btrfs-progs/mkfs/main.c

1426 lines
36 KiB
C

/*
* Copyright (C) 2007 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include "kerncompat.h"
#include "androidcompat.h"
#include <sys/ioctl.h>
#include <sys/mount.h>
#include "ioctl.h"
#include <stdio.h>
#include <stdlib.h>
/* #include <sys/dir.h> included via androidcompat.h */
#include <fcntl.h>
#include <limits.h>
#include <unistd.h>
#include <getopt.h>
#include <uuid/uuid.h>
#include <ctype.h>
#include <blkid/blkid.h>
#include "ctree.h"
#include "disk-io.h"
#include "volumes.h"
#include "transaction.h"
#include "common/utils.h"
#include "common/path-utils.h"
#include "common/device-utils.h"
#include "common/device-scan.h"
#include "kernel-lib/list_sort.h"
#include "common/help.h"
#include "common/rbtree-utils.h"
#include "mkfs/common.h"
#include "mkfs/rootdir.h"
#include "crypto/crc32c.h"
#include "common/fsfeatures.h"
#include "common/box.h"
static int verbose = 1;
struct mkfs_allocation {
u64 data;
u64 metadata;
u64 mixed;
u64 system;
};
static int create_metadata_block_groups(struct btrfs_root *root, int mixed,
struct mkfs_allocation *allocation)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_trans_handle *trans;
struct btrfs_space_info *sinfo;
u64 flags = BTRFS_BLOCK_GROUP_METADATA;
u64 bytes_used;
u64 chunk_start = 0;
u64 chunk_size = 0;
int ret;
if (mixed)
flags |= BTRFS_BLOCK_GROUP_DATA;
/* Create needed space info to trace extents reservation */
ret = update_space_info(fs_info, flags, 0, 0, &sinfo);
if (ret < 0)
return ret;
trans = btrfs_start_transaction(root, 1);
BUG_ON(IS_ERR(trans));
bytes_used = btrfs_super_bytes_used(fs_info->super_copy);
root->fs_info->system_allocs = 1;
/*
* First temporary system chunk must match the chunk layout
* created in make_btrfs().
*/
ret = btrfs_make_block_group(trans, fs_info, bytes_used,
BTRFS_BLOCK_GROUP_SYSTEM,
BTRFS_BLOCK_RESERVED_1M_FOR_SUPER,
BTRFS_MKFS_SYSTEM_GROUP_SIZE);
allocation->system += BTRFS_MKFS_SYSTEM_GROUP_SIZE;
if (ret)
return ret;
if (mixed) {
ret = btrfs_alloc_chunk(trans, fs_info,
&chunk_start, &chunk_size,
BTRFS_BLOCK_GROUP_METADATA |
BTRFS_BLOCK_GROUP_DATA);
if (ret == -ENOSPC) {
error("no space to allocate data/metadata chunk");
goto err;
}
if (ret)
return ret;
ret = btrfs_make_block_group(trans, fs_info, 0,
BTRFS_BLOCK_GROUP_METADATA |
BTRFS_BLOCK_GROUP_DATA,
chunk_start, chunk_size);
if (ret)
return ret;
allocation->mixed += chunk_size;
} else {
ret = btrfs_alloc_chunk(trans, fs_info,
&chunk_start, &chunk_size,
BTRFS_BLOCK_GROUP_METADATA);
if (ret == -ENOSPC) {
error("no space to allocate metadata chunk");
goto err;
}
if (ret)
return ret;
ret = btrfs_make_block_group(trans, fs_info, 0,
BTRFS_BLOCK_GROUP_METADATA,
chunk_start, chunk_size);
allocation->metadata += chunk_size;
if (ret)
return ret;
}
root->fs_info->system_allocs = 0;
ret = btrfs_commit_transaction(trans, root);
err:
return ret;
}
static int create_data_block_groups(struct btrfs_trans_handle *trans,
struct btrfs_root *root, int mixed,
struct mkfs_allocation *allocation)
{
struct btrfs_fs_info *fs_info = root->fs_info;
u64 chunk_start = 0;
u64 chunk_size = 0;
int ret = 0;
if (!mixed) {
struct btrfs_space_info *sinfo;
ret = update_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA,
0, 0, &sinfo);
if (ret < 0)
return ret;
ret = btrfs_alloc_chunk(trans, fs_info,
&chunk_start, &chunk_size,
BTRFS_BLOCK_GROUP_DATA);
if (ret == -ENOSPC) {
error("no space to allocate data chunk");
goto err;
}
if (ret)
return ret;
ret = btrfs_make_block_group(trans, fs_info, 0,
BTRFS_BLOCK_GROUP_DATA,
chunk_start, chunk_size);
allocation->data += chunk_size;
if (ret)
return ret;
}
err:
return ret;
}
static int make_root_dir(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
struct btrfs_key location;
int ret;
ret = btrfs_make_root_dir(trans, root->fs_info->tree_root,
BTRFS_ROOT_TREE_DIR_OBJECTID);
if (ret)
goto err;
ret = btrfs_make_root_dir(trans, root, BTRFS_FIRST_FREE_OBJECTID);
if (ret)
goto err;
memcpy(&location, &root->fs_info->fs_root->root_key, sizeof(location));
location.offset = (u64)-1;
ret = btrfs_insert_dir_item(trans, root->fs_info->tree_root,
"default", 7,
btrfs_super_root_dir(root->fs_info->super_copy),
