Add fsx-style randomized tree tester

Add debug-tree command to print the tree
Add extent-tree.c to the repo
Comment ctree.h
master
Chris Mason 2007-02-26 10:40:21 -05:00 committed by David Woodhouse
parent f463391fd2
commit 8f3b86bae3
6 changed files with 680 additions and 8 deletions

View File

@ -6,11 +6,17 @@ objects = ctree.o disk-io.o radix-tree.o mkfs.o extent-tree.o print-tree.o
#.c.o:
# $(CC) $(CFLAGS) -c $<
ctree : $(objects)
gcc $(CFLAGS) -o ctree $(objects)
all: tester debug-tree
debug-tree: $(objects) debug-tree.o
gcc $(CFLAGS) -o debug-tree $(objects) debug-tree.o
tester: $(objects) random-test.o
gcc $(CFLAGS) -o tester $(objects) random-test.o
$(objects) : $(headers)
clean :
rm ctree *.o

View File

@ -1047,14 +1047,14 @@ int next_leaf(struct ctree_root *root, struct ctree_path *path)
return 0;
}
/* some sample code to insert,search & delete items */
#if 0
/* for testing only */
int next_key(int i, int max_key) {
return rand() % max_key;
//return i;
}
int main() {
struct ctree_root *root;
struct key ins;
struct key last = { (u64)-1, 0, 0};
char *buf;
@ -1066,6 +1066,7 @@ int main() {
int tree_size = 0;
struct ctree_path path;
struct ctree_super_block super;
struct ctree_root *root;
radix_tree_init();
@ -1207,3 +1208,4 @@ int main() {
close_ctree(root);
return 0;
}
#endif

62
ctree.h
View File

@ -1,22 +1,36 @@
#ifndef __CTREE__
#define __CTREE__
#define CTREE_BLOCKSIZE 4096
#define CTREE_BLOCKSIZE 1024
/*
* the key defines the order in the tree, and so it also defines (optimal)
* block layout. objectid corresonds to the inode number. The flags
* tells us things about the object, and is a kind of stream selector.
* so for a given inode, keys with flags of 1 might refer to the inode
* data, flags of 2 may point to file data in the btree and flags == 3
* may point to extents.
*
* offset is the starting byte offset for this key in the stream.
*/
struct key {
u64 objectid;
u32 flags;
u64 offset;
} __attribute__ ((__packed__));
/*
* every tree block (leaf or node) starts with this header.
*/
struct header {
u64 fsid[2]; /* FS specific uuid */
u64 blocknr;
u64 parentid;
u64 blocknr; /* which block this node is supposed to live in */
u64 parentid; /* objectid of the tree root */
u32 csum;
u32 ham;
u16 nritems;
u16 flags;
/* generation flags to be added */
} __attribute__ ((__packed__));
#define NODEPTRS_PER_BLOCK ((CTREE_BLOCKSIZE - sizeof(struct header)) / \
@ -28,6 +42,11 @@ struct header {
struct tree_buffer;
/*
* in ram representation of the tree. extent_root is used for all allocations
* and for the extent tree extent_root root. current_insert is used
* only for the extent tree.
*/
struct ctree_root {
struct tree_buffer *node;
struct ctree_root *extent_root;
@ -36,27 +55,46 @@ struct ctree_root {
struct radix_tree_root cache_radix;
};
/*
* describes a tree on disk
*/
struct ctree_root_info {
u64 fsid[2]; /* FS specific uuid */
u64 blocknr; /* blocknr of this block */
u64 objectid; /* inode number of this root */
u64 tree_root; /* the tree root */
u64 tree_root; /* the tree root block */
u32 csum;
u32 ham;
u64 snapuuid[2]; /* root specific uuid */
} __attribute__ ((__packed__));
/*
* the super block basically lists the main trees of the FS
* it currently lacks any block count etc etc
*/
struct ctree_super_block {
struct ctree_root_info root_info;
struct ctree_root_info extent_info;
} __attribute__ ((__packed__));
/*
* A leaf is full of items. The exact type of item is defined by
* the key flags parameter. offset and size tell us where to find
* the item in the leaf (relative to the start of the data area)
*/
struct item {
struct key key;
u16 offset;
u16 size;
} __attribute__ ((__packed__));
/*
* leaves have an item area and a data area:
* [item0, item1....itemN] [free space] [dataN...data1, data0]
*
* The data is separate from the items to get the keys closer together
* during searches.
*/
#define LEAF_DATA_SIZE (CTREE_BLOCKSIZE - sizeof(struct header))
struct leaf {
struct header header;
@ -66,17 +104,33 @@ struct leaf {
};
} __attribute__ ((__packed__));
/*
* all non-leaf blocks are nodes, they hold only keys and pointers to
* other blocks
*/
struct node {
struct header header;
struct key keys[NODEPTRS_PER_BLOCK];
u64 blockptrs[NODEPTRS_PER_BLOCK];
} __attribute__ ((__packed__));
/*
* items in the extent btree are used to record the objectid of the
* owner of the block and the number of references
*/
struct extent_item {
u32 refs;
u64 owner;
} __attribute__ ((__packed__));
/*
* ctree_paths remember the path taken from the root down to the leaf.
* level 0 is always the leaf, and nodes[1...MAX_LEVEL] will point
* to any other levels that are present.
*
* The slots array records the index of the item or block pointer
* used while walking the tree.
*/
struct ctree_path {
struct tree_buffer *nodes[MAX_LEVEL];
int slots[MAX_LEVEL];

