
Pandoc User’s Guide

John MacFarlane

January 27, 2012

Pandoc’s markdown

Pandoc understands an extended and slightly revised version of John Gruber’s
markdown syntax. This document explains the syntax, noting differences from
standard markdown.

Philosophy

Markdown is designed to be easy to write, and, even more importantly, easy to
read:

A Markdown-formatted document should be publishable as-is, as
plain text, without looking like it’s been marked up with tags or
formatting instructions. – John Gruber

This principle has guided pandoc’s decisions in finding syntax for tables, foot-
notes, and other extensions.

Paragraphs

A paragraph is one or more lines of text followed by one or more blank line.
Newlines are treated as spaces, so you can reflow your paragraphs as you like.
If you need a hard line break, put two or more spaces at the end of a line.

Extension: escaped line breaks

A backslash followed by a newline is also a hard line break.

Headers

An header consists of one to six # signs and a line of text, optionally followed
by any number of # signs. The number of # signs at the beginning of the line
is the header level:

1

http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/syntax#philosophy

A level-two header

A level-three header

As with setext-style headers, the header text can contain formatting:

A level-one header with a [link](/url) and *emphasis*

Extension: blank before header

Standard markdown syntax does not require a blank line before a header. Pan-
doc does require this (except, of course, at the beginning of the document).
The reason for the requirement is that it is all too easy for a # to end up at the
beginning of a line by accident (perhaps through line wrapping). Consider, for
example:

I like several of their flavors of ice cream:

#22, for example, and #5.

Header identifiers in HTML, LaTeX, and ConTeXt

Extension

Each header element in pandoc’s HTML and ConTeXt output is given a unique
identifier. This identifier is based on the text of the header. To derive the
identifier from the header

- Remove all formatting, links, etc.

- Remove all punctuation, except underscores, hyphens, and periods.

- Replace all spaces and newlines with hyphens.

• Convert all alphabetic characters to lowercase.

• Remove everything up to the first letter (identifiers may not begin with a
number or punctuation mark).

• If nothing is left after this, use the identifier section.

Thus, for example,

2

Header Identifier

Header identifiers in HTML header-identifiers-in-html

Dogs?–in my house? dogs--in-my-house

HTML, S5, or RTF? html-s5-or-rtf

3. Applications applications

33 section

These rules should, in most cases, allow one to determine the identifier from the
header text. The exception is when several headers have the same text; in this
case, the first will get an identifier as described above; the second will get the
same identifier with -1 appended; the third with -2; and so on.

These identifiers are used to provide link targets in the table of contents gen-
erated by the --toc|--table-of-contents option. They also make it easy to
provide links from one section of a document to another. A link to this section,
for example, might look like this:

See the section on

[header identifiers](#header-identifiers-in-html).

Note, however, that this method of providing links to sections works only in
HTML, LaTeX, and ConTeXt formats.

If the --section-divs option is specified, then each section will be wrapped
in a div (or a section, if --html5 was specified), and the identifier will be
attached to the enclosing <div> (or <section>) tag rather than the header
itself. This allows entire sections to be manipulated using javascript or treated
differently in CSS.

Block quotations

Markdown uses email conventions for quoting blocks of text. A block quotation
is one or more paragraphs or other block elements (such as lists or headers),
with each line preceded by a > character and a space.

This is a block quote. This paragraph does indeed have more than
one line.

1. This is a list inside a block quote.

2. Second item.

3

http://www.w3.org/TR/html40/
http://meyerweb.com/eric/tools/s5/
http://en.wikipedia.org/wiki/Rich_Text_Format

Among the block elements that can be contained in a block quote are other
block quotes. That is, block quotes can be nested:

This is a block quote.

A block quote within a block quote.

Extension: blank line before blockquote

Standard markdown syntax does not require a blank line before a block quote.
Pandoc does require this (except, of course, at the beginning of the document).
The reason for the requirement is that it is all too easy for a > to end up
at the beginning of a line by accident (perhaps through line wrapping). So,
unless --strict is used, the following does not produce a nested block quote
in pandoc:

This is a block quote. > Nested.

Verbatim (code) blocks

Indented code blocks A block of text indented four spaces (or one tab)
is treated as verbatim text: that is, special characters do not trigger special
formatting, and all spaces and line breaks are preserved. For example,

if (a > 3) {

moveShip(5 * gravity, DOWN);

}

The initial (four space or one tab) indentation is not considered part of the
verbatim text, and is removed in the output.