&location, BTRFS_FT_DIR, 0);
if (ret)
goto err;
ret = btrfs_insert_inode_ref(trans, root->fs_info->tree_root,
"default", 7, location.objectid,
BTRFS_ROOT_TREE_DIR_OBJECTID, 0);
if (ret)
goto err;
err:
return ret;
}
static int __recow_root(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
struct extent_buffer *tmp;
int ret;
if (trans->transid != btrfs_root_generation(&root->root_item)) {
extent_buffer_get(root->node);
ret = __btrfs_cow_block(trans, root, root->node,
NULL, 0, &tmp, 0, 0);
if (ret)
return ret;
free_extent_buffer(tmp);
}
return 0;
}
static int recow_roots(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
struct btrfs_fs_info *info = root->fs_info;
int ret;
ret = __recow_root(trans, info->fs_root);
if (ret)
return ret;
ret = __recow_root(trans, info->tree_root);
if (ret)
return ret;
ret = __recow_root(trans, info->extent_root);
if (ret)
return ret;
ret = __recow_root(trans, info->chunk_root);
if (ret)
return ret;
ret = __recow_root(trans, info->dev_root);
if (ret)
return ret;
ret = __recow_root(trans, info->csum_root);
if (ret)
return ret;
return 0;
}
static int create_one_raid_group(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 type,
struct mkfs_allocation *allocation)
{
struct btrfs_fs_info *fs_info = root->fs_info;
u64 chunk_start;
u64 chunk_size;
int ret;
ret = btrfs_alloc_chunk(trans, fs_info,
&chunk_start, &chunk_size, type);
if (ret == -ENOSPC) {
error("not enough free space to allocate chunk");
exit(1);
}
if (ret)
return ret;
ret = btrfs_make_block_group(trans, fs_info, 0,
type, chunk_start, chunk_size);
type &= BTRFS_BLOCK_GROUP_TYPE_MASK;
if (type == BTRFS_BLOCK_GROUP_DATA) {
allocation->data += chunk_size;
} else if (type == BTRFS_BLOCK_GROUP_METADATA) {
allocation->metadata += chunk_size;
} else if (type == BTRFS_BLOCK_GROUP_SYSTEM) {
allocation->system += chunk_size;
} else if (type ==
(BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA)) {
allocation->mixed += chunk_size;
} else {
error("unrecognized profile type: 0x%llx",
(unsigned long long)type);
ret = -EINVAL;
}
return ret;
}
static int create_raid_groups(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 data_profile,
u64 metadata_profile, int mixed,
struct mkfs_allocation *allocation)
{
int ret;
if (metadata_profile) {
u64 meta_flags = BTRFS_BLOCK_GROUP_METADATA;
ret = create_one_raid_group(trans, root,
BTRFS_BLOCK_GROUP_SYSTEM |
metadata_profile, allocation);
if (ret)
return ret;
if (mixed)
meta_flags |= BTRFS_BLOCK_GROUP_DATA;
ret = create_one_raid_group(trans, root, meta_flags |
metadata_profile, allocation);
if (ret)
return ret;
}
if (!mixed && data_profile) {
ret = create_one_raid_group(trans, root,
BTRFS_BLOCK_GROUP_DATA |
data_profile, allocation);
if (ret)
return ret;
}
ret = recow_roots(trans, root);
return ret;
}
static void print_usage(int ret)
{
printf("Usage: mkfs.btrfs [options] dev [ dev ... ]\n");
printf("Options:\n");
printf(" allocation profiles:\n");
printf("\t-d|--data PROFILE data profile, raid0, raid1, raid1c3, raid1c4, raid5, raid6, raid10, dup or single\n");
printf("\t-m|--metadata PROFILE metadata profile, values like for data profile\n");
printf("\t-M|--mixed mix metadata and data together\n");
printf(" features:\n");
printf("\t--csum TYPE\n");
printf("\t--checksum TYPE checksum algorithm to use (default: crc32c)\n");
printf("\t-n|--nodesize SIZE size of btree nodes\n");
printf("\t-s|--sectorsize SIZE data block size (may not be mountable by current kernel)\n");
printf("\t-O|--features LIST comma separated list of filesystem features (use '-O list-all' to list features)\n");
printf("\t-L|--label LABEL set the filesystem label\n");
printf("\t-U|--uuid UUID specify the filesystem UUID (must be unique)\n");
printf(" creation:\n");
printf("\t-b|--byte-count SIZE set filesystem size to SIZE (on the first device)\n");
printf("\t-r|--rootdir DIR copy files from DIR to the image root directory\n");
printf("\t--shrink (with --rootdir) shrink the filled filesystem to minimal size\n");
printf("\t-K|--nodiscard do not perform whole device TRIM\n");
printf("\t-f|--force force overwrite of existing filesystem\n");
printf(" general:\n");
printf("\t-q|--quiet no messages except errors\n");
