/* * xxHash - Fast Hash algorithm * Copyright (C) 2012-2016, Yann Collet * * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following disclaimer * in the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * You can contact the author at : * - xxHash homepage: http://www.xxhash.com * - xxHash source repository : https://github.com/Cyan4973/xxHash */ /* ************************************* * Tuning parameters ***************************************/ /*!XXH_FORCE_MEMORY_ACCESS : * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable. * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal. * The below switch allow to select different access method for improved performance. * Method 0 (default) : use `memcpy()`. Safe and portable. * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable). * This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`. * Method 2 : direct access. This method doesn't depend on compiler but violate C standard. * It can generate buggy code on targets which do not support unaligned memory accesses. * But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6) * See http://stackoverflow.com/a/32095106/646947 for details. * Prefer these methods in priority order (0 > 1 > 2) */ #ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */ # if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) \ || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) \ || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) ) # define XXH_FORCE_MEMORY_ACCESS 2 # elif (defined(__INTEL_COMPILER) && !defined(_WIN32)) || \ (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) \ || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) \ || defined(__ARM_ARCH_7S__) )) # define XXH_FORCE_MEMORY_ACCESS 1 # endif #endif /*!XXH_ACCEPT_NULL_INPUT_POINTER : * If input pointer is NULL, xxHash default behavior is to dereference it, triggering a segfault. * When this macro is enabled, xxHash actively checks input for null pointer. * It it is, result for null input pointers is the same as a null-length input. */ #ifndef XXH_ACCEPT_NULL_INPUT_POINTER /* can be defined externally */ # define XXH_ACCEPT_NULL_INPUT_POINTER 0 #endif /*!XXH_FORCE_ALIGN_CHECK : * This is a minor performance trick, only useful with lots of very small keys. * It means : check for aligned/unaligned input. * The check costs one initial branch per hash; * set it to 0 when the input is guaranteed to be aligned, * or when alignment doesn't matter for performance. */ #ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */ # if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64) # define XXH_FORCE_ALIGN_CHECK 0 # else # define XXH_FORCE_ALIGN_CHECK 1 # endif #endif /*!XXH_REROLL: * Whether to reroll XXH32_finalize, and XXH64_finalize, * instead of using an unrolled jump table/if statement loop. * * This is automatically defined on -Os/-Oz on GCC and Clang. */ #ifndef XXH_REROLL # if defined(__OPTIMIZE_SIZE__) # define XXH_REROLL 1 # else # define XXH_REROLL 0 # endif #endif /* ************************************* * Includes & Memory related functions ***************************************/ /*! Modify the local functions below should you wish to use some other memory routines * for malloc(), free() */ #include static void* XXH_malloc(size_t s) { return malloc(s); } static void XXH_free (void* p) { free(p); } /*! and for memcpy() */ #include static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); } #include /* ULLONG_MAX */ #define XXH_STATIC_LINKING_ONLY #include "xxhash.h" /* ************************************* * Compiler Specific Options ***************************************/ #ifdef _MSC_VER /* Visual Studio */ # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ # define XXH_FORCE_INLINE static __forceinline # define XXH_NO_INLINE static __declspec(noinline) #else # if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */ # ifdef __GNUC__ # define XXH_FORCE_INLINE static inline __attribute__((always_inline)) # define XXH_NO_INLINE static __attribute__((noinline)) # else # define XXH_FORCE_INLINE static inline # define XXH_NO_INLINE static # endif # else # define XXH_FORCE_INLINE static # define XXH_NO_INLINE static # endif /* __STDC_VERSION__ */ #endif /* ************************************* * Debug ***************************************/ /* DEBUGLEVEL is expected to be defined externally, * typically through compiler command line. * Value must be a number. */ #ifndef DEBUGLEVEL # define DEBUGLEVEL 0 #endif #if (DEBUGLEVEL>=1) # include /* note : can still be disabled with NDEBUG */ # define XXH_ASSERT(c) assert(c) #else # define XXH_ASSERT(c) ((void)0) #endif /* note : use after variable declarations */ #define XXH_STATIC_ASSERT(c) { enum { XXH_sa = 1/(int)(!!(c)) }; } /* ************************************* * Basic Types ***************************************/ #ifndef MEM_MODULE # if !defined (__VMS) \ && (defined (__cplusplus) \ || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) # include typedef uint8_t BYTE; typedef uint16_t U16; typedef uint32_t U32; # else typedef unsigned char BYTE; typedef unsigned short U16; typedef unsigned int U32; # endif #endif /* === Memory access === */ #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */ static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; } #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */ /* currently only defined for gcc and icc */ typedef union { U32 u32; } __attribute__((packed)) unalign; static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; } #else /* portable and safe solution. Generally efficient. * see : http://stackoverflow.com/a/32095106/646947 */ static U32 XXH_read32(const void* memPtr) { U32 val; memcpy(&val, memPtr, sizeof(val)); return val; } #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ /* === Endianess === */ typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess; /* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */ #ifndef XXH_CPU_LITTLE_ENDIAN static int XXH_isLittleEndian(void) { const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */ return one.c[0]; } # define XXH_CPU_LITTLE_ENDIAN XXH_isLittleEndian() #endif /* **************************************** * Compiler-specific Functions and Macros ******************************************/ #define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) #ifndef __has_builtin # define __has_builtin(x) 0 #endif #if !defined(NO_CLANG_BUILTIN) && __has_builtin(__builtin_rotateleft32) && __has_builtin(__builtin_rotateleft64) # define XXH_rotl32 __builtin_rotateleft32 # define XXH_rotl64 __builtin_rotateleft64 /* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */ #elif defined(_MSC_VER) # define XXH_rotl32(x,r) _rotl(x,r) # define XXH_rotl64(x,r) _rotl64(x,r) #else # define XXH_rotl32(x,r) (((x) << (r)) | ((x) >> (32 - (r)))) # define XXH_rotl64(x,r) (((x) << (r)) | ((x) >> (64 - (r)))) #endif #if defined(_MSC_VER) /* Visual Studio */ # define XXH_swap32 _byteswap_ulong #elif XXH_GCC_VERSION >= 403 # define XXH_swap32 __builtin_bswap32 #else static U32 XXH_swap32 (U32 x) { return ((x << 24) & 0xff000000 ) | ((x << 8) & 0x00ff0000 ) | ((x >> 8) & 0x0000ff00 ) | ((x >> 24) & 0x000000ff ); } #endif /* *************************** * Memory reads *****************************/ typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment; XXH_FORCE_INLINE U32 XXH_readLE32(const void* ptr) { return XXH_CPU_LITTLE_ENDIAN ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr)); } static U32 XXH_readBE32(const void* ptr) { return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr); } XXH_FORCE_INLINE U32 XXH_readLE32_align(const void* ptr, XXH_alignment align) { if (align==XXH_unaligned) { return XXH_readLE32(ptr); } else { return XXH_CPU_LITTLE_ENDIAN ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr); } } /* ************************************* * Misc ***************************************/ XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; } /* ******************************************************************* * 32-bit hash functions *********************************************************************/ static const U32 PRIME32_1 = 0x9E3779B1U; /* 0b10011110001101110111100110110001 */ static const U32 PRIME32_2 = 0x85EBCA77U; /* 0b10000101111010111100101001110111 */ static const U32 PRIME32_3 = 0xC2B2AE3DU; /* 0b11000010101100101010111000111101 */ static const U32 PRIME32_4 = 0x27D4EB2FU; /* 0b00100111110101001110101100101111 */ static const U32 PRIME32_5 = 0x165667B1U; /* 0b00010110010101100110011110110001 */ static U32 XXH32_round(U32 acc, U32 input) { acc += input * PRIME32_2; acc = XXH_rotl32(acc, 13); acc *= PRIME32_1; #if defined(__GNUC__) && defined(__SSE4_1__) && !defined(XXH_ENABLE_AUTOVECTORIZE) /* UGLY HACK: * This inline assembly hack forces acc into a normal register. This is the * only thing that prevents GCC and Clang from autovectorizing the XXH32 loop * (pragmas and attributes don't work for some resason) without globally * disabling SSE4.1. * * The reason we want to avoid vectorization is because despite working on * 4 integers at a time, there are multiple factors slowing XXH32 down on * SSE4: * - There's a ridiculous amount of lag from pmulld (10 cycles of latency on newer chips!) * making it slightly slower to multiply four integers at once compared to four * integers independently. Even when pmulld was fastest, Sandy/Ivy Bridge, it is * still not worth it to go into SSE just to multiply unless doing a long operation. * * - Four instructions are required to rotate, * movqda tmp, v // not required with VEX encoding * pslld tmp, 13 // tmp <<= 13 * psrld v, 19 // x >>= 19 * por v, tmp // x |= tmp * compared to one for scalar: * roll v, 13 // reliably fast across the board * shldl v, v, 13 // Sandy Bridge and later prefer this for some reason * * - Instruction level parallelism is actually more beneficial here because the * SIMD actually serializes this operation: While v1 is rotating, v2 can load data, * while v3 can multiply. SSE forces them to operate together. * * How this hack works: * __asm__("" // Declare an assembly block but don't declare any instructions * : // However, as an Input/Output Operand, * "+r" // constrain a read/write operand (+) as a general purpose register (r). * (acc) // and set acc as the operand * ); * * Because of the 'r', the compiler has promised that seed will be in a * general purpose register and the '+' says that it will be 'read/write', * so it has to assume it has changed. It is like volatile without all the * loads and stores. * * Since the argument has to be in a normal register (not an SSE register), * each time XXH32_round is called, it is impossible to vectorize. */ __asm__("" : "+r" (acc)); #endif return acc; } /* mix all bits */ static U32 XXH32_avalanche(U32 h32) { h32 ^= h32 >> 15; h32 *= PRIME32_2; h32 ^= h32 >> 13; h32 *= PRIME32_3; h32 ^= h32 >> 16; return(h32); } #define XXH_get32bits(p) XXH_readLE32_align(p, align) static U32 XXH32_finalize(U32 h32, const void* ptr, size_t len, XXH_alignment align) { const BYTE* p = (const BYTE*)ptr; #define PROCESS1 \ h32 += (*p++) * PRIME32_5; \ h32 = XXH_rotl32(h32, 11) * PRIME32_1 ; #define PROCESS4 \ h32 += XXH_get32bits(p) * PRIME32_3; \ p+=4; \ h32 = XXH_rotl32(h32, 17) * PRIME32_4 ; /* Compact rerolled version */ if (XXH_REROLL) { len &= 15; while (len >= 4) { PROCESS4; len -= 4; } while (len > 0) { PROCESS1; --len; } return XXH32_avalanche(h32); } else { switch(len&15) /* or switch(bEnd - p) */ { case 12: PROCESS4; /* fallthrough */ case 8: PROCESS4; /* fallthrough */ case 4: PROCESS4; return XXH32_avalanche(h32); case 13: PROCESS4; /* fallthrough */ case 9: PROCESS4; /* fallthrough */ case 5: PROCESS4; PROCESS1; return XXH32_avalanche(h32); case 14: PROCESS4; /* fallthrough */ case 10: PROCESS4; /* fallthrough */ case 6: PROCESS4; PROCESS1; PROCESS1; return XXH32_avalanche(h32); case 15: PROCESS4; /* fallthrough */ case 11: PROCESS4; /* fallthrough */ case 7: PROCESS4; /* fallthrough */ case 3: PROCESS1; /* fallthrough */ case 2: PROCESS1; /* fallthrough */ case 1: PROCESS1; /* fallthrough */ case 0: return XXH32_avalanche(h32); } XXH_ASSERT(0); return h32; /* reaching this point is deemed impossible */ } } XXH_FORCE_INLINE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_alignment align) { const BYTE* p = (const BYTE*)input; const