Note: blank lines in the verbatim text need not begin with four spaces.

Delimited code blocks Extension: delimited code blocks

In addition to standard indented code blocks, Pandoc supports delimited code
blocks. These begin with a row of three or more tildes (∼) or backticks (‘)
and end with a row of tildes or backticks that must be at least as long as the
starting row. Everything between these lines is treated as code. No indentation
is necessary:

~~~~~~~

if (a > 3) {

moveShip(5 * gravity, DOWN);

}

~~~~~~~

4

Like regular code blocks, delimited code blocks must be separated from sur-
rounding text by blank lines.

If the code itself contains a row of tildes or backticks, just use a longer row of
tildes or backticks at the start and end:

~~~~~~~~~~~~~~~~

~~~~~~~~~~

code including tildes

~~~~~~~~~~

~~~~~~~~~~~~~~~~

Optionally, you may attach attributes to the code block using this syntax:

~~~~ {#mycode .haskell .numberLines startFrom="100"}

qsort [] = []

qsort (x:xs) = qsort (filter (< x) xs) ++ [x] ++

qsort (filter (>= x) xs)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Here mycode is an identifier, haskell and numberLines are classes, and
startFrom is an attribute with value 100. Some output formats can use this
information to do syntax highlighting. Currently, the only output formats
that uses this information are HTML and LaTeX. If highlighting is supported
for your output format and language, then the code block above will appear
highlighted, with numbered lines. (To see which languages are supported, do
pandoc --version.) Otherwise, the code block above will appear as follows:

<pre id="mycode" class="haskell numberLines" startFrom="100">

<code>

...

</code>

</pre>

A shortcut form can also be used for specifying the language of the code block:

‘‘‘haskell

qsort [] = []

‘‘‘

This is equivalent to:

‘‘‘ {.haskell}

qsort [] = []

‘‘‘

5

Lists

Bullet lists A bullet list is a list of bulleted list items. A bulleted list item
begins with a bullet (*, +, or -). Here is a simple example:

• one

• two

• three

This will produce a “compact” list. If you want a “loose” list, in which each
item is formatted as a paragraph, put spaces between the items:

• one

• two

• three

The four-space rule

A list item may contain multiple paragraphs and other block-level content. How-
ever, subsequent paragraphs must be preceded by a blank line and indented four
spaces or a tab. The list will look better if the first paragraph is aligned with
the rest:

• First paragraph.

Continued.

• Second paragraph. With a code block, which must be indented eight
spaces:

{ code }

List items may include other lists. In this case the preceding blank line is
optional. The nested list must be indented one tab:

• fruits

– apples

∗ macintosh

∗ red delicious

6

– pears

– peaches

• vegetables

– brocolli

– chard

The markdown syntax guide is not explicit whether the four-space rule applies
to all block-level content in a list item; it only mentions paragraphs and code
blocks. But it implies that the rule applies to all block-level content (including
nested lists), and pandoc interprets it that way.

Ordered lists

Ordered lists work just like bulleted lists, except that the items begin with
enumerators rather than bullets.

In standard markdown, enumerators are decimal numbers followed by a period
and a space. The numbers themselves are ignored, so there is no difference
between this list:

1. one

2. two

3. three

and this one:

5. one

6. two

7. three

Extension: fancy lists

Unlike standard markdown, Pandoc allows ordered list items to be marked
with uppercase and lowercase letters and roman numerals, in addition to arabic
numerals. List markers may be enclosed in parentheses or followed by a single
right-parentheses or period. They must be separated from the text that follows

7

http://daringfireball.net/projects/markdown/syntax#list

by at least one space, and, if the list marker is a capital letter with a period, by
at least two spaces.1

Extension: startnum

Pandoc also pays attention to the type of list marker used, and to the starting
number, and both of these are preserved where possible in the output format.
Thus, the following yields a list with numbers followed by a single parenthesis,
starting with 9, and a sublist with lowercase roman numerals:

9) Ninth

10) Tenth

11) Eleventh

i. subone

ii. subtwo

iii. subthree

Pandoc will start a new list each time a different type of list marker is used. So,
the following will create three lists:

2) Two

3) Three

1. Four

• Five

If default list markers are desired, use #.:

1. one

2. two

3. three
1The point of this rule is to ensure that normal paragraphs starting with people’s initials,

like

B. Russell was an English philosopher.

do not get treated as list items.
This rule will not prevent

(C) 2007 Joe Smith

