV: return copy_param(pbData, pdwDataLen, pCryptKey->abInitVector, pCryptKey->dwBlockLen); case KP_SALT: switch (pCryptKey->aiAlgid) { case CALG_RC2: case CALG_RC4: return copy_param(pbData, pdwDataLen, &pCryptKey->abKeyValue[pCryptKey->dwKeyLen], pCryptKey->dwSaltLen); default: SetLastError(NTE_BAD_KEY); return FALSE; } case KP_PADDING: dwValue = PKCS5_PADDING; return copy_param(pbData, pdwDataLen, (const BYTE*)&dwValue, sizeof(DWORD)); case KP_KEYLEN: dwValue = pCryptKey->dwKeyLen << 3; return copy_param(pbData, pdwDataLen, (const BYTE*)&dwValue, sizeof(DWORD)); case KP_EFFECTIVE_KEYLEN: if (pCryptKey->dwEffectiveKeyLen) dwValue = pCryptKey->dwEffectiveKeyLen; else dwValue = pCryptKey->dwKeyLen << 3; return copy_param(pbData, pdwDataLen, (const BYTE*)&dwValue, sizeof(DWORD)); case KP_BLOCKLEN: dwValue = pCryptKey->dwBlockLen << 3; return copy_param(pbData, pdwDataLen, (const BYTE*)&dwValue, sizeof(DWORD)); case KP_MODE: return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptKey->dwMode, sizeof(DWORD)); case KP_MODE_BITS: return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptKey->dwModeBits, sizeof(DWORD)); case KP_PERMISSIONS: return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptKey->dwPermissions, sizeof(DWORD)); case KP_ALGID: return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptKey->aiAlgid, sizeof(DWORD)); default: SetLastError(NTE_BAD_TYPE); return FALSE; } } /****************************************************************************** * CPGetProvParam (RSAENH.@) * * Query a CSP parameter. * * PARAMS * hProv [I] The key container that is to be queried. * dwParam [I] Specifies the parameter that is to be queried. * pbData [I] Pointer to the buffer where the parameter value will be stored. * pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value. * dwFlags [I] CRYPT_FIRST: Start enumeration (for PP_ENUMALGS{_EX}). * * RETURNS * Success: TRUE * Failure: FALSE * NOTES: * Defined dwParam types: * - PP_CONTAINER: Name of the key container. * - PP_NAME: Name of the cryptographic service provider. * - PP_SIG_KEYSIZE_INC: RSA signature keywidth granularity in bits. * - PP_KEYX_KEYSIZE_INC: RSA key-exchange keywidth granularity in bits. * - PP_ENUMALGS{_EX}: Query provider capabilities. * - PP_KEYSET_SEC_DESCR: Retrieve security descriptor on container. */ BOOL WINAPI RSAENH_CPGetProvParam(HCRYPTPROV hProv, DWORD dwParam, BYTE *pbData, DWORD *pdwDataLen, DWORD dwFlags) { KEYCONTAINER *pKeyContainer; PROV_ENUMALGS provEnumalgs; DWORD dwTemp; HKEY hKey; /* This is for dwParam PP_CRYPT_COUNT_KEY_USE. * IE6 SP1 asks for it in the 'About' dialog. * Returning this BLOB seems to satisfy IE. The marked 0x00 seem * to be 'don't care's. If you know anything more specific about * this provider parameter, please contact the Wine developers */ static const BYTE abWTF[96] = { 0xb0, 0x25, 0x63, 0x86, 0x9c, 0xab, 0xb6, 0x37, 0xe8, 0x82, /**/0x00,/**/ 0x72, 0x06, 0xb2, /**/0x00,/**/ 0x3b, 0x60, 0x35, /**/0x00,/**/ 0x3b, 0x88, 0xce, /**/0x00,/**/ 0x82, 0xbc, 0x7a, /**/0x00,/**/ 0xb7, 0x4f, 0x7e, /**/0x00,/**/ 0xde, 0x92, 0xf1, /**/0x00,/**/ 0x83, 0xea, 0x5e, /**/0x00,/**/ 0xc8, 0x12, 0x1e, 0xd4, 0x06, 0xf7, 0x66, /**/0x00,/**/ 0x01, 0x29, 0xa4, /**/0x00,/**/ 0xf8, 0x24, 0x0c, /**/0x00,/**/ 0x33, 0x06, 0x80, /**/0x00,/**/ 0x02, 0x46, 0x0b, /**/0x00,/**/ 0x6d, 0x5b, 0xca, /**/0x00,/**/ 0x9a, 0x10, 0xf0, /**/0x00,/**/ 0x05, 0x19, 0xd0, /**/0x00,/**/ 0x2c, 0xf6, 0x27, /**/0x00,/**/ 0xaa, 0x7c, 0x6f, /**/0x00,/**/ 0xb9, 0xd8, 0x72, /**/0x00,/**/ 0x03, 0xf3, 0x81, /**/0x00,/**/ 0xfa, 0xe8, 0x26, /**/0x00,/**/ 0xca }; TRACE("(hProv=%08lx, dwParam=%08x, pbData=%p, pdwDataLen=%p, dwFlags=%08x)\n", hProv, dwParam, pbData, pdwDataLen, dwFlags); if (!pdwDataLen) { SetLastError(ERROR_INVALID_PARAMETER); return FALSE; } if (!