printf("\t-V|--version print the mkfs.btrfs version and exit\n");
printf("\t--help print this help and exit\n");
printf(" deprecated:\n");
printf("\t-A|--alloc-start START the offset to start the filesystem\n");
printf("\t-l|--leafsize SIZE deprecated, alias for nodesize\n");
exit(ret);
}
static u64 parse_profile(const char *s)
{
if (strcasecmp(s, "raid0") == 0) {
return BTRFS_BLOCK_GROUP_RAID0;
} else if (strcasecmp(s, "raid1") == 0) {
return BTRFS_BLOCK_GROUP_RAID1;
} else if (strcasecmp(s, "raid1c3") == 0) {
return BTRFS_BLOCK_GROUP_RAID1C3;
} else if (strcasecmp(s, "raid1c4") == 0) {
return BTRFS_BLOCK_GROUP_RAID1C4;
} else if (strcasecmp(s, "raid5") == 0) {
return BTRFS_BLOCK_GROUP_RAID5;
} else if (strcasecmp(s, "raid6") == 0) {
return BTRFS_BLOCK_GROUP_RAID6;
} else if (strcasecmp(s, "raid10") == 0) {
return BTRFS_BLOCK_GROUP_RAID10;
} else if (strcasecmp(s, "dup") == 0) {
return BTRFS_BLOCK_GROUP_DUP;
} else if (strcasecmp(s, "single") == 0) {
return 0;
} else {
error("unknown profile %s", s);
exit(1);
}
/* not reached */
return 0;
}
static char *parse_label(const char *input)
{
int len = strlen(input);
if (len >= BTRFS_LABEL_SIZE) {
error("label %s is too long (max %d)", input,
BTRFS_LABEL_SIZE - 1);
exit(1);
}
return strdup(input);
}
static int zero_output_file(int out_fd, u64 size)
{
int loop_num;
u64 location = 0;
char buf[SZ_4K];
int ret = 0, i;
ssize_t written;
memset(buf, 0, SZ_4K);
/* Only zero out the first 1M */
loop_num = SZ_1M / SZ_4K;
for (i = 0; i < loop_num; i++) {
written = pwrite64(out_fd, buf, SZ_4K, location);
if (written != SZ_4K)
ret = -EIO;
location += SZ_4K;
}
/* Then enlarge the file to size */
written = pwrite64(out_fd, buf, 1, size - 1);
if (written < 1)
ret = -EIO;
return ret;
}
static int is_ssd(const char *file)
{
blkid_probe probe;
char wholedisk[PATH_MAX];
char sysfs_path[PATH_MAX];
dev_t devno;
int fd;
char rotational;
int ret;
probe = blkid_new_probe_from_filename(file);
if (!probe)
return 0;
/* Device number of this disk (possibly a partition) */
devno = blkid_probe_get_devno(probe);
if (!devno) {
blkid_free_probe(probe);
return 0;
}
/* Get whole disk name (not full path) for this devno */
ret = blkid_devno_to_wholedisk(devno,
wholedisk, sizeof(wholedisk), NULL);
if (ret) {
blkid_free_probe(probe);
return 0;
}
snprintf(sysfs_path, PATH_MAX, "/sys/block/%s/queue/rotational",
wholedisk);
blkid_free_probe(probe);
fd = open(sysfs_path, O_RDONLY);
if (fd < 0) {
return 0;
}
if (read(fd, &rotational, 1) < 1) {
close(fd);
return 0;
}
close(fd);
return rotational == '0';
}
static int _cmp_device_by_id(void *priv, struct list_head *a,
struct list_head *b)
{
return list_entry(a, struct btrfs_device, dev_list)->devid -
list_entry(b, struct btrfs_device, dev_list)->devid;
}
static void list_all_devices(struct btrfs_root *root)
{
struct btrfs_fs_devices *fs_devices;
struct btrfs_device *device;
int number_of_devices = 0;
u64 total_block_count = 0;
fs_devices = root->fs_info->fs_devices;
list_for_each_entry(device, &fs_devices->devices, dev_list)
number_of_devices++;
list_sort(NULL, &fs_devices->devices, _cmp_device_by_id);
printf("Number of devices: %d\n", number_of_devices);
/* printf("Total devices size: %10s\n", */
/* pretty_size(total_block_count)); */
printf("Devices:\n");
printf(" ID SIZE PATH\n");
list_for_each_entry(device, &fs_devices->devices, dev_list) {
printf(" %3llu %10s %s\n",
device->devid,
pretty_size(device->total_bytes),
device->name);
total_block_count += device->total_bytes;
}
printf("\n");
}
static int is_temp_block_group(struct extent_buffer *node,
struct btrfs_block_group_item *bgi,
u64 data_profile, u64 meta_profile,
u64 sys_profile)
{
u64 flag = btrfs_disk_block_group_flags(node, bgi);
u64 flag_type = flag & BTRFS_BLOCK_GROUP_TYPE_MASK;
u64 flag_profile = flag & BTRFS_BLOCK_GROUP_PROFILE_MASK;
u64 used = btrfs_disk_block_group_used(node, bgi);
/*
* Chunks meets all the following conditions is a temp chunk
* 1) Empty chunk
* Temp chunk is always empty.
*
* 2) profile mismatch with mkfs profile.
* Temp chunk is always in SINGLE
*
* 3) Size differs with mkfs_alloc
* Special case for SINGLE/SINGLE btrfs.
* In that case, temp data chunk and real data chunk are always empty.