from being interpreted as a list item. In this case, a backslash escape can be used:

(C\) 2007 Joe Smith

8

Definition lists

Extension: definition lists

Pandoc supports definition lists, using a syntax inspired by PHP Markdown
Extra and reStructuredText:2

Term 1

: Definition 1

Term 2 with *inline markup*

: Definition 2

{ some code, part of Definition 2 }

Third paragraph of definition 2.

Each term must fit on one line, which may optionally be followed by a blank
line, and must be followed by one or more definitions. A definition begins
with a colon or tilde, which may be indented one or two spaces. The body of
the definition (including the first line, aside from the colon or tilde) should be
indented four spaces. A term may have multiple definitions, and each definition
may consist of one or more block elements (paragraph, code block, list, etc.),
each indented four spaces or one tab stop.

If you leave space after the definition (as in the example above), the blocks of
the definitions will be considered paragraphs. In some output formats, this will
mean greater spacing between term/definition pairs. For a compact definition
list, do not leave space between the definition and the next term:

Term 1

~ Definition 1

Term 2

~ Definition 2a

~ Definition 2b

Numbered example lists

Extension: example lists

The special list marker @ can be used for sequentially numbered examples. The
first list item with a @ marker will be numbered ‘1’, the next ‘2’, and so on,
throughout the document. The numbered examples need not occur in a single
list; each new list using @ will take up where the last stopped. So, for example:

2I have also been influenced by the suggestions of David Wheeler.

9

http://michelf.ca/projects/php-markdown/extra/#table
http://michelf.ca/projects/php-markdown/extra/#table
http://docutils.sourceforge.net/docs/ref/rst/introduction.html
http://www.justatheory.com/computers/markup/modest-markdown-proposal.html

(@) My first example will be numbered (1).

(@) My second example will be numbered (2).

Explanation of examples.

(@) My third example will be numbered (3).

Numbered examples can be labeled and referred to elsewhere in the document:

(@good) This is a good example.

As (@good) illustrates, ...

The label can be any string of alphanumeric characters, underscores, or hyphens.

Compact and loose lists

Pandoc behaves differently from Markdown.pl on some “edge cases” involving
lists. Consider this source:

+ First

+ Second:

- Fee

- Fie

- Foe

+ Third

Pandoc transforms this into a “compact list” (with no <p> tags around “First”,
“Second”, or “Third”), while markdown puts <p> tags around “Second” and
“Third” (but not “First”), because of the blank space around “Third”. Pandoc
follows a simple rule: if the text is followed by a blank line, it is treated as a
paragraph. Since “Second” is followed by a list, and not a blank line, it isn’t
treated as a paragraph. The fact that the list is followed by a blank line is
irrelevant.

Ending a list

What if you want to put an indented code block after a list?

- item one

- item two

{ my code block }

10

Trouble! Here pandoc (like other markdown implementations) will treat { my

code block } as the second paragraph of item two, and not as a code block.

To “cut off” the list after item two, you can insert some non-indented content,
like an HTML comment, which won’t produce visible output in any format:

- item one

- item two

<!-- end of list -->

{ my code block }

You can use the same trick if you want two consecutive lists instead of one big
list:

1. one

2. two

3. three

<!-- -->

1. uno

2. dos

3. tres

Horizontal rules

A line containing a row of three or more *, -, or characters (optionally sepa-
rated by spaces) produces a horizontal rule:

Tables

Extension: simple tables, multiline tables, grid tables, pipe tables,
table captions

Four kinds of tables may be used. The first three kinds presuppose the use of
a fixed-width font, such as Courier. The fourth kind can be used with propor-
tionally spaced fonts, as it does not require lining up columns.

11

Simple tables

Simple tables look like this:

Right Left Center Default

------- ------ ---------- -------

12 12 12 12

123 123 123 123

1 1 1 1

Table: Demonstration of simple table syntax.

The headers and table rows must each fit on one line. Column alignments are
determined by the position of the header text relative to the dashed line below
it:3

• If the dashed line is flush with the header text on the right side but extends
beyond it on the left, the column is right-aligned.

• If the dashed line is flush with the header text on the left side but extends
beyond it on the right, the column is left-aligned.

• If the dashed line extends beyond the header text on both sides, the column
is centered.

• If the dashed line is flush with the header text on both sides, the default
alignment is used (in most cases, this will be left).