(pKeyContainer = get_key_container(hProv))) { /* MSDN: hProv not containing valid context handle */ return FALSE; } switch (dwParam) { case PP_CONTAINER: case PP_UNIQUE_CONTAINER:/* MSDN says we can return the same value as PP_CONTAINER */ return copy_param(pbData, pdwDataLen, (const BYTE*)pKeyContainer->szName, strlen(pKeyContainer->szName)+1); case PP_NAME: return copy_param(pbData, pdwDataLen, (const BYTE*)pKeyContainer->szProvName, strlen(pKeyContainer->szProvName)+1); case PP_PROVTYPE: dwTemp = PROV_RSA_FULL; return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp)); case PP_KEYSPEC: dwTemp = AT_SIGNATURE | AT_KEYEXCHANGE; return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp)); case PP_KEYSET_TYPE: dwTemp = pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET; return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp)); case PP_KEYSTORAGE: dwTemp = CRYPT_SEC_DESCR; return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp)); case PP_SIG_KEYSIZE_INC: case PP_KEYX_KEYSIZE_INC: dwTemp = 8; return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp)); case PP_IMPTYPE: dwTemp = CRYPT_IMPL_SOFTWARE; return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp)); case PP_VERSION: dwTemp = 0x00000200; return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp)); case PP_ENUMCONTAINERS: if ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) pKeyContainer->dwEnumContainersCtr = 0; if (!pbData) { *pdwDataLen = (DWORD)MAX_PATH + 1; return TRUE; } if (!open_container_key("", dwFlags, KEY_READ, &hKey)) { SetLastError(ERROR_NO_MORE_ITEMS); return FALSE; } dwTemp = *pdwDataLen; switch (RegEnumKeyExA(hKey, pKeyContainer->dwEnumContainersCtr, (LPSTR)pbData, &dwTemp, NULL, NULL, NULL, NULL)) { case ERROR_MORE_DATA: *pdwDataLen = (DWORD)MAX_PATH + 1; case ERROR_SUCCESS: pKeyContainer->dwEnumContainersCtr++; RegCloseKey(hKey); return TRUE; case ERROR_NO_MORE_ITEMS: default: SetLastError(ERROR_NO_MORE_ITEMS); RegCloseKey(hKey); return FALSE; } case PP_ENUMALGS: case PP_ENUMALGS_EX: if (((pKeyContainer->dwEnumAlgsCtr >= RSAENH_MAX_ENUMALGS-1) || (!aProvEnumAlgsEx[pKeyContainer->dwPersonality] [pKeyContainer->dwEnumAlgsCtr+1].aiAlgid)) && ((dwFlags & CRYPT_FIRST) != CRYPT_FIRST)) { SetLastError(ERROR_NO_MORE_ITEMS); return FALSE; } if (dwParam == PP_ENUMALGS) { if (pbData && (*pdwDataLen >= sizeof(PROV_ENUMALGS))) pKeyContainer->dwEnumAlgsCtr = ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) ? 0 : pKeyContainer->dwEnumAlgsCtr+1; provEnumalgs.aiAlgid = aProvEnumAlgsEx [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].aiAlgid; provEnumalgs.dwBitLen = aProvEnumAlgsEx [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].dwDefaultLen; provEnumalgs.dwNameLen = aProvEnumAlgsEx [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].dwNameLen; memcpy(provEnumalgs.szName, aProvEnumAlgsEx [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].szName, 20*sizeof(CHAR)); return copy_param(pbData, pdwDataLen, (const BYTE*)&provEnumalgs, sizeof(PROV_ENUMALGS)); } else { if (pbData && (*pdwDataLen >= sizeof(PROV_ENUMALGS_EX))) pKeyContainer->dwEnumAlgsCtr = ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) ? 