/* * MSZIP decompression (taken from fdi.c of cabinet dll) * * Copyright 2000-2002 Stuart Caie * Copyright 2002 Patrik Stridvall * Copyright 2003 Greg Turner * Copyright 2010 Christian Costa * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include "windef.h" #include "winbase.h" #include "wine/debug.h" #include "mszip.h" WINE_DEFAULT_DEBUG_CHANNEL(d3dxof); THOSE_ZIP_CONSTS; /******************************************************** * Ziphuft_free (internal) */ static void fdi_Ziphuft_free(HFDI hfdi, struct Ziphuft *t) { register struct Ziphuft *p, *q; /* Go through linked list, freeing from the allocated (t[-1]) address. */ p = t; while (p != NULL) { q = (--p)->v.t; PFDI_FREE(hfdi, p); p = q; } } /********************************************************* * fdi_Ziphuft_build (internal) */ static cab_LONG fdi_Ziphuft_build(cab_ULONG *b, cab_ULONG n, cab_ULONG s, const cab_UWORD *d, const cab_UWORD *e, struct Ziphuft **t, cab_LONG *m, fdi_decomp_state *decomp_state) { cab_ULONG a; /* counter for codes of length k */ cab_ULONG el; /* length of EOB code (value 256) */ cab_ULONG f; /* i repeats in table every f entries */ cab_LONG g; /* maximum code length */ cab_LONG h; /* table level */ register cab_ULONG i; /* counter, current code */ register cab_ULONG j; /* counter */ register cab_LONG k; /* number of bits in current code */ cab_LONG *l; /* stack of bits per table */ register cab_ULONG *p; /* pointer into ZIP(c)[],ZIP(b)[],ZIP(v)[] */ register struct Ziphuft *q; /* points to current table */ struct Ziphuft r; /* table entry for structure assignment */ register cab_LONG w; /* bits before this table == (l * h) */ cab_ULONG *xp; /* pointer into x */ cab_LONG y; /* number of dummy codes added */ cab_ULONG z; /* number of entries in current table */ l = ZIP(lx)+1; /* Generate counts for each bit length */ el = n > 256 ? b[256] : ZIPBMAX; /* set length of EOB code, if any */ for(i = 0; i < ZIPBMAX+1; ++i) ZIP(c)[i] = 0; p = b; i = n; do { ZIP(c)[*p]++; p++; /* assume all entries <= ZIPBMAX */ } while (--i); if (ZIP(c)[0] == n) /* null input--all zero length codes */ { *t = NULL; *m = 0; return 0; } /* Find minimum and maximum length, bound *m by those */ for (j = 1; j <= ZIPBMAX; j++) if (ZIP(c)[j]) break; k = j; /* minimum code length */ if ((cab_ULONG)*m < j) *m = j; for (i = ZIPBMAX; i; i--) if (ZIP(c)[i]) break; g = i; /* maximum code length */ if ((cab_ULONG)*m > i) *m = i; /* Adjust last length count to fill out codes, if needed */ for (y = 1 << j; j < i; j++, y <<= 1) if ((y -= ZIP(c)[j]) < 0) return 2; /* bad input: more codes than bits */ if ((y -= ZIP(c)[i]) < 0) return 2; ZIP(c)[i] += y; /* Generate starting offsets LONGo the value table for each length */ ZIP(x)[1] = j = 0; p = ZIP(c) + 1; xp = ZIP(x) + 2; while (--i) { /* note that i == g from above */ *xp++ = (j += *p++); } /* Make a table of values in order of bit lengths */ p = b; i = 0; do{ if ((j = *p++) != 0) ZIP(v)[ZIP(x)[j]++] = i; } while (++i < n); /* Generate the Huffman codes and for each, make the table entries */ ZIP(x)[0] = i = 0; /* first Huffman code is zero */ p = ZIP(v); /* grab values in bit order */ h = -1; /* no tables yet--level -1 */ w = l[-1] = 0; /* no bits decoded yet */ ZIP(u)[0] = NULL; /* just to keep compilers happy */ q = NULL; /* ditto */ z = 0; /* ditto */ /* go through the bit lengths (k already is bits in shortest code) */ for (; k <= g; k++) { a = ZIP(c)[k]; while (a--) { /* here i is the Huffman code of length k bits for value *p */ /* make tables up to required level */ while (k > w + l[h]) { w += l[h++]; /* add bits already decoded */ /* compute minimum size table less than or equal to *m bits */ if ((z = g - w) > (cab_ULONG)*m) /* upper limit */ z = *m; if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */ { /* too few codes for k-w bit table */ f -= a + 1; /* deduct codes from patterns left */ xp = ZIP(c) + k; while (++j < z) /* try smaller tables up to z bits */ { if ((f <<= 1) <= *++xp) break; /* enough codes to use up j bits */ f -= *xp; /* else deduct codes from patterns */ } } if ((cab_ULONG)w + j > el && (cab_ULONG)w < el) j = el - w; /* make EOB code end at table */ z = 1 << j; /* table entries for j-bit table */ l[h] = j; /* set table size in stack */ /* allocate and link in new table */ if (!(q = PFDI_ALLOC(CAB(hfdi), (z + 1)*sizeof(struct Ziphuft)))) { if(h) fdi_Ziphuft_free(CAB(hfdi), ZIP(u)[0]); return 3; /* not enough memory */ } *t = q + 1; /* link to list for Ziphuft_free() */ *(t = &(q->v.t)) = NULL; ZIP(u)[h] = ++q; /* table starts after link */ /* connect to last table, if there is one */ if (h) { ZIP(x)[h] = i; /* save pattern for backing up */ r.b = (cab_UBYTE)l[h-1]; /* bits to dump before this table */ r.e = (cab_UBYTE)(16 + j); /* bits in this table */ r.v.t = q; /* pointer to this table */ j = (i & ((1 << w) - 1)) >> (w - l[h-1]); ZIP(u)[h-1][j] = r; /* connect to last table */ } } /* set up table entry in r */ r.b = (cab_UBYTE)(k - w); if (p >= ZIP(v) + n) r.e = 99; /* out of values--invalid code */ else if (*p < s) { r.e = (cab_UBYTE)(*p < 256 ? 16 : 15); /* 256 is end-of-block code */ r.v.n = *p++; /* simple code is just the value */ } else { r.e = (cab_UBYTE)e[*p - s]; /* non-simple--look up in lists */ r.v.n = d[*p++ - s]; } /* fill code-like entries with r */ f = 1 << (k - w); for (j = i >> w; j < z; j += f) q[j] = r; /* backwards increment the k-bit code i */ for (j = 1 << (k - 1); i & j; j >>= 1) i ^= j; i ^= j; /* backup over finished tables */ while ((i & ((1 << w) - 1)) != ZIP(x)[h]) w -= l[--h]; /* don't need to update q */ } } /* return actual size of base table */ *m = l[0]; /* Return true (1) if we were given an incomplete table */ return y != 0 && g != 1; } /********************************************************* * fdi_Zipinflate_codes (internal) */ static cab_LONG fdi_Zipinflate_codes(const struct Ziphuft *tl, const struct Ziphuft *td, cab_LONG bl, cab_LONG bd, fdi_decomp_state *decomp_state) { register cab_ULONG e; /* table entry flag/number of extra bits */ cab_ULONG n, d; /* length and index for copy */ cab_ULONG w; /* current window position */ const struct Ziphuft *t; /* pointer to table entry */ cab_ULONG ml, md; /* masks for bl and bd bits */ register cab_ULONG b; /* bit buffer */ register cab_ULONG k; /* number of bits in bit buffer */ /* make local copies of globals */ b = ZIP(bb); /* initialize bit buffer */ k = ZIP(bk); w = ZIP(window_posn); /* initialize window position */ /* inflate the coded data */ ml = Zipmask[bl]; /* precompute masks for speed */ md = Zipmask[bd]; for(;;) { ZIPNEEDBITS((cab_ULONG)bl) if((e = (t = tl + (b & ml))->e) > 16) do { if (e == 99) return 1; ZIPDUMPBITS(t->b) e -= 16; ZIPNEEDBITS(e) } while ((e = (t = t->v.t + (b & Zipmask[e]))->e) > 16); ZIPDUMPBITS(t->b) if (e == 16) /* then it's a literal */ CAB(outbuf)[w++] = (cab_UBYTE)t->v.n; else /* it's an EOB or a length */ { /* exit if end of block */ if(e == 15) break; /* get length of block to copy */ ZIPNEEDBITS(e) n = t->v.n + (b & Zipmask[e]); ZIPDUMPBITS(e); /* decode distance of block to copy */ ZIPNEEDBITS((cab_ULONG)bd) if ((e = (t = td + (b & md))->e) > 16) do { if (e == 99) return 1; ZIPDUMPBITS(t->b) e -= 16; ZIPNEEDBITS(e) } while ((e = (t = t->v.t + (b & Zipmask[e]))->e) > 16); ZIPDUMPBITS(t->b) ZIPNEEDBITS(e) d = w - t->v.n - (b & Zipmask[e]); ZIPDUMPBITS(e) do { d &= ZIPWSIZE - 1; e = ZIPWSIZE - max(d, w); e = min(e, n); n -= e; do { CAB(outbuf)[w++] = CAB(outbuf)[d++]; } while (--e); } while (n); } } /* restore the globals from the locals */ ZIP(window_posn) = w; /* restore global window pointer */ ZIP(bb) = b; /* restore global bit buffer */ ZIP(bk) = k; /* done */ return 0; } /*********************************************************** * Zipinflate_stored (internal) */ static cab_LONG fdi_Zipinflate_stored(fdi_decomp_state *decomp_state) /* "decompress" an inflated type 0 (stored) block. */ { cab_ULONG n; /* number of bytes in block */ cab_ULONG w; /* current window position */ register cab_ULONG b; /* bit buffer */ register cab_ULONG k; /* number of bits in bit buffer */ /* make local copies of globals */ b = ZIP(bb); /* initialize bit buffer */ k = ZIP(bk); w = ZIP(window_posn); /* initialize window position */ /* go to byte boundary */ n = k & 7; ZIPDUMPBITS(n); /* get the length and its complement */ ZIPNEEDBITS(16) n = (b & 0xffff); ZIPDUMPBITS(16) ZIPNEEDBITS(16) if (n != ((~b) & 0xffff)) return 1; /* error in compressed data */ ZIPDUMPBITS(16) /* read and output the compressed data */ while(n--) { ZIPNEEDBITS(8) CAB(outbuf)[w++] = (cab_UBYTE)b; ZIPDUMPBITS(8) } /* restore the globals from the locals */ ZIP(window_posn) = w; /* restore global window pointer */ ZIP(bb) = b; /* restore global bit buffer */ ZIP(bk) = k; return 0; } /****************************************************** * fdi_Zipinflate_fixed (internal) */ static cab_LONG fdi_Zipinflate_fixed(fdi_decomp_state *decomp_state) { struct Ziphuft *fixed_tl; struct Ziphuft *fixed_td; cab_LONG fixed_bl, fixed_bd; cab_LONG i; /* temporary variable */ cab_ULONG *l; l = ZIP(ll); /* literal table */ for(i = 0; i < 144; i++) l[i] = 8; for(; i < 256; i++) l[i] = 9; for(; i < 280; i++) l[i] = 