* So we need to use mkfs_alloc to be sure which chunk is the newly
* allocated.
*
* Normally, new chunk size is equal to mkfs one (One chunk)
* If it has multiple chunks, we just refuse to delete any one.
* As they are all single, so no real problem will happen.
* So only use condition 1) and 2) to judge them.
*/
if (used != 0)
return 0;
switch (flag_type) {
case BTRFS_BLOCK_GROUP_DATA:
case BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA:
data_profile &= BTRFS_BLOCK_GROUP_PROFILE_MASK;
if (flag_profile != data_profile)
return 1;
break;
case BTRFS_BLOCK_GROUP_METADATA:
meta_profile &= BTRFS_BLOCK_GROUP_PROFILE_MASK;
if (flag_profile != meta_profile)
return 1;
break;
case BTRFS_BLOCK_GROUP_SYSTEM:
sys_profile &= BTRFS_BLOCK_GROUP_PROFILE_MASK;
if (flag_profile != sys_profile)
return 1;
break;
}
return 0;
}
/* Note: if current is a block group, it will skip it anyway */
static int next_block_group(struct btrfs_root *root,
struct btrfs_path *path)
{
struct btrfs_key key;
int ret = 0;
while (1) {
ret = btrfs_next_item(root, path);
if (ret)
goto out;
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
if (key.type == BTRFS_BLOCK_GROUP_ITEM_KEY)
goto out;
}
out:
return ret;
}
/* This function will cleanup */
static int cleanup_temp_chunks(struct btrfs_fs_info *fs_info,
struct mkfs_allocation *alloc,
u64 data_profile, u64 meta_profile,
u64 sys_profile)
{
struct btrfs_trans_handle *trans = NULL;
struct btrfs_block_group_item *bgi;
struct btrfs_root *root = fs_info->extent_root;
struct btrfs_key key;
struct btrfs_key found_key;
struct btrfs_path path;
int ret = 0;
btrfs_init_path(&path);
trans = btrfs_start_transaction(root, 1);
BUG_ON(IS_ERR(trans));
key.objectid = 0;
key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
key.offset = 0;
while (1) {
/*
* as the rest of the loop may modify the tree, we need to
* start a new search each time.
*/
ret = btrfs_search_slot(trans, root, &key, &path, 0, 0);
if (ret < 0)
goto out;
/* Don't pollute ret for >0 case */
if (ret > 0)
ret = 0;
btrfs_item_key_to_cpu(path.nodes[0], &found_key,
path.slots[0]);
if (found_key.objectid < key.objectid)
goto out;
if (found_key.type != BTRFS_BLOCK_GROUP_ITEM_KEY) {
ret = next_block_group(root, &path);
if (ret < 0)
goto out;
if (ret > 0) {
ret = 0;
goto out;
}
btrfs_item_key_to_cpu(path.nodes[0], &found_key,
path.slots[0]);
}
bgi = btrfs_item_ptr(path.nodes[0], path.slots[0],
struct btrfs_block_group_item);
if (is_temp_block_group(path.nodes[0], bgi,
data_profile, meta_profile,
sys_profile)) {
u64 flags = btrfs_disk_block_group_flags(path.nodes[0],
bgi);
ret = btrfs_free_block_group(trans, fs_info,
found_key.objectid, found_key.offset);
if (ret < 0)
goto out;
if ((flags & BTRFS_BLOCK_GROUP_TYPE_MASK) ==
BTRFS_BLOCK_GROUP_DATA)
alloc->data -= found_key.offset;
else if ((flags & BTRFS_BLOCK_GROUP_TYPE_MASK) ==
BTRFS_BLOCK_GROUP_METADATA)
alloc->metadata -= found_key.offset;
else if ((flags & BTRFS_BLOCK_GROUP_TYPE_MASK) ==
BTRFS_BLOCK_GROUP_SYSTEM)
alloc->system -= found_key.offset;
else if ((flags & BTRFS_BLOCK_GROUP_TYPE_MASK) ==
(BTRFS_BLOCK_GROUP_METADATA |
BTRFS_BLOCK_GROUP_DATA))
alloc->mixed -= found_key.offset;
}
btrfs_release_path(&path);
key.objectid = found_key.objectid + found_key.offset;
}
out:
if (trans)
btrfs_commit_transaction(trans, root);
btrfs_release_path(&path);
return ret;
}
/*
* Just update chunk allocation info, since --rootdir may allocate new
* chunks which is not updated in @allocation structure.