The table must end with a blank line, or a line of dashes followed by a blank line.
A caption may optionally be provided (as illustrated in the example above). A
caption is a paragraph beginning with the string Table: (or just :), which will
be stripped off. It may appear either before or after the table.

The column headers may be omitted, provided a dashed line is used to end the
table. For example:

------- ------ ---------- -------

12 12 12 12

123 123 123 123

1 1 1 1

------- ------ ---------- -------

When headers are omitted, column alignments are determined on the basis of
the first line of the table body. So, in the tables above, the columns would be
right, left, center, and right aligned, respectively.

3This scheme is due to Michel Fortin, who proposed it on the Markdown discussion list.

12

http://six.pairlist.net/pipermail/markdown-discuss/2005-March/001097.html

Multiline tables

Multiline tables allow headers and table rows to span multiple lines of text (but
cells that span multiple columns or rows of the table are not supported). Here
is an example:

Centered Default Right Left

Header Aligned Aligned Aligned

----------- ------- --------------- -------------------------

First row 12.0 Example of a row that

spans multiple lines.

Second row 5.0 Here’s another one. Note

the blank line between

rows.

Table: Here’s the caption. It, too, may span

multiple lines.

These work like simple tables, but with the following differences:

• They must begin with a row of dashes, before the header text (unless the
headers are omitted).

• They must end with a row of dashes, then a blank line.

• The rows must be separated by blank lines.

In multiline tables, the table parser pays attention to the widths of the columns,
and the writers try to reproduce these relative widths in the output. So, if you
find that one of the columns is too narrow in the output, try widening it in the
markdown source.

Headers may be omitted in multiline tables as well as simple tables:

----------- ------- --------------- -------------------------

First row 12.0 Example of a row that

spans multiple lines.

Second row 5.0 Here’s another one. Note

the blank line between

rows.

: Here’s a multiline table without headers.

13

It is possible for a multiline table to have just one row, but the row should be
followed by a blank line (and then the row of dashes that ends the table), or
the table may be interpreted as a simple table.

Grid tables

Grid tables look like this:

: Sample grid table.

+---------------+---------------+--------------------+

| Fruit | Price | Advantages |

+===============+===============+====================+

| Bananas | $1.34 | - built-in wrapper |

| | | - bright color |

+---------------+---------------+--------------------+

| Oranges | $2.10 | - cures scurvy |

| | | - tasty |

+---------------+---------------+--------------------+

The row of =s separates the header from the table body, and can be omitted for
a headerless table. The cells of grid tables may contain arbitrary block elements
(multiple paragraphs, code blocks, lists, etc.). Alignments are not supported,
nor are cells that span multiple columns or rows. Grid tables can be created
easily using Emacs table mode.

Pipe tables

Pipe tables look like this:

| Right | Left | Default | Center |

|------:|:-----|---------|:------:|

| 12 | 12 | 12 | 12 |

| 123 | 123 | 123 | 123 |

| 1 | 1 | 1 | 1 |

: Demonstration of simple table syntax.

The syntax is the same as in PHP markdown extra. The beginning and ending
pipe characters are optional, but pipes are required between all columns. The
colons indicate column alignment as shown. The header can be omitted, but
the horizontal line must still be included, as it defines column alignments.

14

http://table.sourceforge.net/
http://michelf.ca/projects/php-markdown/extra/#table

Since the pipes indicate column boundaries, columns need not be vertically
aligned, as they are in the above example. So, this is a perfectly legal (though
ugly) pipe table:

fruit| price

-----|-----:

apple|2.05

pear|1.37

orange|3.09

The cells of pipe tables cannot contain block elements like paragraphs and lists,
and cannot span multiple lines.

Title block

Extension: pandoc title blocks

If the file begins with a title block

% title

% author(s) (separated by semicolons)

% date

it will be parsed as bibliographic information, not regular text. (It will be used,
for example, in the title of standalone LaTeX or HTML output.) The block may
contain just a title, a title and an author, or all three elements. If you want to
include an author but no title, or a title and a date but no author, you need a
blank line:

%

% Author

% My title

%

% June 15, 2006

The title may occupy multiple lines, but continuation lines must begin with
leading space, thus:

% My title

on multiple lines

If a document has multiple authors, the authors may be put on separate lines