BYTE* bEnd = p + len; U32 h32; #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1) if (p==NULL) { len=0; bEnd=p=(const BYTE*)(size_t)16; } #endif if (len>=16) { const BYTE* const limit = bEnd - 15; U32 v1 = seed + PRIME32_1 + PRIME32_2; U32 v2 = seed + PRIME32_2; U32 v3 = seed + 0; U32 v4 = seed - PRIME32_1; do { v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4; v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4; v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4; v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4; } while (p < limit); h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18); } else { h32 = seed + PRIME32_5; } h32 += (U32)len; return XXH32_finalize(h32, p, len&15, align); } XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed) { #if 0 /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ XXH32_state_t state; XXH32_reset(&state, seed); XXH32_update(&state, input, len); return XXH32_digest(&state); #else if (XXH_FORCE_ALIGN_CHECK) { if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */ return XXH32_endian_align(input, len, seed, XXH_aligned); } } return XXH32_endian_align(input, len, seed, XXH_unaligned); #endif } /*====== Hash streaming ======*/ XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void) { return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t)); } XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr) { XXH_free(statePtr); return XXH_OK; } XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState) { memcpy(dstState, srcState, sizeof(*dstState)); } XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed) { XXH32_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */ memset(&state, 0, sizeof(state)); state.v1 = seed + PRIME32_1 + PRIME32_2; state.v2 = seed + PRIME32_2; state.v3 = seed + 0; state.v4 = seed - PRIME32_1; /* do not write into reserved, planned to be removed in a future version */ memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved)); return XXH_OK; } XXH_PUBLIC_API XXH_errorcode XXH32_update(XXH32_state_t* state, const void* input, size_t len) { if (input==NULL) #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1) return XXH_OK; #else return XXH_ERROR; #endif { const BYTE* p = (const BYTE*)input; const BYTE* const bEnd = p + len; state->total_len_32 += (XXH32_hash_t)len; state->large_len |= (XXH32_hash_t)((len>=16) | (state->total_len_32>=16)); if (state->memsize + len < 16) { /* fill in tmp buffer */ XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len); state->memsize += (XXH32_hash_t)len; return XXH_OK; } if (state->memsize) { /* some data left from previous update */ XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize); { const U32* p32 = state->mem32; state->v1 = XXH32_round(state->v1, XXH_readLE32(p32)); p32++; state->v2 = XXH32_round(state->v2, XXH_readLE32(p32)); p32++; state->v3 = XXH32_round(state->v3, XXH_readLE32(p32)); p32++; state->v4 = XXH32_round(state->v4, XXH_readLE32(p32)); } p += 16-state->memsize; state->memsize = 0; } if (p <= bEnd-16) { const BYTE* const limit = bEnd - 16; U32 v1 = state->v1; U32 v2 = state->v2; U32 v3 = state->v3; U32 v4 = state->v4; do { v1 = XXH32_round(v1, XXH_readLE32(p)); p+=4; v2 = XXH32_round(v2, XXH_readLE32(p)); p+=4; v3 = XXH32_round(v3, XXH_readLE32(p)); p+=4; v4 = XXH32_round(v4, XXH_readLE32(p)); p+=4; } while (p<=limit); state->v1 = v1; state->v2 = v2; state->v3 = v3; state->v4 = v4; } if (p < bEnd) { XXH_memcpy(state->mem32, p, (size_t)(bEnd-p)); state->memsize = (unsigned)(bEnd-p); } } return XXH_OK; } XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state) { U32 h32; if (state->large_len) { h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18); } else { h32 = state->v3 /* == seed */ + PRIME32_5; } h32 += state->total_len_32; return XXH32_finalize(h32, state->mem32, state->memsize, XXH_aligned); } /*====== Canonical representation ======*/ /*! Default XXH result types are basic unsigned 32 and 64 bits. * The canonical representation follows human-readable write convention, aka big-endian (large digits first). * These functions allow transformation of hash result into