0 : pKeyContainer->dwEnumAlgsCtr+1; return copy_param(pbData, pdwDataLen, (const BYTE*)&aProvEnumAlgsEx [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr], sizeof(PROV_ENUMALGS_EX)); } case PP_CRYPT_COUNT_KEY_USE: /* Asked for by IE About dialog */ return copy_param(pbData, pdwDataLen, abWTF, sizeof(abWTF)); case PP_KEYSET_SEC_DESCR: { SECURITY_DESCRIPTOR *sd; DWORD err, len, flags = (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET); if (!open_container_key(pKeyContainer->szName, flags, KEY_READ, &hKey)) { SetLastError(NTE_BAD_KEYSET); return FALSE; } err = GetSecurityInfo(hKey, SE_REGISTRY_KEY, dwFlags, NULL, NULL, NULL, NULL, (void **)&sd); RegCloseKey(hKey); if (err) { SetLastError(err); return FALSE; } len = GetSecurityDescriptorLength(sd); if (*pdwDataLen >= len) memcpy(pbData, sd, len); else SetLastError(ERROR_INSUFFICIENT_BUFFER); *pdwDataLen = len; LocalFree(sd); return TRUE; } default: /* MSDN: Unknown parameter number in dwParam */ SetLastError(NTE_BAD_TYPE); return FALSE; } } /****************************************************************************** * CPDeriveKey (RSAENH.@) * * Derives a key from a hash value. * * PARAMS * hProv [I] Key container for which a key is to be generated. * Algid [I] Crypto algorithm identifier for the key to be generated. * hBaseData [I] Hash from whose value the key will be derived. * dwFlags [I] See Notes. * phKey [O] The generated key. * * RETURNS * Success: TRUE * Failure: FALSE * * NOTES * Defined flags: * - CRYPT_EXPORTABLE: Key can be exported. * - CRYPT_NO_SALT: No salt is used for 40 bit keys. * - CRYPT_CREATE_SALT: Use remaining bits as salt value. */ BOOL WINAPI RSAENH_CPDeriveKey(HCRYPTPROV hProv, ALG_ID Algid, HCRYPTHASH hBaseData, DWORD dwFlags, HCRYPTKEY *phKey) { CRYPTKEY *pCryptKey, *pMasterKey; CRYPTHASH *pCryptHash; BYTE abHashValue[RSAENH_MAX_HASH_SIZE*2]; DWORD dwLen; TRACE("(hProv=%08lx, Algid=%d, hBaseData=%08lx, dwFlags=%08x phKey=%p)\n", hProv, Algid, hBaseData, dwFlags, phKey); if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER)) { SetLastError(NTE_BAD_UID); return FALSE; } if (!lookup_handle(&handle_table, hBaseData, RSAENH_MAGIC_HASH, (OBJECTHDR**)&pCryptHash)) { SetLastError(NTE_BAD_HASH); return FALSE; } if (!phKey) { SetLastError(ERROR_INVALID_PARAMETER); return FALSE; } switch (GET_ALG_CLASS(Algid)) { case ALG_CLASS_DATA_ENCRYPT: { int need_padding, copy_len; *phKey = new_key(hProv, Algid, dwFlags, &pCryptKey); if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE; /* * We derive the key material from the hash. * If the hash value is not large enough for the claimed key, we have to construct * a larger binary value based on the hash. This is documented in MSDN: CryptDeriveKey. */ dwLen = RSAENH_MAX_HASH_SIZE; RSAENH_CPGetHashParam(pCryptHash->hProv, hBaseData, HP_HASHVAL, abHashValue, &dwLen, 0); /* * The usage of padding seems to vary from algorithm to algorithm. * For now the only different case found was for AES with 128 bit key. */ switch(Algid) { case CALG_AES_128: /* To reduce the chance of regressions we will only deviate * from the old behavior for the tested hash lengths */ if (dwLen == 16 || dwLen == 20) { need_padding = 1; break; } default: need_padding = dwLen < pCryptKey->dwKeyLen; } copy_len = pCryptKey->dwKeyLen; if (need_padding) { BYTE pad1[RSAENH_HMAC_DEF_PAD_LEN], pad2[RSAENH_HMAC_DEF_PAD_LEN]; BYTE old_hashval[RSAENH_MAX_HASH_SIZE]; DWORD i; memcpy(old_hashval, pCryptHash->abHashValue, RSAENH_MAX_HASH_SIZE); for (i=0; iabHashValue, pCryptHash->dwHashSize); init_hash(pCryptHash); update_hash(pCryptHash, pad2, RSAENH_HMAC_DEF_PAD_LEN); finalize_hash(pCryptHash); memcpy(abHashValue+pCryptHash->dwHashSize, pCryptHash->abHashValue, pCryptHash->dwHashSize); memcpy(pCryptHash->abHashValue, old_hashval, RSAENH_MAX_HASH_SIZE); } /* * Padding was not required, we have more hash than needed. * Do we need to use the remaining hash as salt? */ else if((dwFlags & CRYPT_CREATE_SALT) && (Algid == CALG_RC2 || Algid == CALG_RC4)) { copy_len += pCryptKey->dwSaltLen; } memcpy(pCryptKey->abKeyValue, abHashValue, RSAENH_MIN(copy_len, sizeof(pCryptKey->abKeyValue))); break; } case ALG_CLASS_MSG_ENCRYPT: if (!lookup_handle(&handle_table, pCryptHash->hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pMasterKey)) { SetLastError(NTE_FAIL); /* FIXME error code */ return FALSE; } switch (Algid) { /* See RFC 2246, chapter 6.3 Key calculation */ case CALG_SCHANNEL_ENC_KEY: if (!pMasterKey->siSChannelInfo.saEncAlg.Algid || !pMasterKey->siSChannelInfo.saEncAlg.cBits) { SetLastError(NTE_BAD_FLAGS); return FALSE; } *phKey = new_key(hProv, pMasterKey->siSChannelInfo.saEncAlg.Algid, MAKELONG(LOWORD(dwFlags),pMasterKey->siSChannelInfo.saEncAlg.cBits), &pCryptKey); if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE; memcpy(pCryptKey->abKeyValue, pCryptHash->abHashValue + ( 2 * (pMasterKey->siSChannelInfo.saMACAlg.cBits / 8) + ((dwFlags & CRYPT_SERVER) ? (pMasterKey->siSChannelInfo.saEncAlg.cBits / 8) : 0)), pMasterKey->siSChannelInfo.saEncAlg.cBits / 8); memcpy(pCryptKey->abInitVector, pCryptHash->abHashValue + ( 2 * (pMasterKey->siSChannelInfo.saMACAlg.cBits / 8) + 2 * (pMasterKey->siSChannelInfo.saEncAlg.cBits / 8) + ((dwFlags & CRYPT_SERVER) ? pCryptKey->dwBlockLen : 0)), pCryptKey->dwBlockLen); break; case CALG_SCHANNEL_MAC_KEY: *phKey = new_key(hProv, Algid, MAKELONG(LOWORD(dwFlags),pMasterKey->siSChannelInfo.saMACAlg.cBits), &pCryptKey); if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE; memcpy(pCryptKey->abKeyValue, pCryptHash->abHashValue + ((dwFlags & CRYPT_SERVER) ? pMasterKey->siSChannelInfo.saMACAlg.cBits / 8 : 0), pMasterKey->siSChannelInfo.saMACAlg.cBits / 8); break; default: SetLastError(NTE_BAD_ALGID); return FALSE; } break; default: SetLastError(NTE_BAD_ALGID); return FALSE; } setup_key(pCryptKey); return TRUE; } /****************************************************************************** * CPGetUserKey (RSAENH.@) * * Returns a handle to the user's private key-exchange- or signature-key. * * PARAMS * hProv [I] The key container from which a user key is requested. * dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE * phUserKey [O] Handle to the requested key or INVALID_HANDLE_VALUE in case of failure. * * RETURNS * Success: TRUE. * Failure: FALSE. * * NOTE * A newly created key container does not contain private user key. Create them with CPGenKey. */ BOOL WINAPI RSAENH_CPGetUserKey(HCRYPTPROV hProv, DWORD dwKeySpec, HCRYPTKEY *phUserKey) { KEYCONTAINER *pKeyContainer; TRACE("(hProv=%08lx, dwKeySpec=%08x, phUserKey=%p)\n", hProv, dwKeySpec, phUserKey); if (!(pKeyContainer = get_key_container(hProv))) { /* MSDN: hProv not containing valid context handle */ return FALSE; } switch (dwKeySpec) { case AT_KEYEXCHANGE: copy_handle(&handle_table, pKeyContainer->hKeyExchangeKeyPair, RSAENH_MAGIC_KEY, phUserKey); break; case AT_SIGNATURE: copy_handle(&handle_table, pKeyContainer->hSignatureKeyPair, RSAENH_MAGIC_KEY, phUserKey); break; default: *phUserKey = (HCRYPTKEY)INVALID_HANDLE_VALUE; } if (*phUserKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) { /* MSDN: dwKeySpec parameter specifies nonexistent key */ SetLastError(NTE_NO_KEY); return FALSE; } return TRUE; } /****************************************************************************** * CPHashData (RSAENH.