*/
static void update_chunk_allocation(struct btrfs_fs_info *fs_info,
struct mkfs_allocation *allocation)
{
struct btrfs_block_group_cache *bg_cache;
const u64 mixed_flag = BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA;
u64 search_start = 0;
allocation->mixed = 0;
allocation->data = 0;
allocation->metadata = 0;
allocation->system = 0;
while (1) {
bg_cache = btrfs_lookup_first_block_group(fs_info,
search_start);
if (!bg_cache)
break;
if ((bg_cache->flags & mixed_flag) == mixed_flag)
allocation->mixed += bg_cache->key.offset;
else if (bg_cache->flags & BTRFS_BLOCK_GROUP_DATA)
allocation->data += bg_cache->key.offset;
else if (bg_cache->flags & BTRFS_BLOCK_GROUP_METADATA)
allocation->metadata += bg_cache->key.offset;
else
allocation->system += bg_cache->key.offset;
search_start = bg_cache->key.objectid + bg_cache->key.offset;
}
}
static int create_data_reloc_tree(struct btrfs_trans_handle *trans)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_inode_item *inode;
struct btrfs_root *root;
struct btrfs_path path;
struct btrfs_key key;
u64 ino = BTRFS_FIRST_FREE_OBJECTID;
char *name = "..";
int ret;
root = btrfs_create_tree(trans, fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
if (IS_ERR(root)) {
ret = PTR_ERR(root);
goto out;
}
/* Update dirid as created tree has default dirid 0 */
btrfs_set_root_dirid(&root->root_item, ino);
ret = btrfs_update_root(trans, fs_info->tree_root, &root->root_key,
&root->root_item);
if (ret < 0)
goto out;
/* Cache this tree so it can be cleaned up at close_ctree() */
ret = rb_insert(&fs_info->fs_root_tree, &root->rb_node,
btrfs_fs_roots_compare_roots);
if (ret < 0)
goto out;
/* Insert INODE_ITEM */
ret = btrfs_new_inode(trans, root, ino, 0755 | S_IFDIR);
if (ret < 0)
goto out;
/* then INODE_REF */
ret = btrfs_insert_inode_ref(trans, root, name, strlen(name), ino, ino,
0);
if (ret < 0)
goto out;
/* Update nlink of that inode item */
key.objectid = ino;
key.type = BTRFS_INODE_ITEM_KEY;
key.offset = 0;
btrfs_init_path(&path);
ret = btrfs_search_slot(trans, root, &key, &path, 0, 1);
if (ret > 0) {
ret = -ENOENT;
btrfs_release_path(&path);
goto out;
}
if (ret < 0) {
btrfs_release_path(&path);
goto out;
}
inode = btrfs_item_ptr(path.nodes[0], path.slots[0],
struct btrfs_inode_item);
btrfs_set_inode_nlink(path.nodes[0], inode, 1);
btrfs_mark_buffer_dirty(path.nodes[0]);
btrfs_release_path(&path);
return 0;
out:
btrfs_abort_transaction(trans, ret);
return ret;
}
static int create_uuid_tree(struct btrfs_trans_handle *trans)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_root *root;
int ret = 0;
ASSERT(fs_info->uuid_root == NULL);
root = btrfs_create_tree(trans, fs_info, BTRFS_UUID_TREE_OBJECTID);
if (IS_ERR(root)) {
ret = PTR_ERR(root);
goto out;
}
add_root_to_dirty_list(root);
fs_info->uuid_root = root;
ret = btrfs_uuid_tree_add(trans, fs_info->fs_root->root_item.uuid,
BTRFS_UUID_KEY_SUBVOL,
fs_info->fs_root->root_key.objectid);
if (ret < 0)
btrfs_abort_transaction(trans, ret);
out:
return ret;
}
int BOX_MAIN(mkfs)(int argc, char **argv)
{
char *file;
struct btrfs_root *root;
struct btrfs_fs_info *fs_info;
struct btrfs_trans_handle *trans;
char *label = NULL;
u64 block_count = 0;
u64 dev_block_count = 0;
u64 alloc_start = 0;
u64 metadata_profile = 0;
u64 data_profile = 0;
u32 nodesize = max_t(u32, sysconf(_SC_PAGESIZE),
BTRFS_MKFS_DEFAULT_NODE_SIZE);
u32 sectorsize = 4096;
u32 stripesize = 4096;
int zero_end = 1;
int fd = -1;
int ret = 0;
int close_ret;
int i;
int mixed = 0;
int nodesize_forced = 0;
int data_profile_opt = 0;
int metadata_profile_opt = 0;
int discard = 1;
int ssd = 0;
int force_overwrite = 0;
char *source_dir = NULL;
bool source_dir_set = false;
bool shrink_rootdir = false;
u64 source_dir_size = 0;
u64 min_dev_size;
u64 shrink_size;
int dev_cnt = 0;
int saved_optind;
char fs_uuid[BTRFS_UUID_UNPARSED_SIZE] = { 0 };
u64 features = BTRFS_MKFS_DEFAULT_FEATURES;
struct mkfs_allocation allocation = { 0 };
struct btrfs_mkfs_config mkfs_cfg;
enum btrfs_csum_type csum_type = BTRFS_CSUM_TYPE_CRC32;
crc32c_optimization_init();
while(1) {