with leading space, or separated by semicolons, or both. So, all of the following
are equivalent:

15

% Author One

Author Two

% Author One; Author Two

% Author One;

Author Two

The date must fit on one line.

All three metadata fields may contain standard inline formatting (italics, links,
footnotes, etc.).

Backslash escapes

Extension: all symbols escapable

Except inside a code block or inline code, any punctuation or space charac-
ter preceded by a backslash will be treated literally, even if it would normally
indicate formatting. Thus, for example, if one writes

hello

one will get

hello

instead of

hello

This rule is easier to remember than standard markdown’s rule, which allows
only the following characters to be backslash-escaped:

\‘*_{}[]()>#+-.!

A backslash-escaped space is parsed as a nonbreaking space. It will appear in
TeX output as ∼ and in HTML and XML as \ or \ .

A backslash-escaped newline (i.e. a backslash occurring at the end of a line) is
parsed as a hard line break. It will appear in TeX output as \\ and in HTML as

. This is a nice alternative to markdown’s “invisible” way of indicating
hard line breaks using two trailing spaces on a line.

Backslash escapes do not work in verbatim contexts.

16

Smart punctuation

Pandoc will produce typographically correct output, converting straight quotes
to curly quotes, --- to em-dashes, -- to en-dashes, and ... to ellipses. Non-
breaking spaces are inserted after certain abbreviations, such as “Mr.”

Note: if your LaTeX template uses the csquotes package, pandoc will detect
automatically this and use \enquote{...} for quoted text.

Inline formatting

To emphasize some text, surround it with *s or , like this:

This text is _emphasized with underscores_, and this

is *emphasized with asterisks*.

Double * or produces strong emphasis:

This is **strong emphasis** and __with underscores__.

A * or character surrounded by spaces, or backslash-escaped, will not trigger
emphasis:

This is * not emphasized *, and *neither is this*.

Because is sometimes used inside words and identifiers, pandoc does not in-
terpret a surrounded by alphanumeric characters as an emphasis marker. If
you want to emphasize just part of a word, use *:

feas*ible*, not feas*able*.

Strikeout To strikeout a section of text with a horizontal line, begin and end
it with ∼. Thus, for example,

This ~~is deleted text.~~

Superscripts and subscripts Superscripts may be written by surrounding
the superscripted text by ^ characters; subscripts may be written by surrounding
the subscripted text by ∼ characters.

Thus, for example,

H~2~O is a liquid. 2^10^ is 1024.

17

If the superscripted or subscripted text contains spaces, these spaces must be
escaped with backslashes. (This is to prevent accidental superscripting and
subscripting through the ordinary use of ∼ and ^.)

Thus, if you want the letter P with ‘a cat’ in subscripts, use P∼, not P∼.

Verbatim To make a short span of text verbatim, put it inside backticks:

What is the difference between ‘>>=‘ and ‘>>‘?

If the verbatim text includes a backtick, use double backticks:

Here is a literal backtick ‘‘ ‘ ‘‘.

(The spaces after the opening backticks and before the closing backticks will be
ignored.)

The general rule is that a verbatim span starts with a string of consecutive
backticks (optionally followed by a space) and ends with a string of the same
number of backticks (optionally preceded by a space).

Note that backslash-escapes (and other markdown constructs) do not work in
verbatim contexts:

This is a backslash followed by an asterisk: ‘*‘.

Extension: inline code attributes

Attributes can be attached to verbatim text, just as with delimited code blocks:

‘<$>‘{.haskell}

Math

Anything between two $ characters will be treated as TeX math. The opening
$ must have a character immediately to its right, while the closing $ must have
a character immediately to its left. Thus, $20,000 and $30,000 won’t parse
as math. If for some reason you need to enclose text in literal $ characters,
backslash-escape them and they won’t be treated as math delimiters.

TeX math will be printed in all output formats. How it is rendered depends on
the output format:

• HTML: with (mathjax)[http://www.mathjax.org/]

• Latex: with Latex

18

Raw HTML

Markdown allows you to insert raw HTML (or DocBook) anywhere in a docu-
ment (except verbatim contexts, where <, >, and & are interpreted literally).

Standard markdown allows you to include HTML “blocks”: blocks of HTML
between balanced tags that are separated from the surrounding text with blank
lines, and start and end at the left margin.

Within these blocks, everything is interpreted as HTML, not markdown; so (for
example), * does not signify emphasis.

Pandoc interprets material between HTML block tags as markdown. Thus, for
example, Pandoc will turn

<table>

<tr>