19
debug-tree.c 100644
View File

@ -0,0 +1,19 @@
#include <stdio.h>
#include <stdlib.h>
#include "kerncompat.h"
#include "radix-tree.h"
#include "ctree.h"
#include "disk-io.h"
#include "print-tree.h"
int main() {
struct ctree_super_block super;
struct ctree_root *root;
radix_tree_init();
root = open_ctree("dbfile", &super);
printf("root tree\n");
print_tree(root, root->node);
printf("map tree\n");
print_tree(root->extent_root, root->extent_root->node);
return 0;
}

296
extent-tree.c 100644
View File

@ -0,0 +1,296 @@
#include <stdio.h>
#include <stdlib.h>
#include "kerncompat.h"
#include "radix-tree.h"
#include "ctree.h"
#include "disk-io.h"
#include "print-tree.h"
/*
* pending extents are blocks that we're trying to allocate in the extent
* map while trying to grow the map because of other allocations. To avoid
* recursing, they are tagged in the radix tree and cleaned up after
* other allocations are done. The pending tag is also used in the same
* manner for deletes.
*/
#define CTREE_EXTENT_PENDING 0
/*
* find all the blocks marked as pending in the radix tree and remove
* them from the extent map
*/
static int del_pending_extents(struct ctree_root *extent_root)
{
int ret;
struct key key;
struct tree_buffer *gang[4];
int i;
struct ctree_path path;
while(1) {
ret = radix_tree_gang_lookup_tag(&extent_root->cache_radix,
(void **)gang, 0,
ARRAY_SIZE(gang),
CTREE_EXTENT_PENDING);
if (!ret)
break;
for (i = 0; i < ret; i++) {
key.objectid = gang[i]->blocknr;
key.flags = 0;
key.offset = 1;
init_path(&path);
ret = search_slot(extent_root, &key, &path, 0);
if (ret) {
print_tree(extent_root, extent_root->node);
printf("unable to find %lu\n", key.objectid);
BUG();
// FIXME undo it and return sane
return ret;
}
ret = del_item(extent_root, &path);
if (ret) {
BUG();
return ret;
}
release_path(extent_root, &path);
radix_tree_tag_clear(&extent_root->cache_radix,
gang[i]->blocknr,
CTREE_EXTENT_PENDING);
tree_block_release(extent_root, gang[i]);
}
}
return 0;
}
/*
* remove an extent from the root, returns 0 on success
*/
int free_extent(struct ctree_root *root, u64 blocknr, u64 num_blocks)
{
struct ctree_path path;
struct key key;
struct ctree_root *extent_root = root->extent_root;
struct tree_buffer *t;
int pending_ret;
int ret;
key.objectid = blocknr;
key.flags = 0;
key.offset = num_blocks;
if (root == extent_root) {
t = read_tree_block(root, key.objectid);
radix_tree_tag_set(&root->cache_radix, key.objectid,
CTREE_EXTENT_PENDING);
return 0;
}
init_path(&path);
ret = search_slot(extent_root, &key, &path, 0);
if (ret) {
print_tree(extent_root, extent_root->node);
printf("failed to find %lu\n", key.objectid);
BUG();
}
ret = del_item(extent_root, &path);
if (ret)
BUG();
release_path(extent_root, &path);
pending_ret = del_pending_extents(root->extent_root);
return ret ? ret : pending_ret;
}
/*
* walks the btree of allocated extents and find a hole of a given size.
* The key ins is changed to record the hole:
* ins->objectid == block start
* ins->flags = 0
* ins->offset == number of blocks
* Any available blocks before search_start are skipped.
*/
int find_free_extent(struct ctree_root *orig_root, u64 num_blocks,
u64 search_start, u64 search_end, struct key *ins)
{
struct ctree_path path;
struct key *key;
int ret;
u64 hole_size = 0;
int slot = 0;
u64 last_block;
int start_found;
struct leaf *l;
struct ctree_root * root = orig_root->extent_root;
check_failed:
init_path(&path);
ins->objectid = search_start;
ins->offset = 0;
ins->flags = 0;
start_found = 0;
ret = search_slot(root, ins, &path, 0);
while (1) {
l = &path.nodes[0]->leaf;
slot = path.slots[0];
if (slot >= l->header.nritems) {
ret = next_leaf(root, &path);
if (ret == 0)
continue;
if (!start_found) {
ins->objectid = search_start;
ins->offset = num_blocks;
start_found = 1;
goto check_pending;
}