int c;
enum { GETOPT_VAL_SHRINK = 257, GETOPT_VAL_CHECKSUM };
static const struct option long_options[] = {
{ "alloc-start", required_argument, NULL, 'A'},
{ "byte-count", required_argument, NULL, 'b' },
{ "csum", required_argument, NULL,
GETOPT_VAL_CHECKSUM },
{ "checksum", required_argument, NULL,
GETOPT_VAL_CHECKSUM },
{ "force", no_argument, NULL, 'f' },
{ "leafsize", required_argument, NULL, 'l' },
{ "label", required_argument, NULL, 'L'},
{ "metadata", required_argument, NULL, 'm' },
{ "mixed", no_argument, NULL, 'M' },
{ "nodesize", required_argument, NULL, 'n' },
{ "sectorsize", required_argument, NULL, 's' },
{ "data", required_argument, NULL, 'd' },
{ "version", no_argument, NULL, 'V' },
{ "rootdir", required_argument, NULL, 'r' },
{ "nodiscard", no_argument, NULL, 'K' },
{ "features", required_argument, NULL, 'O' },
{ "uuid", required_argument, NULL, 'U' },
{ "quiet", 0, NULL, 'q' },
{ "shrink", no_argument, NULL, GETOPT_VAL_SHRINK },
{ "help", no_argument, NULL, GETOPT_VAL_HELP },
{ NULL, 0, NULL, 0}
};
c = getopt_long(argc, argv, "A:b:fl:n:s:m:d:L:O:r:U:VMKq",
long_options, NULL);
if (c < 0)
break;
switch(c) {
case 'A':
alloc_start = parse_size(optarg);
break;
case 'f':
force_overwrite = 1;
break;
case 'd':
data_profile = parse_profile(optarg);
data_profile_opt = 1;
break;
case 'l':
warning("--leafsize is deprecated, use --nodesize");
/* fall through */
case 'n':
nodesize = parse_size(optarg);
nodesize_forced = 1;
break;
case 'L':
label = parse_label(optarg);
break;
case 'm':
metadata_profile = parse_profile(optarg);
metadata_profile_opt = 1;
break;
case 'M':
mixed = 1;
break;
case 'O': {
char *orig = strdup(optarg);
char *tmp = orig;
tmp = btrfs_parse_fs_features(tmp, &features);
if (tmp) {
error("unrecognized filesystem feature '%s'",
tmp);
free(orig);
goto error;
}
free(orig);
if (features & BTRFS_FEATURE_LIST_ALL) {
btrfs_list_all_fs_features(0);
goto success;
}
break;
}
case 's':
sectorsize = parse_size(optarg);
break;
case 'b':
block_count = parse_size(optarg);
zero_end = 0;
break;
case 'V':
printf("mkfs.btrfs, part of %s\n",
PACKAGE_STRING);
goto success;
case 'r':
source_dir = optarg;
source_dir_set = true;
break;
case 'U':
strncpy(fs_uuid, optarg,
BTRFS_UUID_UNPARSED_SIZE - 1);
break;
case 'K':
discard = 0;
break;
case 'q':
verbose = 0;
break;
case GETOPT_VAL_SHRINK:
shrink_rootdir = true;
break;
case GETOPT_VAL_CHECKSUM:
csum_type = parse_csum_type(optarg);
break;
case GETOPT_VAL_HELP:
default:
print_usage(c != GETOPT_VAL_HELP);
}
}
if (verbose) {
printf("%s\n", PACKAGE_STRING);
printf("See %s for more information.\n\n", PACKAGE_URL);
}
sectorsize = max(sectorsize, (u32)sysconf(_SC_PAGESIZE));
stripesize = sectorsize;
saved_optind = optind;
dev_cnt = argc - optind;
if (dev_cnt == 0)
print_usage(1);
if (source_dir_set && dev_cnt > 1) {
error("the option -r is limited to a single device");
goto error;
}
if (shrink_rootdir && !source_dir_set) {
error("the option --shrink must be used with --rootdir");
goto error;
}
if (*fs_uuid) {
uuid_t dummy_uuid;
if (uuid_parse(fs_uuid, dummy_uuid) != 0) {
error("could not parse UUID: %s", fs_uuid);
goto error;
}
if (!test_uuid_unique(fs_uuid)) {
error("non-unique UUID: %s", fs_uuid);
goto error;
}
}
while (dev_cnt-- > 0) {
file = argv[optind++];
if (source_dir_set && path_exists(file) == 0)
ret = 0;
else if (path_is_block_device(file) == 1)
ret = test_dev_for_mkfs(file, force_overwrite);
else
ret = test_status_for_mkfs(file, force_overwrite);
if (ret)
goto error;
}
optind = saved_optind;
dev_cnt = argc - optind;
file = argv[optind++];
ssd = is_ssd(file);
/*
* Set default profiles according to number of added devices.
* For mixed groups defaults are single/single.
*/
if (!mixed) {
if (!metadata_profile_opt) {
if (dev_cnt == 1 && ssd && verbose)
printf("Detected a SSD, turning off metadata "
"duplication. Mkfs with -m dup if you want to "
"force metadata duplication.\n");
metadata_profile = (dev_cnt > 1) ?
BTRFS_BLOCK_GROUP_RAID1 : (ssd) ?
0: BTRFS_BLOCK_GROUP_DUP;
}
if (!data_profile_opt) {
data_profile = (dev_cnt > 1) ?