<td>*one*</td>

<td>[a link](http://google.com)</td>

</tr>

</table>

into

<table>

<tr>

<td>one</td>

<td>a link</td>

</tr>

</table>

There is one exception to this rule: text between <script> and <style> tags
is not interpreted as markdown.

Raw TeX

In addition to raw HTML, pandoc allows raw LaTeX, TeX, and ConTeXt to
be included in a document. Inline TeX commands will be preserved and passed
unchanged to the LaTeX and ConTeXt writers. Thus, for example, you can use
LaTeX to include BibTeX citations:

This result was proved in \cite{jones.1967}.

Note that in LaTeX environments, like

19

\begin{tabular}{|l|l|}\hline

Age & Frequency \\ \hline

18--25 & 15 \\

26--35 & 33 \\

36--45 & 22 \\ \hline

\end{tabular}

the material between the begin and end tags will be interpreted as raw LaTeX,
not as markdown.

Inline LaTeX is ignored in output formats other than Markdown, LaTeX, and
ConTeXt.

LaTeX macros

For output formats other than LaTeX, pandoc will parse LaTeX \newcommand
and \renewcommand definitions and apply the resulting macros to all LaTeX
math. So, for example, the following will work in all output formats, not just
LaTeX:

\newcommand{\tuple}[1]{\langle #1 \rangle}

$\tuple{a, b, c}$

In LaTeX output, the \newcommand definition will simply be passed unchanged
to the output.

Links

Markdown allows links to be specified in several ways.

Automatic links If you enclose a URL or email address in pointy brackets,
it will become a link:

<http://google.com>

<sam@green.eggs.ham>

Pandoc will render autolinked URLs and email addresses as inline code.

20

Inline links An inline link consists of the link text in square brackets, followed
by the URL in parentheses. (Optionally, the URL can be followed by a link title,
in quotes.)

This is an [inline link](/url), and here’s [one with

a title](http://fsf.org "click here for a good time!").

There can be no space between the bracketed part and the parenthesized part.
The link text can contain formatting (such as emphasis), but the title cannot.

Reference links

An explicit reference link has two parts, the link itself and the link definition,
which may occur elsewhere in the document (either before or after the link).

The link consists of link text in square brackets, followed by a label in square
brackets. (There can be space between the two.) The link definition must begin
at the left margin or indented no more than three spaces. It consists of the
bracketed label, followed by a colon and a space, followed by the URL, and
optionally (after a space) a link title either in quotes or in parentheses.

Here are some examples:

[my label 1]: /foo/bar.html "My title, optional"

[my label 2]: /foo

[my label 3]: http://fsf.org (The free software foundation)

[my label 4]: /bar#special ’A title in single quotes’

The URL may optionally be surrounded by angle brackets:

[my label 5]: <http://foo.bar.baz>

The title may go on the next line:

[my label 3]: http://fsf.org

"The free software foundation"

Note that link labels are not case sensitive. So, this will work:

Here is [my link][FOO]

[Foo]: /bar/baz

21

In an implicit reference link, the second pair of brackets is empty, or omitted
entirely:

See [my website][], or [my website].

[my website]: http://foo.bar.baz

Internal links

To link to another section of the same document, use the automatically gener-
ated identifier (see Header identifiers in HTML, LaTeX, and ConTeXt, below).
For example:

See the [Introduction](#introduction).

or

See the [Introduction].

[Introduction]: #introduction

Internal links are currently supported for HTML formats (including HTML slide
shows and EPUB), LaTeX, and ConTeXt.

Images

A link immediately preceded by a ! will be treated as an image. The link text
will be used as the image’s alt text:

![la lune](lalune.jpg "Voyage to the moon")

![movie reel]

[movie reel]: movie.gif

Pictures with captions

Extension

An image occurring by itself in a paragraph will be rendered as a figure with a
caption.4 (In LaTeX, a figure environment will be used; in HTML, the image
will be placed in a div with class figure, together with a caption in a p with
class caption.) The image’s alt text will be used as the caption.

4This feature is not yet implemented for RTF, OpenDocument, or ODT. In those formats,
you’ll just get an image in a paragraph by itself, with no caption.

22

![This is the caption](/url/of/image.png)

If you just want a regular inline image, just make sure it is not the only thing
in the paragraph. One way to do this is to insert a nonbreaking space after the
image:

![This image won’t be a figure](/url/of/image.png)\

Footnotes

Extension: footnotes

Pandoc’s markdown allows footnotes, using the following syntax:

Here is a footnote reference,[^1] and another.[^longnote]

[^1]: Here is the footnote.

[^longnote]: Here’s one with multiple blocks.

Subsequent paragraphs are indented to show that they