@) * * Updates a hash object with the given data. * * PARAMS * hProv [I] Key container to which the hash object belongs. * hHash [I] Hash object which is to be updated. * pbData [I] Pointer to data with which the hash object is to be updated. * dwDataLen [I] Length of the data. * dwFlags [I] Currently none defined. * * RETURNS * Success: TRUE. * Failure: FALSE. * * NOTES * The actual hash value is queried with CPGetHashParam, which will finalize * the hash. Updating a finalized hash will fail with a last error NTE_BAD_HASH_STATE. */ BOOL WINAPI RSAENH_CPHashData(HCRYPTPROV hProv, HCRYPTHASH hHash, const BYTE *pbData, DWORD dwDataLen, DWORD dwFlags) { CRYPTHASH *pCryptHash; TRACE("(hProv=%08lx, hHash=%08lx, pbData=%p, dwDataLen=%d, dwFlags=%08x)\n", hProv, hHash, pbData, dwDataLen, dwFlags); if (dwFlags & ~CRYPT_USERDATA) { SetLastError(NTE_BAD_FLAGS); return FALSE; } if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH, (OBJECTHDR**)&pCryptHash)) { SetLastError(NTE_BAD_HASH); return FALSE; } if (!get_algid_info(hProv, pCryptHash->aiAlgid) || pCryptHash->aiAlgid == CALG_SSL3_SHAMD5) { SetLastError(NTE_BAD_ALGID); return FALSE; } if (pCryptHash->dwState != RSAENH_HASHSTATE_HASHING) { SetLastError(NTE_BAD_HASH_STATE); return FALSE; } update_hash(pCryptHash, pbData, dwDataLen); return TRUE; } /****************************************************************************** * CPHashSessionKey (RSAENH.@) * * Updates a hash object with the binary representation of a symmetric key. * * PARAMS * hProv [I] Key container to which the hash object belongs. * hHash [I] Hash object which is to be updated. * hKey [I] The symmetric key, whose binary value will be added to the hash. * dwFlags [I] CRYPT_LITTLE_ENDIAN, if the binary key value shall be interpreted as little endian. * * RETURNS * Success: TRUE. * Failure: FALSE. */ BOOL WINAPI RSAENH_CPHashSessionKey(HCRYPTPROV hProv, HCRYPTHASH hHash, HCRYPTKEY hKey, DWORD dwFlags) { BYTE abKeyValue[RSAENH_MAX_KEY_SIZE], bTemp; CRYPTKEY *pKey; DWORD i; TRACE("(hProv=%08lx, hHash=%08lx, hKey=%08lx, dwFlags=%08x)\n", hProv, hHash, hKey, dwFlags); if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pKey) || (GET_ALG_CLASS(pKey->aiAlgid) != ALG_CLASS_DATA_ENCRYPT)) { SetLastError(NTE_BAD_KEY); return FALSE; } if (dwFlags & ~CRYPT_LITTLE_ENDIAN) { SetLastError(NTE_BAD_FLAGS); return FALSE; } memcpy(abKeyValue, pKey->abKeyValue, pKey->dwKeyLen); if (!(dwFlags & CRYPT_LITTLE_ENDIAN)) { for (i=0; idwKeyLen/2; i++) { bTemp = abKeyValue[i]; abKeyValue[i] = abKeyValue[pKey->dwKeyLen-i-1]; abKeyValue[pKey->dwKeyLen-i-1] = bTemp; } } return RSAENH_CPHashData(hProv, hHash, abKeyValue, pKey->dwKeyLen, 0); } /****************************************************************************** * CPReleaseContext (RSAENH.@) * * Release a key container. * * PARAMS * hProv [I] Key container to be released. * dwFlags [I] Currently none defined. * * RETURNS * Success: TRUE * Failure: FALSE */ BOOL WINAPI RSAENH_CPReleaseContext(HCRYPTPROV hProv, DWORD dwFlags) { TRACE("(hProv=%08lx, dwFlags=%08x)\n", hProv, dwFlags); if (!release_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER)) { /* MSDN: hProv not containing valid context handle */ SetLastError(NTE_BAD_UID); return FALSE; } if (dwFlags) { SetLastError(NTE_BAD_FLAGS); return FALSE; } return TRUE; } /****************************************************************************** * CPSetHashParam (RSAENH.