7; for(; i < 288; i++) /* make a complete, but wrong code set */ l[i] = 8; fixed_bl = 7; if((i = fdi_Ziphuft_build(l, 288, 257, Zipcplens, Zipcplext, &fixed_tl, &fixed_bl, decomp_state))) return i; /* distance table */ for(i = 0; i < 30; i++) /* make an incomplete code set */ l[i] = 5; fixed_bd = 5; if((i = fdi_Ziphuft_build(l, 30, 0, Zipcpdist, Zipcpdext, &fixed_td, &fixed_bd, decomp_state)) > 1) { fdi_Ziphuft_free(CAB(hfdi), fixed_tl); return i; } /* decompress until an end-of-block code */ i = fdi_Zipinflate_codes(fixed_tl, fixed_td, fixed_bl, fixed_bd, decomp_state); fdi_Ziphuft_free(CAB(hfdi), fixed_td); fdi_Ziphuft_free(CAB(hfdi), fixed_tl); return i; } /************************************************************** * fdi_Zipinflate_dynamic (internal) */ static cab_LONG fdi_Zipinflate_dynamic(fdi_decomp_state *decomp_state) /* decompress an inflated type 2 (dynamic Huffman codes) block. */ { cab_LONG i; /* temporary variables */ cab_ULONG j; cab_ULONG *ll; cab_ULONG l; /* last length */ cab_ULONG m; /* mask for bit lengths table */ cab_ULONG n; /* number of lengths to get */ struct Ziphuft *tl; /* literal/length code table */ struct Ziphuft *td; /* distance code table */ cab_LONG bl; /* lookup bits for tl */ cab_LONG bd; /* lookup bits for td */ cab_ULONG nb; /* number of bit length codes */ cab_ULONG nl; /* number of literal/length codes */ cab_ULONG nd; /* number of distance codes */ register cab_ULONG b; /* bit buffer */ register cab_ULONG k; /* number of bits in bit buffer */ /* make local bit buffer */ b = ZIP(bb); k = ZIP(bk); ll = ZIP(ll); /* read in table lengths */ ZIPNEEDBITS(5) nl = 257 + (b & 0x1f); /* number of literal/length codes */ ZIPDUMPBITS(5) ZIPNEEDBITS(5) nd = 1 + (b & 0x1f); /* number of distance codes */ ZIPDUMPBITS(5) ZIPNEEDBITS(4) nb = 4 + (b & 0xf); /* number of bit length codes */ ZIPDUMPBITS(4) if(nl > 288 || nd > 32) return 1; /* bad lengths */ /* read in bit-length-code lengths */ for(j = 0; j < nb; j++) { ZIPNEEDBITS(3) ll[Zipborder[j]] = b & 7; ZIPDUMPBITS(3) } for(; j < 19; j++) ll[Zipborder[j]] = 0; /* build decoding table for trees--single level, 7 bit lookup */ bl = 7; if((i = fdi_Ziphuft_build(ll, 19, 19, NULL, NULL, &tl, &bl, decomp_state)) != 0) { if(i == 1) fdi_Ziphuft_free(CAB(hfdi), tl); return i; /* incomplete code set */ } /* read in literal and distance code lengths */ n = nl + nd; m = Zipmask[bl]; i = l = 0; while((cab_ULONG)i < n) { ZIPNEEDBITS((cab_ULONG)bl) j = (td = tl + (b & m))->b; ZIPDUMPBITS(j) j = td->v.n; if (j < 16) /* length of code in bits (0..15) */ ll[i++] = l = j; /* save last length in l */ else if (j == 16) /* repeat last length 3 to 6 times */ { ZIPNEEDBITS(2) j = 3 + (b & 3); ZIPDUMPBITS(2) if((cab_ULONG)i + j > n) return 1; while (j--) ll[i++] = l; } else if (j == 17) /* 3 to 10 zero length codes */ { ZIPNEEDBITS(3) j = 3 + (b & 7); ZIPDUMPBITS(3) if ((cab_ULONG)i + j > n) return 1; while (j--) ll[i++] = 0; l = 0; } else /* j == 18: 11 to 138 zero length codes */ { ZIPNEEDBITS(7) j = 11 + (b & 0x7f); ZIPDUMPBITS(7) if ((cab_ULONG)i + j > n) return 1; while (j--) ll[i++] = 0; l = 0; } } /* free decoding table for trees */ fdi_Ziphuft_free(CAB(hfdi), tl); /* restore the global bit buffer */ ZIP(bb) = b; ZIP(bk) = k; /* build the decoding tables for literal/length and distance codes */ bl = ZIPLBITS; if((i = fdi_Ziphuft_build(ll, nl, 257, Zipcplens, Zipcplext, &tl, &bl, decomp_state)) != 0) { if(i == 1) fdi_Ziphuft_free(CAB(hfdi), tl); return i; /* incomplete code set */ } bd = ZIPDBITS; fdi_Ziphuft_build(ll + nl, nd, 0, Zipcpdist, Zipcpdext, &td, &bd, decomp_state); /* decompress until an end-of-block code */ if(fdi_Zipinflate_codes(tl, td, bl, bd, decomp_state)) return 1; /* free the decoding tables, return */ fdi_Ziphuft_free(CAB(hfdi), tl); fdi_Ziphuft_free(CAB(hfdi), td); return 0; } /***************************************************** * fdi_Zipinflate_block (internal) */ static cab_LONG fdi_Zipinflate_block(cab_LONG *e, fdi_decomp_state *decomp_state) /* e == last block flag */ { /* decompress an inflated block */ cab_ULONG t; /* block type */ register cab_ULONG b; /* bit buffer */ register cab_ULONG k; /* number of bits in bit buffer */ /* make local bit buffer */ b = ZIP(bb); k = ZIP(bk); /* read in last block bit */ ZIPNEEDBITS(1) *e = (cab_LONG)b & 1; ZIPDUMPBITS(1) /* read in block type */ ZIPNEEDBITS(2) t = b & 3; ZIPDUMPBITS(2) /* restore the global bit buffer */ ZIP(bb) = b; ZIP(bk) = k; /* inflate that block type */ if(t == 2) return fdi_Zipinflate_dynamic(decomp_state); if(t == 0) return fdi_Zipinflate_stored(decomp_state); if(t == 1) return fdi_Zipinflate_fixed(decomp_state); /* bad block type */ return 2; } /**************************************************** * ZIPfdi_decomp(internal) */ static int ZIPfdi_decomp(int inlen, int outlen, fdi_decomp_state *decomp_state) { cab_LONG e; /* last block flag */ TRACE("(inlen == %d, outlen == %d)\n", inlen, outlen); ZIP(inpos) = CAB(inbuf); ZIP(bb) = ZIP(bk) = ZIP(window_posn) = 0; if(outlen > ZIPWSIZE) return DECR_DATAFORMAT; /* CK = Chris Kirmse, official Microsoft purloiner */ if(ZIP(inpos)[0] != 0x43 || ZIP(inpos)[1] != 0x4B) return DECR_ILLEGALDATA; ZIP(inpos) += 2; do { if(fdi_Zipinflate_block(&e, decomp_state)) return DECR_ILLEGALDATA; } while(!e); /* return success */ return DECR_OK; } static void * __cdecl fdi_alloc(ULONG cb) { return HeapAlloc(GetProcessHeap(), 0, cb); } static void __cdecl fdi_free(void *pv) { HeapFree(GetProcessHeap(), 0, pv); } int mszip_decompress(unsigned int inlen, unsigned int outlen, char* inbuffer, char* outbuffer) { int ret; fdi_decomp_state decomp_state; FDI_Int fdi; TRACE("(%u, %u, %p, %p)\n", inlen, outlen, inbuffer, outbuffer); if ((inlen > CAB_INPUTMAX) || (outlen > CAB_BLOCKMAX)) { FIXME("Big file not supported yet (inlen = %u, outlen = %u)\n", inlen, outlen); return DECR_DATAFORMAT; } fdi.pfnalloc = fdi_alloc; fdi.pfnfree = fdi_free; decomp_state.hfdi = (void*)&fdi; memcpy(decomp_state.inbuf, inbuffer, inlen); ret = ZIPfdi_decomp(inlen, outlen, &decomp_state); memcpy(outbuffer, decomp_state.outbuf, outlen); return ret; }