ins->objectid = last_block > search_start ?
last_block : search_start;
ins->offset = num_blocks;
goto check_pending;
}
key = &l->items[slot].key;
if (key->objectid >= search_start) {
if (start_found) {
hole_size = key->objectid - last_block;
if (hole_size > num_blocks) {
ins->objectid = last_block;
ins->offset = num_blocks;
goto check_pending;
}
} else
start_found = 1;
last_block = key->objectid + key->offset;
}
path.slots[0]++;
}
// FIXME -ENOSPC
check_pending:
/* we have to make sure we didn't find an extent that has already
* been allocated by the map tree or the original allocation
*/
release_path(root, &path);
BUG_ON(ins->objectid < search_start);
if (orig_root->extent_root == orig_root) {
BUG_ON(num_blocks != 1);
if ((root->current_insert.objectid <= ins->objectid &&
root->current_insert.objectid +
root->current_insert.offset > ins->objectid) ||
(root->current_insert.objectid > ins->objectid &&
root->current_insert.objectid <= ins->objectid +
ins->offset) ||
radix_tree_tag_get(&root->cache_radix, ins->objectid,
CTREE_EXTENT_PENDING)) {
search_start = ins->objectid + 1;
goto check_failed;
}
}
if (ins->offset != 1)
BUG();
return 0;
}
/*
* insert all of the pending extents reserved during the original
* allocation. (CTREE_EXTENT_PENDING). Returns zero if it all worked out
*/
static int insert_pending_extents(struct ctree_root *extent_root)
{
int ret;
struct key key;
struct extent_item item;
struct tree_buffer *gang[4];
int i;
// FIXME -ENOSPC
item.refs = 1;
item.owner = extent_root->node->node.header.parentid;
while(1) {
ret = radix_tree_gang_lookup_tag(&extent_root->cache_radix,
(void **)gang, 0,
ARRAY_SIZE(gang),
CTREE_EXTENT_PENDING);
if (!ret)
break;
for (i = 0; i < ret; i++) {
key.objectid = gang[i]->blocknr;
key.flags = 0;
key.offset = 1;
ret = insert_item(extent_root, &key, &item,
sizeof(item));
if (ret) {
BUG();
// FIXME undo it and return sane
return ret;
}
radix_tree_tag_clear(&extent_root->cache_radix,
gang[i]->blocknr,
CTREE_EXTENT_PENDING);
tree_block_release(extent_root, gang[i]);
}
}
return 0;
}
/*
* finds a free extent and does all the dirty work required for allocation
* returns the key for the extent through ins, and a tree buffer for
* the first block of the extent through buf.
*
* returns 0 if everything worked, non-zero otherwise.
*/
int alloc_extent(struct ctree_root *root, u64 num_blocks, u64 search_start,
u64 search_end, u64 owner, struct key *ins,
struct tree_buffer **buf)
{
int ret;
int pending_ret;
struct extent_item extent_item;
extent_item.refs = 1;
extent_item.owner = owner;
ret = find_free_extent(root, num_blocks, search_start, search_end, ins);
if (ret)
return ret;
if (root != root->extent_root) {
memcpy(&root->extent_root->current_insert, ins, sizeof(*ins));
ret = insert_item(root->extent_root, ins, &extent_item,
sizeof(extent_item));
memset(&root->extent_root->current_insert, 0,
sizeof(struct key));
pending_ret = insert_pending_extents(root->extent_root);
if (ret)
return ret;
if (pending_ret)
return pending_ret;
*buf = find_tree_block(root, ins->objectid);
return 0;
}
/* we're allocating an extent for the extent tree, don't recurse */
BUG_ON(ins->offset != 1);
*buf = find_tree_block(root, ins->objectid);
BUG_ON(!*buf);
radix_tree_tag_set(&root->cache_radix, ins->objectid,
CTREE_EXTENT_PENDING);
(*buf)->count++;
return 0;
}
/*
* helper function to allocate a block for a given tree
* returns the tree buffer or NULL.
*/
struct tree_buffer *alloc_free_block(struct ctree_root *root)
{
struct key ins;
int ret;
struct tree_buffer *buf = NULL;
ret = alloc_extent(root, 1, 0, (unsigned long)-1,
root->node->node.header.parentid,
&ins, &buf);
if (ret) {
BUG();
return NULL;
}
if (root != root->extent_root)
BUG_ON(radix_tree_tag_get(&root->extent_root->cache_radix,
buf->blocknr, CTREE_EXTENT_PENDING));
return buf;
}