@) * * Set a parameter of a hash object * * PARAMS * hProv [I] The key container to which the key belongs. * hHash [I] The hash object for which a parameter is to be set. * dwParam [I] Parameter type. See Notes. * pbData [I] Pointer to the parameter value. * dwFlags [I] Currently none defined. * * RETURNS * Success: TRUE. * Failure: FALSE. * * NOTES * Currently only the HP_HMAC_INFO dwParam type is defined. * The HMAC_INFO struct will be deep copied into the hash object. * See Internet RFC 2104 for details on the HMAC algorithm. */ BOOL WINAPI RSAENH_CPSetHashParam(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwParam, BYTE *pbData, DWORD dwFlags) { CRYPTHASH *pCryptHash; CRYPTKEY *pCryptKey; DWORD i; TRACE("(hProv=%08lx, hHash=%08lx, dwParam=%08x, pbData=%p, dwFlags=%08x)\n", hProv, hHash, dwParam, pbData, dwFlags); if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER)) { SetLastError(NTE_BAD_UID); return FALSE; } if (dwFlags) { SetLastError(NTE_BAD_FLAGS); return FALSE; } if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH, (OBJECTHDR**)&pCryptHash)) { SetLastError(NTE_BAD_HASH); return FALSE; } switch (dwParam) { case HP_HMAC_INFO: free_hmac_info(pCryptHash->pHMACInfo); if (!copy_hmac_info(&pCryptHash->pHMACInfo, (PHMAC_INFO)pbData)) return FALSE; if (!lookup_handle(&handle_table, pCryptHash->hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey)) { SetLastError(NTE_FAIL); /* FIXME: correct error code? */ return FALSE; } if (pCryptKey->aiAlgid == CALG_HMAC && !pCryptKey->dwKeyLen) { HCRYPTHASH hKeyHash; DWORD keyLen; if (!RSAENH_CPCreateHash(hProv, ((PHMAC_INFO)pbData)->HashAlgid, 0, 0, &hKeyHash)) return FALSE; if (!RSAENH_CPHashData(hProv, hKeyHash, pCryptKey->blobHmacKey.pbData, pCryptKey->blobHmacKey.cbData, 0)) { RSAENH_CPDestroyHash(hProv, hKeyHash); return FALSE; } keyLen = sizeof(pCryptKey->abKeyValue); if (!RSAENH_CPGetHashParam(hProv, hKeyHash, HP_HASHVAL, pCryptKey->abKeyValue, &keyLen, 0)) { RSAENH_CPDestroyHash(hProv, hKeyHash); return FALSE; } pCryptKey->dwKeyLen = keyLen; RSAENH_CPDestroyHash(hProv, hKeyHash); } for (i=0; idwKeyLen,pCryptHash->pHMACInfo->cbInnerString); i++) { pCryptHash->pHMACInfo->pbInnerString[i] ^= pCryptKey->abKeyValue[i]; } for (i=0; idwKeyLen,pCryptHash->pHMACInfo->cbOuterString); i++) { pCryptHash->pHMACInfo->pbOuterString[i] ^= pCryptKey->abKeyValue[i]; } init_hash(pCryptHash); return TRUE; case HP_HASHVAL: memcpy(pCryptHash->abHashValue, pbData, pCryptHash->dwHashSize); pCryptHash->dwState = RSAENH_HASHSTATE_FINISHED; return TRUE; case HP_TLS1PRF_SEED: return copy_data_blob(&pCryptHash->tpPRFParams.blobSeed, (PCRYPT_DATA_BLOB)pbData); case HP_TLS1PRF_LABEL: return copy_data_blob(&pCryptHash->tpPRFParams.blobLabel, (PCRYPT_DATA_BLOB)pbData); default: SetLastError(NTE_BAD_TYPE); return FALSE; } } /****************************************************************************** * CPSetProvParam (RSAENH.@) */ BOOL WINAPI RSAENH_CPSetProvParam(HCRYPTPROV hProv, DWORD dwParam, BYTE *pbData, DWORD dwFlags) { KEYCONTAINER *pKeyContainer; HKEY hKey; TRACE("(hProv=%08lx, dwParam=%08x, pbData=%p, dwFlags=%08x)\n", hProv, dwParam, pbData, dwFlags); if (!