BTRFS_BLOCK_GROUP_RAID0 : 0; /* raid0 or single */
}
} else {
u32 best_nodesize = max_t(u32, sysconf(_SC_PAGESIZE), sectorsize);
if (metadata_profile_opt || data_profile_opt) {
if (metadata_profile != data_profile) {
error(
"with mixed block groups data and metadata profiles must be the same");
goto error;
}
}
if (!nodesize_forced)
nodesize = best_nodesize;
}
/*
* FS features that can be set by other means than -O
* just set the bit here
*/
if (mixed)
features |= BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS;
if ((data_profile | metadata_profile) &
(BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
features |= BTRFS_FEATURE_INCOMPAT_RAID56;
}
if ((data_profile | metadata_profile) &
(BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)) {
features |= BTRFS_FEATURE_INCOMPAT_RAID1C34;
}
if (btrfs_check_nodesize(nodesize, sectorsize,
features))
goto error;
if (sectorsize < sizeof(struct btrfs_super_block)) {
error("sectorsize smaller than superblock: %u < %zu",
sectorsize, sizeof(struct btrfs_super_block));
goto error;
}
min_dev_size = btrfs_min_dev_size(nodesize, mixed, metadata_profile,
data_profile);
/*
* Enlarge the destination file or create a new one, using the size
* calculated from source dir.
*
* This must be done before minimal device size checks.
*/
if (source_dir_set) {
int oflags = O_RDWR;
struct stat statbuf;
if (path_exists(file) == 0)
oflags |= O_CREAT;
fd = open(file, oflags, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP |
S_IROTH);
if (fd < 0) {
error("unable to open %s: %m", file);
goto error;
}
ret = fstat(fd, &statbuf);
if (ret < 0) {
error("unable to stat %s: %m", file);
ret = -errno;
goto error;
}
/*
* Block_count not specified, use file/device size first.
* Or we will always use source_dir_size calculated for mkfs.
*/
if (!block_count)
block_count = btrfs_device_size(fd, &statbuf);
source_dir_size = btrfs_mkfs_size_dir(source_dir, sectorsize,
min_dev_size, metadata_profile, data_profile);
if (block_count < source_dir_size)
block_count = source_dir_size;
ret = zero_output_file(fd, block_count);
if (ret) {
error("unable to zero the output file");
close(fd);
goto error;
}
/* our "device" is the new image file */
dev_block_count = block_count;
close(fd);
}
/* Check device/block_count after the nodesize is determined */
if (block_count && block_count < min_dev_size) {
error("size %llu is too small to make a usable filesystem",
block_count);
error("minimum size for btrfs filesystem is %llu",
min_dev_size);
goto error;
}
for (i = saved_optind; i < saved_optind + dev_cnt; i++) {
char *path;
path = argv[i];
ret = test_minimum_size(path, min_dev_size);
if (ret < 0) {
error("failed to check size for %s: %m", path);
goto error;
}
if (ret > 0) {
error("'%s' is too small to make a usable filesystem",
path);
error("minimum size for each btrfs device is %llu",
min_dev_size);
goto error;
}
}
ret = test_num_disk_vs_raid(metadata_profile, data_profile,
dev_cnt, mixed, ssd);
if (ret)
goto error;
dev_cnt--;
/*
* Open without O_EXCL so that the problem should not occur by the
* following operation in kernel:
* (btrfs_register_one_device() fails if O_EXCL is on)
*/
fd = open(file, O_RDWR);
if (fd < 0) {
error("unable to open %s: %m", file);
goto error;
}
ret = btrfs_prepare_device(fd, file, &dev_block_count, block_count,
(zero_end ? PREP_DEVICE_ZERO_END : 0) |
(discard ? PREP_DEVICE_DISCARD : 0) |
(verbose ? PREP_DEVICE_VERBOSE : 0));
if (ret)
goto error;
if (block_count && block_count > dev_block_count) {
error("%s is smaller than requested size, expected %llu, found %llu",
file, (unsigned long long)block_count,
(unsigned long long)dev_block_count);
goto error;
}
/* To create the first block group and chunk 0 in make_btrfs */
if (dev_block_count < BTRFS_MKFS_SYSTEM_GROUP_SIZE) {
error("device is too small to make filesystem, must be at least %llu",
(unsigned long long)BTRFS_MKFS_SYSTEM_GROUP_SIZE);
goto error;
}
if (group_profile_max_safe_loss(metadata_profile) <
group_profile_max_safe_loss(data_profile)){
warning("metadata has lower redundancy than data!\n");
}
mkfs_cfg.csum_type = BTRFS_CSUM_TYPE_CRC32;
mkfs_cfg.label = label;
memcpy(mkfs_cfg.fs_uuid, fs_uuid, sizeof(mkfs_cfg.fs_uuid));
mkfs_cfg.num_bytes = dev_block_count;
mkfs_cfg.nodesize = nodesize;
mkfs_cfg.sectorsize = sectorsize;
mkfs_cfg.stripesize = stripesize;
mkfs_cfg.features = features;
mkfs_cfg.csum_type = csum_type;
ret = make_btrfs(fd, &mkfs_cfg);
if (ret) {
errno = -ret;
error("error during mkfs: %m");
goto error;
}
fs_info = open_ctree_fs_info(file, 0, 0, 0,
OPEN_CTREE_WRITES | OPEN_CTREE_TEMPORARY_SUPER);
if (!fs_info) {
error("open ctree failed");
goto error;
}
close(fd);
fd = -1;
root = fs_info->fs_root;
fs_info->alloc_start = alloc_start;
ret = create_metadata_block_groups(root, mixed, &allocation);
if (ret) {
error("failed to create default block groups: %d", ret);
goto error;
}
trans = btrfs_start_transaction(root, 1);
if (IS_ERR(trans)) {
error("failed to start transaction");
goto error;
}
ret = create_data_block_groups(trans, root, mixed, &allocation);
if (ret) {
error("failed to create default data block groups: %d", ret);
goto error;
}
ret = make_root_dir(trans, root);
if (ret) {
error("failed to setup the root directory: %d", ret);
goto error;
}
ret = btrfs_commit_transaction(trans, root);
if (ret) {
error("unable to commit transaction: %d", ret);
goto out;
}
trans = btrfs_start_transaction(root, 1);
if (IS_ERR(trans)) {
error("failed to start transaction");
goto error;
}
if (dev_cnt == 0)
goto raid_groups;
while (dev_cnt-- > 0) {
file = argv[optind++];
/*
* open without O_EXCL so that the problem should not
* occur by the following processing.