295
random-test.c 100644
View File

@ -0,0 +1,295 @@
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include "kerncompat.h"
#include "radix-tree.h"
#include "ctree.h"
#include "disk-io.h"
#include "print-tree.h"
int keep_running = 1;
static int setup_key(struct radix_tree_root *root, struct key *key, int exists)
{
int num = rand();
unsigned long res[2];
int ret;
key->flags = 0;
key->offset = 0;
again:
ret = radix_tree_gang_lookup(root, (void **)res, num, 2);
if (exists) {
if (ret == 0)
return -1;
num = res[0];
} else if (ret != 0 && num == res[0]) {
num++;
if (ret > 1 && num == res[1]) {
num++;
goto again;
}
}
key->objectid = num;
return 0;
}
static int ins_one(struct ctree_root *root, struct radix_tree_root *radix)
{
struct ctree_path path;
struct key key;
int ret;
char buf[128];
init_path(&path);
ret = setup_key(radix, &key, 0);
sprintf(buf, "str-%lu\n", key.objectid);
ret = insert_item(root, &key, buf, strlen(buf));
if (ret)
goto error;
radix_tree_preload(GFP_KERNEL);
ret = radix_tree_insert(radix, key.objectid,
(void *)key.objectid);
radix_tree_preload_end();
if (ret)
goto error;
return ret;
error:
printf("failed to insert %lu\n", key.objectid);
return -1;
}
static int insert_dup(struct ctree_root *root, struct radix_tree_root *radix)
{
struct ctree_path path;
struct key key;
int ret;
char buf[128];
init_path(&path);
ret = setup_key(radix, &key, 1);
if (ret < 0)
return 0;
sprintf(buf, "str-%lu\n", key.objectid);
ret = insert_item(root, &key, buf, strlen(buf));
if (ret != -EEXIST) {
printf("insert on %lu gave us %d\n", key.objectid, ret);
return 1;
}
return 0;
}
static int del_one(struct ctree_root *root, struct radix_tree_root *radix)
{
struct ctree_path path;
struct key key;
int ret;
unsigned long *ptr;
init_path(&path);
ret = setup_key(radix, &key, 1);
if (ret < 0)
return 0;
ret = search_slot(root, &key, &path, -1);
if (ret)
goto error;
ret = del_item(root, &path);
release_path(root, &path);
if (ret != 0)
goto error;
ptr = radix_tree_delete(radix, key.objectid);
if (!ptr)
goto error;
return 0;
error:
printf("failed to delete %lu\n", key.objectid);
return -1;
}
static int lookup_item(struct ctree_root *root, struct radix_tree_root *radix)
{
struct ctree_path path;
struct key key;
int ret;
init_path(&path);
ret = setup_key(radix, &key, 1);
if (ret < 0)
return 0;
ret = search_slot(root, &key, &path, 0);
release_path(root, &path);
if (ret)
goto error;
return 0;
error:
printf("unable to find key %lu\n", key.objectid);
return -1;
}
static int lookup_enoent(struct ctree_root *root, struct radix_tree_root *radix)
{
struct ctree_path path;
struct key key;
int ret;
init_path(&path);
ret = setup_key(radix, &key, 0);
if (ret < 0)
return ret;
ret = search_slot(root, &key, &path, 0);
release_path(root, &path);
if (ret == 0)
goto error;
return 0;
error:
printf("able to find key that should not exist %lu\n", key.objectid);
return -1;
}
int (*ops[])(struct ctree_root *root, struct radix_tree_root *radix) =