and from its canonical format. * This way, hash values can be written into a file or buffer, remaining comparable across different systems. */ XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash) { XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t)); if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash); memcpy(dst, &hash, sizeof(*dst)); } XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src) { return XXH_readBE32(src); } #ifndef XXH_NO_LONG_LONG /* ******************************************************************* * 64-bit hash functions *********************************************************************/ /*====== Memory access ======*/ #ifndef MEM_MODULE # define MEM_MODULE # if !defined (__VMS) \ && (defined (__cplusplus) \ || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) # include typedef uint64_t U64; # else /* if compiler doesn't support unsigned long long, replace by another 64-bit type */ typedef unsigned long long U64; # endif #endif /*! XXH_REROLL_XXH64: * Whether to reroll the XXH64_finalize() loop. * * Just like XXH32, we can unroll the XXH64_finalize() loop. This can be a performance gain * on 64-bit hosts, as only one jump is required. * * However, on 32-bit hosts, because arithmetic needs to be done with two 32-bit registers, * and 64-bit arithmetic needs to be simulated, it isn't beneficial to unroll. The code becomes * ridiculously large (the largest function in the binary on i386!), and rerolling it saves * anywhere from 3kB to 20kB. It is also slightly faster because it fits into cache better * and is more likely to be inlined by the compiler. * * If XXH_REROLL is defined, this is ignored and the loop is always rerolled. */ #ifndef XXH_REROLL_XXH64 # if (defined(__ILP32__) || defined(_ILP32)) /* ILP32 is often defined on 32-bit GCC family */ \ || !(defined(__x86_64__) || defined(_M_X64) || defined(_M_AMD64) /* x86-64 */ \ || defined(_M_ARM64) || defined(__aarch64__) || defined(__arm64__) /* aarch64 */ \ || defined(__PPC64__) || defined(__PPC64LE__) || defined(__ppc64__) || defined(__powerpc64__) /* ppc64 */ \ || defined(__mips64__) || defined(__mips64)) /* mips64 */ \ || (!defined(SIZE_MAX) || SIZE_MAX < ULLONG_MAX) /* check limits */ # define XXH_REROLL_XXH64 1 # else # define XXH_REROLL_XXH64 0 # endif #endif /* !defined(XXH_REROLL_XXH64) */ #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */ static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; } #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */ /* currently only defined for gcc and icc */ typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign64; static U64 XXH_read64(const void* ptr) { return ((const unalign64*)ptr)->u64; } #else /* portable and safe solution. Generally efficient. * see : http://stackoverflow.com/a/32095106/646947 */ static U64 XXH_read64(const void* memPtr) { U64 val; memcpy(&val, memPtr, sizeof(val)); return val; } #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ #if defined(_MSC_VER) /* Visual Studio */ # define XXH_swap64 _byteswap_uint64 #elif XXH_GCC_VERSION >= 403 # define XXH_swap64 __builtin_bswap64 #else static U64 XXH_swap64 (U64 x) { return ((x << 56) & 0xff00000000000000ULL) | ((x << 40) & 0x00ff000000000000ULL) | ((x << 24) & 0x0000ff0000000000ULL) | ((x << 8) & 0x000000ff00000000ULL) | ((x >> 8) & 0x00000000ff000000ULL) | ((x >> 24) & 0x0000000000ff0000ULL) | ((x >> 40) & 0x000000000000ff00ULL) | ((x >> 56) & 0x00000000000000ffULL); } #endif XXH_FORCE_INLINE U64 XXH_readLE64(const void* ptr) { return XXH_CPU_LITTLE_ENDIAN ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr)); } static U64 XXH_readBE64(const void* ptr) { return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr); } XXH_FORCE_INLINE U64 XXH_readLE64_align(const void* ptr, XXH_alignment align) { if (align==XXH_unaligned) return XXH_readLE64(ptr); else return XXH_CPU_LITTLE_ENDIAN ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr); } /*====== xxh64 ======*/ static const U64 PRIME64_1 = 0x9E3779B185EBCA87ULL; /* 0b1001111000110111011110011011000110000101111010111100101010000111 */ static const U64 PRIME64_2 = 0xC2B2AE3D27D4EB4FULL; /* 0b1100001010110010101011100011110100100111110101001110101101001111 */ static const U64 PRIME64_3 = 0x165667B19E3779F9ULL; /* 0b0001011001010110011001111011000110011110001101110111100111111001 */ static const U64 PRIME64_4 = 0x85EBCA77C2B2AE63ULL; /* 0b1000010111101011110010100111011111000010101100101010111001100011 */ static const U64 PRIME64_5 = 0x27D4EB2F165667C5ULL; /* 0b0010011111010100111010110010111100010110010101100110011111000101 */ static U64 XXH64_round(U64 acc, U64 input) { acc += input * PRIME64_2; acc = XXH_rotl64(acc, 31); acc *= PRIME64_1; return acc; } static U64 XXH64_mergeRound(U64 acc, U64 val) { val = XXH64_round(0, val); acc ^= val; acc = acc * PRIME64_1 + PRIME64_4; return acc; } static U64 XXH64_avalanche(U64 h64) { h64 ^= h64 >> 33; h64 *= PRIME64_2; h64 ^= h64 >> 29; h64 *= PRIME64_3; h64 ^= h64 >> 32; return h64; } #define XXH_get64bits(p) XXH_readLE64_align(p, align) static U64 XXH64_finalize(U64 h64, const void* ptr, size_t len, XXH_alignment align) { const BYTE* p = (const BYTE*)ptr; #define PROCESS1_64 \ h64 ^= (*p++) * PRIME64_5; \ h64 = XXH_rotl64(h64, 11) * PRIME64_1; #define PROCESS4_64 \ h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1; \ p+=4; \ h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3; #define PROCESS8_64 { \ U64 const k1 = XXH64_round(0, XXH_get64bits(p)); \ p+=8; \ h64 ^= k1; \ h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4; \ } /* Rerolled version for 32-bit targets is faster and much smaller. */ if (XXH_REROLL || XXH_REROLL_XXH64) { len &= 31; while (len >= 8) { PROCESS8_64; len -= 8; } if (len >= 4) { PROCESS4_64; len -= 4; } while (len > 0) { PROCESS1_64; --len; } return XXH64_avalanche(h64); } else { switch(len & 31) { case 24: PROCESS8_64; /* fallthrough */ case 16: PROCESS8_64; /* fallthrough */ case 8: PROCESS8_64; return XXH64_avalanche(h64); case 28: PROCESS8_64; /* fallthrough */ case 20: PROCESS8_64; /* fallthrough */ case 12: PROCESS8_64; /* fallthrough */ case 4: PROCESS4_64; return XXH64_avalanche(h64); case 25: PROCESS8_64; /* fallthrough */ case 17: PROCESS8_64; /* fallthrough */ case 9: PROCESS8_64; PROCESS1_64; return XXH64_avalanche(h64); case 29: PROCESS8_64; /* fallthrough */ case 21: PROCESS8_64; /* fallthrough */ case 13: PROCESS8_64; /* fallthrough */ case 5: PROCESS4_64; PROCESS1_64; return XXH64_avalanche(h64); case 26: PROCESS8_64; /* fallthrough */ case 18: PROCESS8_64; /* fallthrough */ case 10: PROCESS8_64; PROCESS1_64; PROCESS1_64; return XXH64_avalanche(h64); case 30: PROCESS8_64; /* fallthrough */ case 22: PROCESS8_64; /* fallthrough */ case 14: PROCESS8_64; /* fallthrough */ case 6: PROCESS4_64; PROCESS1_64; PROCESS1_64; return XXH64_avalanche(h64); case 27: PROCESS8_64; /* fallthrough */ case 19: PROCESS8_64; /* fallthrough */ case 11: PROCESS8_64; PROCESS1_64; PROCESS1_64; PROCESS1_64; return XXH64_avalanche(h64); case 31: PROCESS8_64; /* fallthrough */ case 23: PROCESS8_64; /* fallthrough */ case 15: PROCESS8_64; /* fallthrough */ case 7: PROCESS4_64; /* fallthrough */ case 3: PROCESS1_64; /* fallthrough */ case 2: PROCESS1_64; /* fallthrough */ case 1: PROCESS1_64; /* fallthrough */ case 0: return XXH64_avalanche(h64); } } /* impossible to reach */ XXH_ASSERT(0); return 0; /* unreachable, but some compilers complain without it */ } XXH_FORCE_INLINE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_alignment align) { const BYTE* p = (const BYTE*)input; const BYTE* bEnd = p + len; U64 h64; #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1) if (p==NULL) { len=0; bEnd=p=(const BYTE*)(size_t)32; } #endif if (len>=32) { const BYTE* const limit = bEnd - 32; U64 v1 = seed + PRIME64_1 + PRIME64_2; U64 v2 = seed + PRIME64_2; U64 v3 = seed + 0; U64 v4 = seed - PRIME64_1; do { v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8; v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8; v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8; v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8; } while (p<=limit); h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); h64 = XXH64_mergeRound(h64, v1); h64 = XXH64_mergeRound(h64, v2); h64 = XXH64_mergeRound(h64, v3); h64 = XXH64_mergeRound(h64, v4); } else { h64 = seed + PRIME64_5; } h64 += (U64) len; return XXH64_finalize(h64, p, len, align); } XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t len, unsigned long long seed) { #if 0 /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ XXH64_state_t state; XXH64_reset(&state, seed); XXH64_update(&state, input, len); return XXH64_digest(&state); #else if (XXH_FORCE_ALIGN_CHECK) { if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */ return XXH64_endian_align(input, len, seed, XXH_aligned); } } return XXH64_endian_align(input, len, seed, XXH_unaligned); #endif } /*====== Hash Streaming ======*/ XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void) { return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t)); } XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr) { XXH_free(statePtr); return XXH_OK; } XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dstState, const XXH64_state_t* srcState) { memcpy(dstState, srcState, sizeof(*dstState)); } XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed) { XXH64_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */ memset(&state, 0, sizeof(state)); state.v1 = seed + PRIME64_1 + PRIME64_2; state.v2 = seed + PRIME64_2; state.v3 = seed + 0; state.v4 = seed - PRIME64_1; /* do not write into reserved, might be removed in a future version */ memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved)); return XXH_OK; } XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* state, const void* input, size_t len) { if (input==NULL) #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1) return XXH_OK; #else return XXH_ERROR; #endif { const BYTE* p = (const BYTE*)input; const BYTE* const bEnd = p + len; state->total_len += len; if (state->memsize + len < 32) { /* fill in tmp buffer */ XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len); state->memsize += (U32)len; return XXH_OK; } if (state->memsize) { /* tmp buffer is full */ XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize); state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0)); state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1)); state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2)); state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3)); p += 32-state->memsize; state->memsize = 0; } if (p+32 <= bEnd) { const BYTE* const limit = bEnd - 32; U64 v1 = state->v1; U64 v2 = state->v2; U64 v3 = state->v3; U64 v4 = state->v4; do { v1 = XXH64_round(v1, XXH_readLE64(p)); p+=8; v2 = XXH64_round(v2, XXH_readLE64(p)); p+=8; v3 = XXH64_round(v3, XXH_readLE64(p)); p+=8; v4 = XXH64_round(v4, XXH_readLE64(p)); p+=8; } while (p<=limit); state->v1 = v1; state->v2 = v2; state->v3 = v3; state->v4 = v4; } if (p < bEnd) { XXH_memcpy(state->mem64, p, (size_t)(bEnd-p)); state->memsize = (unsigned)(bEnd-p); } } return XXH_OK; } XXH_PUBLIC_API XXH64_hash_t XXH64_digest (const XXH64_state_t* state) { U64 h64; if (state->total_len >= 32) { U64 const v1 = state->v1; U64 const v2 = state->v2; U64 const v3 = state->v3; U64 const v4 = state->v4; h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); h64 = XXH64_mergeRound(h64, v1); h64 = XXH64_mergeRound(h64, v2); h64 = XXH64_mergeRound(h64, v3); h64 = XXH64_mergeRound(h64, v4); } else { h64 = state->v3 /*seed*/ + PRIME64_5; } h64 += (U64) state->total_len; return XXH64_finalize(h64, state->mem64, (size_t)state->total_len, XXH_aligned); } /*====== Canonical representation ======*/ XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash) { XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t)); if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash); memcpy(dst, &hash, sizeof(*dst)); } XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src) { return XXH_readBE64(src); } /* ********************************************************************* * XXH3 * New generation hash designed for speed on small keys and vectorization ************************************************************************ */ /* #include "xxh3.h" */ #endif /* XXH_NO_LONG_LONG */