belong to the previous footnote.

{ some.code }

The whole paragraph can be indented, or just the first

line. In this way, multi-paragraph footnotes work like

multi-paragraph list items.

This paragraph won’t be part of the note, because it

isn’t indented.

The identifiers in footnote references may not contain spaces, tabs, or newlines.
These identifiers are used only to correlate the footnote reference with the note
itself; in the output, footnotes will be numbered sequentially.

The footnotes themselves need not be placed at the end of the document. They
may appear anywhere except inside other block elements (lists, block quotes,
tables, etc.).

Extension: inline notes

Inline footnotes are also allowed (though, unlike regular notes, they cannot
contain multiple paragraphs). The syntax is as follows:

23

Here is an inline note.^[Inlines notes are easier to write, since

you don’t have to pick an identifier and move down to type the

note.]

Inline and regular footnotes may be mixed freely.

Citations

Extension: citations

Pandoc can automatically generate citations and a bibliography in a number of
styles (using Andrea Rossato’s hs-citeproc). In order to use this feature, you
will need a bibliographic database in one of the following formats:

Format File extension

MODS .mods

BibTeX/BibLaTeX .bib

RIS .ris

EndNote .enl

EndNote XML .xml

ISI .wos

MEDLINE .medline

Copac .copac

JSON citeproc .json

You will need to specify the bibliography file using the --bibliography

command-line option (which may be repeated if you have several bibliogra-
phies).

By default, pandoc will use a Chicago author-date format for citations and ref-
erences. To use another style, you will need to use the --csl option to specify a
[CSL] 1.0 style file. A primer on creating and modifying CSL styles can be found
at http://citationstyles.org/downloads/primer.html. A repository of
CSL styles can be found at https://github.com/citation-style-language/
styles. See also http://zotero.org/styles for easy browsing.

Citations go inside square brackets and are separated by semicolons. Each
citation must have a key, composed of ‘@’ + the citation identifier from the
database, and may optionally have a prefix, a locator, and a suffix. Here are
some examples:

24

http://citationstyles.org/downloads/primer.html
https://github.com/citation-style-language/styles
https://github.com/citation-style-language/styles
http://zotero.org/styles

Blah blah [see @doe99, pp. 33-35; also @smith04, ch. 1].

Blah blah [@doe99, pp. 33-35, 38-39 and *passim*].

Blah blah [@smith04; @doe99].

A minus sign (-) before the @ will suppress mention of the author in the citation.
This can be useful when the author is already mentioned in the text:

Smith says blah [-@smith04].

You can also write an in-text citation, as follows:

@smith04 says blah.

@smith04 [p. 33] says blah.

If the style calls for a list of works cited, it will be placed at the end of the
document. Normally, you will want to end your document with an appropriate
header:

last paragraph...

References

The bibliography will be inserted after this header.

Producing slide shows with Pandoc

You can use Pandoc to produce an HTML + javascript slide presentation that
can be viewed via a web browser. There are four ways to do this, using S5,
DZSlides, Slidy, or Slideous. You can also produce a PDF slide show using
LaTeX beamer.

Here’s the markdown source for a simple slide show, habits.txt:

% Habits

% John Doe

% March 22, 2005

In the morning

25

http://meyerweb.com/eric/tools/s5/
http://paulrouget.com/dzslides/
http://www.w3.org/Talks/Tools/Slidy/
http://goessner.net/articles/slideous/
http://www.tex.ac.uk/CTAN/macros/latex/contrib/beamer

Getting up

- Turn off alarm

- Get out of bed

Breakfast

- Eat eggs

- Drink coffee

In the evening

Dinner

- Eat spaghetti

- Drink wine

![picture of spaghetti](images/spaghetti.jpg)

Going to sleep

- Get in bed

- Count sheep

To produce the slide show, simply type

pandoc -t s5 -s habits.txt -o habits.html

for S5,

pandoc -t slidy -s habits.txt -o habits.html

for Slidy,

pandoc -t slideous -s habits.txt -o habits.html

for Slideous,

pandoc -t dzslides -s habits.txt -o habits.html

for DZSlides, or

26

pandoc -t beamer habits.txt -o habits.pdf

for beamer.

With all HTML slide formats, the --self-contained option can be used to
produce a single file that contains all of the data necessary to display the slide
show, including linked scripts, stylesheets, images, and videos.

Structuring the slide show

By default, the slide level is the highest header level in the hierarchy that is
followed immediately by content, and not another header, somewhere in the
document. In the example above, level 1 headers are always followed by level 2
headers, which are followed by content, so 2 is the slide level. This default can
be overridden using the --slide-level option.