{ ins_one, insert_dup, del_one, lookup_item, lookup_enoent };
static int fill_radix(struct ctree_root *root, struct radix_tree_root *radix)
{
struct ctree_path path;
struct key key;
u64 found;
int ret;
int slot;
int i;
key.offset = 0;
key.flags = 0;
key.objectid = (unsigned long)-1;
while(1) {
init_path(&path);
ret = search_slot(root, &key, &path, 0);
slot = path.slots[0];
if (ret != 0) {
if (slot == 0) {
release_path(root, &path);
break;
}
slot -= 1;
}
for (i = slot; i >= 0; i--) {
found = path.nodes[0]->leaf.items[i].key.objectid;
radix_tree_preload(GFP_KERNEL);
ret = radix_tree_insert(radix, found, (void *)found);
if (ret) {
fprintf(stderr,
"failed to insert %lu into radix\n",
found);
exit(1);
}
radix_tree_preload_end();
}
release_path(root, &path);
key.objectid = found - 1;
if (key.objectid > found)
break;
}
return 0;
}
void sigstopper(int ignored)
{
keep_running = 0;
fprintf(stderr, "caught exit signal, stopping\n");
}
int print_usage(void)
{
printf("usage: tester [-ih] [-c count] [-f count]\n");
printf("\t -c count -- iteration count after filling\n");
printf("\t -f count -- run this many random inserts before starting\n");
printf("\t -i -- only do initial fill\n");
printf("\t -h -- this help text\n");
exit(1);
}
int main(int ac, char **av)
{
RADIX_TREE(radix, GFP_KERNEL);
struct ctree_super_block super;
struct ctree_root *root;
int i;
int ret;
int count;
int op;
int iterations = 20000;
int init_fill_count = 800000;
int err = 0;
int initial_only = 0;
radix_tree_init();
root = open_ctree("dbfile", &super);
fill_radix(root, &radix);
signal(SIGTERM, sigstopper);
signal(SIGINT, sigstopper);
for (i = 1 ; i < ac ; i++) {
if (strcmp(av[i], "-i") == 0) {
initial_only = 1;
} else if (strcmp(av[i], "-c") == 0) {
iterations = atoi(av[i+1]);
i++;
} else if (strcmp(av[i], "-f") == 0) {
init_fill_count = atoi(av[i+1]);
i++;
} else {
print_usage();
}
}
for (i = 0; i < init_fill_count; i++) {
ret = ins_one(root, &radix);
if (ret) {
printf("initial fill failed\n");
err = ret;
goto out;
}
if (i % 10000 == 0) {
printf("initial fill %d level %d count %d\n", i,
node_level(root->node->node.header.flags),
root->node->node.header.nritems);
}
if (keep_running == 0) {
err = 0;
goto out;
}
}
if (initial_only == 1) {
goto out;
}
for (i = 0; i < iterations; i++) {
op = rand() % ARRAY_SIZE(ops);
count = rand() % 128;
if (i % 2000 == 0) {
printf("%d\n", i);
fflush(stdout);
}
if (i && i % 5000 == 0) {
printf("open & close, root level %d nritems %d\n",
node_level(root->node->node.header.flags),
root->node->node.header.nritems);
write_ctree_super(root, &super);
close_ctree(root);
root = open_ctree("dbfile", &super);
}
while(count--) {
ret = ops[op](root, &radix);
if (ret) {
fprintf(stderr, "op %d failed %d:%d\n",
op, i, iterations);
print_tree(root, root->node);
fprintf(stderr, "op %d failed %d:%d\n",
op, i, iterations);
err = ret;
goto out;
}
if (keep_running == 0) {
err = 0;
goto out;
}
}
}
out:
write_ctree_super(root, &super);
close_ctree(root);
return err;
}