(pKeyContainer = get_key_container(hProv))) return FALSE; switch (dwParam) { case PP_KEYSET_SEC_DESCR: { SECURITY_DESCRIPTOR *sd = (SECURITY_DESCRIPTOR *)pbData; DWORD err, flags = (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET); BOOL def, present; REGSAM access = WRITE_DAC | WRITE_OWNER | ACCESS_SYSTEM_SECURITY; PSID owner = NULL, group = NULL; PACL dacl = NULL, sacl = NULL; if (!open_container_key(pKeyContainer->szName, flags, access, &hKey)) { SetLastError(NTE_BAD_KEYSET); return FALSE; } if ((dwFlags & OWNER_SECURITY_INFORMATION && !GetSecurityDescriptorOwner(sd, &owner, &def)) || (dwFlags & GROUP_SECURITY_INFORMATION && !GetSecurityDescriptorGroup(sd, &group, &def)) || (dwFlags & DACL_SECURITY_INFORMATION && !GetSecurityDescriptorDacl(sd, &present, &dacl, &def)) || (dwFlags & SACL_SECURITY_INFORMATION && !GetSecurityDescriptorSacl(sd, &present, &sacl, &def))) { RegCloseKey(hKey); return FALSE; } err = SetSecurityInfo(hKey, SE_REGISTRY_KEY, dwFlags, owner, group, dacl, sacl); RegCloseKey(hKey); if (err) { SetLastError(err); return FALSE; } return TRUE; } default: FIXME("unimplemented parameter %08x\n", dwParam); return FALSE; } } /****************************************************************************** * CPSignHash (RSAENH.@) * * Sign a hash object * * PARAMS * hProv [I] The key container, to which the hash object belongs. * hHash [I] The hash object to be signed. * dwKeySpec [I] AT_SIGNATURE or AT_KEYEXCHANGE: Key used to generate the signature. * sDescription [I] Should be NULL for security reasons. * dwFlags [I] 0, CRYPT_NOHASHOID or CRYPT_X931_FORMAT: Format of the signature. * pbSignature [O] Buffer, to which the signature will be stored. May be NULL to query SigLen. * pdwSigLen [I/O] Size of the buffer (in), Length of the signature (out) * * RETURNS * Success: TRUE * Failure: FALSE */ BOOL WINAPI RSAENH_CPSignHash(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwKeySpec, LPCWSTR sDescription, DWORD dwFlags, BYTE *pbSignature, DWORD *pdwSigLen) { HCRYPTKEY hCryptKey = (HCRYPTKEY)INVALID_HANDLE_VALUE; CRYPTKEY *pCryptKey; DWORD dwHashLen; BYTE abHashValue[RSAENH_MAX_HASH_SIZE]; ALG_ID aiAlgid; BOOL ret = FALSE; TRACE("(hProv=%08lx, hHash=%08lx, dwKeySpec=%08x, sDescription=%s, dwFlags=%08x, " "pbSignature=%p, pdwSigLen=%p)\n", hProv, hHash, dwKeySpec, debugstr_w(sDescription), dwFlags, pbSignature, pdwSigLen); if (dwFlags & ~(CRYPT_NOHASHOID|CRYPT_X931_FORMAT)) { SetLastError(NTE_BAD_FLAGS); return FALSE; } if (!RSAENH_CPGetUserKey(hProv, dwKeySpec, &hCryptKey)) return FALSE; if (!lookup_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey)) { SetLastError(NTE_NO_KEY); goto out; } if (!pbSignature) { *pdwSigLen = pCryptKey->dwKeyLen; ret = TRUE; goto out; } if (pCryptKey->dwKeyLen > *pdwSigLen) { SetLastError(ERROR_MORE_DATA); *pdwSigLen = pCryptKey->dwKeyLen; goto out; } *pdwSigLen = pCryptKey->dwKeyLen; if (sDescription) { if (!RSAENH_CPHashData(hProv, hHash, (const BYTE*)sDescription, (DWORD)lstrlenW(sDescription)*sizeof(WCHAR), 0)) { goto out; } } dwHashLen = sizeof(DWORD); if (!RSAENH_CPGetHashParam(hProv, hHash, HP_ALGID, (BYTE*)&aiAlgid, &dwHashLen, 0)) goto out; dwHashLen = RSAENH_MAX_HASH_SIZE; if (!RSAENH_CPGetHashParam(hProv, hHash, HP_HASHVAL, abHashValue, &dwHashLen, 0)) goto out; if (!build_hash_signature(pbSignature, *pdwSigLen, aiAlgid, abHashValue, dwHashLen, dwFlags)) { goto out; } ret = encrypt_block_impl(pCryptKey->aiAlgid, PK_PRIVATE, &pCryptKey->context, pbSignature, pbSignature, RSAENH_ENCRYPT); out: RSAENH_CPDestroyKey(hProv, hCryptKey); return ret; } /****************************************************************************** * CPVerifySignature (RSAENH.