* (btrfs_register_one_device() fails if O_EXCL is on)
*/
fd = open(file, O_RDWR);
if (fd < 0) {
error("unable to open %s: %m", file);
goto error;
}
ret = btrfs_device_already_in_root(root, fd,
BTRFS_SUPER_INFO_OFFSET);
if (ret) {
error("skipping duplicate device %s in the filesystem",
file);
close(fd);
continue;
}
ret = btrfs_prepare_device(fd, file, &dev_block_count,
block_count,
(verbose ? PREP_DEVICE_VERBOSE : 0) |
(zero_end ? PREP_DEVICE_ZERO_END : 0) |
(discard ? PREP_DEVICE_DISCARD : 0));
if (ret) {
goto error;
}
ret = btrfs_add_to_fsid(trans, root, fd, file, dev_block_count,
sectorsize, sectorsize, sectorsize);
if (ret) {
error("unable to add %s to filesystem: %d", file, ret);
goto error;
}
if (verbose >= 2) {
struct btrfs_device *device;
device = container_of(fs_info->fs_devices->devices.next,
struct btrfs_device, dev_list);
printf("adding device %s id %llu\n", file,
(unsigned long long)device->devid);
}
}
raid_groups:
ret = create_raid_groups(trans, root, data_profile,
metadata_profile, mixed, &allocation);
if (ret) {
error("unable to create raid groups: %d", ret);
goto out;
}
ret = create_data_reloc_tree(trans);
if (ret) {
error("unable to create data reloc tree: %d", ret);
goto out;
}
ret = create_uuid_tree(trans);
if (ret)
warning(
"unable to create uuid tree, will be created after mount: %d", ret);
ret = btrfs_commit_transaction(trans, root);
if (ret) {
error("unable to commit transaction: %d", ret);
goto out;
}
ret = cleanup_temp_chunks(fs_info, &allocation, data_profile,
metadata_profile, metadata_profile);
if (ret < 0) {
error("failed to cleanup temporary chunks: %d", ret);
goto out;
}
if (source_dir_set) {
ret = btrfs_mkfs_fill_dir(source_dir, root, verbose);
if (ret) {
error("error while filling filesystem: %d", ret);
goto out;
}
if (shrink_rootdir) {
ret = btrfs_mkfs_shrink_fs(fs_info, &shrink_size,
shrink_rootdir);
if (ret < 0) {
error("error while shrinking filesystem: %d",
ret);
goto out;
}
}
}
if (verbose) {
char features_buf[64];
update_chunk_allocation(fs_info, &allocation);
printf("Label: %s\n", label);
printf("UUID: %s\n", mkfs_cfg.fs_uuid);
printf("Node size: %u\n", nodesize);
printf("Sector size: %u\n", sectorsize);
printf("Filesystem size: %s\n",
pretty_size(btrfs_super_total_bytes(fs_info->super_copy)));
printf("Block group profiles:\n");
if (allocation.data)
printf(" Data: %-8s %16s\n",
btrfs_group_profile_str(data_profile),
pretty_size(allocation.data));
if (allocation.metadata)
printf(" Metadata: %-8s %16s\n",
btrfs_group_profile_str(metadata_profile),
pretty_size(allocation.metadata));
if (allocation.mixed)
printf(" Data+Metadata: %-8s %16s\n",
btrfs_group_profile_str(data_profile),
pretty_size(allocation.mixed));
printf(" System: %-8s %16s\n",
btrfs_group_profile_str(metadata_profile),
pretty_size(allocation.system));
printf("SSD detected: %s\n", ssd ? "yes" : "no");
btrfs_parse_features_to_string(features_buf, features);
printf("Incompat features: %s\n", features_buf);
printf("Checksum: %s",
btrfs_super_csum_name(mkfs_cfg.csum_type));
printf("\n");
list_all_devices(root);
}
/*
* The filesystem is now fully set up, commit the remaining changes and
* fix the signature as the last step before closing the devices.
*/
fs_info->finalize_on_close = 1;
out:
close_ret = close_ctree(root);
if (!close_ret) {
optind = saved_optind;
dev_cnt = argc - optind;
while (dev_cnt-- > 0) {
file = argv[optind++];
if (path_is_block_device(file) == 1)
btrfs_register_one_device(file);
}
}
if (!ret && close_ret) {
ret = close_ret;
error("failed to close ctree, the filesystem may be inconsistent: %d",
ret);
}
btrfs_close_all_devices();
free(label);
return !!ret;
error:
if (fd > 0)
close(fd);
free(label);
exit(1);
success:
exit(0);
}