The document is carved up into slides according to the following rules:

• A horizontal rule always starts a new slide.

• A header at the slide level always starts a new slide.

• Headers below the slide level in the hierarchy create headers within a slide.

• Headers above the slide level in the hierarchy create “title slides,” which
just contain the section title and help to break the slide show into sections.

• A title page is constructed automatically from the document’s title block,
if present. (In the case of beamer, this can be disabled by commenting
out some lines in the default template.)

These rules are designed to support many different styles of slide show. If you
don’t care about structuring your slides into sections and subsections, you can
just use level 1 headers for all each slide. (In that case, level 1 will be the slide
level.) But you can also structure the slide show into sections, as in the example
above.

For Slidy, Slideous and S5, the file produced by pandoc with the -s/--standalone
option embeds a link to javascripts and CSS files, which are assumed to be
available at the relative path s5/default (for S5) or slideous (for Slideous),
or at the Slidy website at w3.org (for Slidy). (These paths can be changed by
setting the slidy-url, slideous-url or s5-url variables; see --variable,
above.) For DZSlides, the (relatively short) javascript and css are included in
the file by default.

27

Incremental lists

By default, these writers produces lists that display “all at once.” If you want
your lists to display incrementally (one item at a time), use the -i option.
If you want a particular list to depart from the default (that is, to display
incrementally without the -i option and all at once with the -i option), put it
in a block quote:

> - Eat spaghetti

> - Drink wine

In this way incremental and nonincremental lists can be mixed in a single doc-
ument.

Styling the slides

You can change the style of HTML slides by putting customized CSS
files in $DATADIR/s5/default (for S5), $DATADIR/slidy (for Slidy), or
$DATADIR/slideous (for Slideous), where $DATADIR is the user data directory
(see --data-dir, above). The originals may be found in pandoc’s system data
directory (generally $CABALDIR/pandoc-VERSION/s5/default). Pandoc will
look there for any files it does not find in the user data directory.

For dzslides, the CSS is included in the HTML file itself, and may be modified
there.

To style beamer slides, you can specify a beamer “theme” or “colortheme” using
the -V option:

pandoc -t beamer habits.txt -V theme:Warsaw -o habits.pdf

Literate Haskell support

If you append +lhs to an appropriate input or output format (markdown, rst,
or latex for input or output; beamer, html or html5 for output only), pandoc
will treat the document as literate Haskell source. This means that

• In markdown input, “bird track” sections will be parsed as Haskell
code rather than block quotations. Text between \begin{code} and
\end{code} will also be treated as Haskell code.

• In markdown output, code blocks with classes haskell and literate will
be rendered using bird tracks, and block quotations will be indented one
space, so they will not be treated as Haskell code. In addition, headers

28

will be rendered setext-style (with underlines) rather than atx-style (with
‘#’ characters). (This is because ghc treats ‘#’ characters in column 1 as
introducing line numbers.)

• In restructured text input, “bird track” sections will be parsed as Haskell
code.

• In restructured text output, code blocks with class haskell will be ren-
dered using bird tracks.

• In LaTeX input, text in code environments will be parsed as Haskell code.

• In LaTeX output, code blocks with class haskell will be rendered inside
code environments.

• In HTML output, code blocks with class haskell will be rendered with
class literatehaskell and bird tracks.

Examples:

pandoc -f markdown+lhs -t html

reads literate Haskell source formatted with markdown conventions and writes
ordinary HTML (without bird tracks).

pandoc -f markdown+lhs -t html+lhs

writes HTML with the Haskell code in bird tracks, so it can be copied and
pasted as literate Haskell source.

Authors

c© 2006-2011 John MacFarlane (jgm at berkeley dot edu). Released under
the GPL, version 2 or greater. This software carries no warranty of any kind.
(See COPYRIGHT for full copyright and warranty notices.) Other contrib-
utors include Recai Oktaş, Paulo Tanimoto, Peter Wang, Andrea Rossato,
Eric Kow, infinity0x, Luke Plant, shreevatsa.public, Puneeth Chaganti, Paul
Rivier, rodja.trappe, Bradley Kuhn, thsutton, Nathan Gass, Jonathan Daugh-
erty, Jérémy Bobbio, Justin Bogner, qerub, Christopher Sawicki, Kelsey High-
tower, Masayoshi Takahashi, Antoine Latter, Ralf Stephan, Eric Seidel, B. Scott
Michel, Gavin Beatty, Sergey Astanin.

29

http://www.gnu.org/copyleft/gpl.html