@) * * Verify the signature of a hash object. * * PARAMS * hProv [I] The key container, to which the hash belongs. * hHash [I] The hash for which the signature is verified. * pbSignature [I] The binary signature. * dwSigLen [I] Length of the signature BLOB. * hPubKey [I] Public key used to verify the signature. * sDescription [I] Should be NULL for security reasons. * dwFlags [I] 0, CRYPT_NOHASHOID or CRYPT_X931_FORMAT: Format of the signature. * * RETURNS * Success: TRUE (Signature is valid) * Failure: FALSE (GetLastError() == NTE_BAD_SIGNATURE, if signature is invalid) */ BOOL WINAPI RSAENH_CPVerifySignature(HCRYPTPROV hProv, HCRYPTHASH hHash, const BYTE *pbSignature, DWORD dwSigLen, HCRYPTKEY hPubKey, LPCWSTR sDescription, DWORD dwFlags) { BYTE *pbConstructed = NULL, *pbDecrypted = NULL; CRYPTKEY *pCryptKey; DWORD dwHashLen; ALG_ID aiAlgid; BYTE abHashValue[RSAENH_MAX_HASH_SIZE]; BOOL res = FALSE; TRACE("(hProv=%08lx, hHash=%08lx, pbSignature=%p, dwSigLen=%d, hPubKey=%08lx, sDescription=%s, " "dwFlags=%08x)\n", hProv, hHash, pbSignature, dwSigLen, hPubKey, debugstr_w(sDescription), dwFlags); if (dwFlags & ~(CRYPT_NOHASHOID|CRYPT_X931_FORMAT)) { SetLastError(NTE_BAD_FLAGS); return FALSE; } if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER)) { SetLastError(NTE_BAD_UID); return FALSE; } if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey)) { SetLastError(NTE_BAD_KEY); return FALSE; } /* in Microsoft implementation, the signature length is checked before * the signature pointer. */ if (dwSigLen != pCryptKey->dwKeyLen) { SetLastError(NTE_BAD_SIGNATURE); return FALSE; } if (!hHash || !pbSignature) { SetLastError(ERROR_INVALID_PARAMETER); return FALSE; } if (sDescription) { if (!RSAENH_CPHashData(hProv, hHash, (const BYTE*)sDescription, (DWORD)lstrlenW(sDescription)*sizeof(WCHAR), 0)) { return FALSE; } } dwHashLen = sizeof(DWORD); if (!RSAENH_CPGetHashParam(hProv, hHash, HP_ALGID, (BYTE*)&aiAlgid, &dwHashLen, 0)) return FALSE; dwHashLen = RSAENH_MAX_HASH_SIZE; if (!RSAENH_CPGetHashParam(hProv, hHash, HP_HASHVAL, abHashValue, &dwHashLen, 0)) return FALSE; pbConstructed = HeapAlloc(GetProcessHeap(), 0, dwSigLen); if (!pbConstructed) { SetLastError(NTE_NO_MEMORY); goto cleanup; } pbDecrypted = HeapAlloc(GetProcessHeap(), 0, dwSigLen); if (!pbDecrypted) { SetLastError(NTE_NO_MEMORY); goto cleanup; } if (!encrypt_block_impl(pCryptKey->aiAlgid, PK_PUBLIC, &pCryptKey->context, pbSignature, pbDecrypted, RSAENH_DECRYPT)) { goto cleanup; } if (build_hash_signature(pbConstructed, dwSigLen, aiAlgid, abHashValue, dwHashLen, dwFlags) && !memcmp(pbDecrypted, pbConstructed, dwSigLen)) { res = TRUE; goto cleanup; } if (!(dwFlags & CRYPT_NOHASHOID) && build_hash_signature(pbConstructed, dwSigLen, aiAlgid, abHashValue, dwHashLen, dwFlags|CRYPT_NOHASHOID) && !memcmp(pbDecrypted, pbConstructed, dwSigLen)) { res = TRUE; goto cleanup; } SetLastError(NTE_BAD_SIGNATURE); cleanup: HeapFree(GetProcessHeap(), 0, pbConstructed); HeapFree(GetProcessHeap(), 0, pbDecrypted); return res; } /****************************************************************************** * DllRegisterServer (RSAENH.@) */ HRESULT WINAPI DllRegisterServer(void) { return __wine_register_resources( instance ); } /****************************************************************************** * DllUnregisterServer (RSAENH.@) */ HRESULT WINAPI DllUnregisterServer(void) { return __wine_unregister_resources( instance ); }